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N. R. REILLY AND P. G. TROTTER

ABSTRACT. The objective of this paper is to study structural properties of
relatively free inverse semigroups in varieties of inverse semigroups. It is shown,
for example, that if S is combinatorial (i.e., X is trivial), completely semisimple
(i.e., every principal factor is a Brandt semigroup or, equivalently, S does not
contain a copy of the bicyclic semigroup) or F-unitary (i.e., E(S) is the kernel
of the minimum group congruence) then the relatively free inverse semigroup
F"Vx on the set X in the variety "V generated by S is also combinatorial,
completely semisimple or F-unitary, respectively.

If 5 is a fundamental (i.e., the only congruence contained in M is the identity-
congruence) and \X\ > No, then FVx ia a'so fundamental. FVx may not be
fundamental if |^f| < No- It is also shown that for any variety of groups U and
for |X| > No, there exists a variety of inverse semigroups "V which is minimal
with respect to the properties (i) FVx ls fundamental and (ii) "V n Q = U,
where Q is the variety of groups.

In the main result of the paper it is shown that there exists a variety V
for which FVx 's not completely semisimple, thereby refuting a long standing
conjecture.

1. Summary. In general, the relatively free objects in any variety of algebras
are important in the study of that variety and this has been true, in particular, in the
study of inverse semigroups. The first good description of the free inverse semigroup
on one generator was given by Gluskin [2], while the first good description of the
free inverse semigroup on an arbitrary set was given by Scheiblich [12]. For a survey
of these and related results, see Petrich [6] and Reilly [10].

The structures of the free group, the free inverse semigroup and free semilattice
of groups are well known. However, with the one exception of the work on the
relatively free objects in varieties generated by £"-unitary inverse semigroups by
Pastijn [4] and Petrich and Reilly [7], relatively little has been said regarding the
structure of the relatively free objects in other varieties of inverse semigroups or
with regard to other properties than ^-unitary.

Since it would seem to be beyond the present state of knowledge to give explicit
structure theorems for nontrivial relatively free inverse semigroups other than those
considered by Gluskin and Scheiblich, we continue the investigation of the structure
of relatively free inverse semigroups in the spirit of Pastijn [4] and Petrich and Reilly
[7]-

§2 is devoted to background information. In §3, it is shown that certain struc-
tural properties of an inverse semigroup S will be inherited by the relatively free
objects F"Vx, in the variety ~V generated by X. If 5 is combinatorial or completely
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244 N. R. REILLY AND P. G. TROTTER

semisimple, then so is FVx, while if |X| > No and S is fundamental, then so is
FMx-

If "V and W are varieties such that V C ~W and kerp-y = ker pw (where py de-
notes the fully invariant congruence on the free inverse semigroup on No generators
that defines V), then it is shown that F"Wx will be E-unitary, combinatorial or
fundamental if FVx is and that FWx will be completely semisimple if FVx is both
completely semisimple and combinatorial.

It has long been conjectured that all relatively free inverse semigroups might be
completely semisimple. §4 is devoted to showing that this is not the case.

In §5 it is shown that if Q is the variety of all groups and U is a variety of groups
then there exists a variety "V of inverse semigroups which is minimal with respect
to the properties that (i) "V n Q — U and (ii) for \X\ > N0, FVx is fundamental.

In §6, it is shown that there is a countably infinite family of varieties with
relatively free objects that are combinatorial, completely semisimple and ^-unitary
while, in §7, it is shown that there is a countably infinite family of varieties with
relatively free objects that are fundamental, completely semisimple and ^-unitary
but not combinatorial.

2. Notation and terminology. We shall adopt the notation and terminology
to be found in Howie [3] or Petrich [6], to which books the reader is referred for
basic information on inverse semigroups.

We shall adopt the following notation for certain specific varieties:
I—the variety of all inverse semigroups,
C—the variety of inverse semigroups generated by the bicyclic semigroup C,
Q—the variety of all groups,
AG—the variety of all abelian groups,
V(S)—the variety of inverse semigroups generated by 5.
For any set X, we will denote by Fx the free semigroup on X and, for any

variety of inverse semigroups V, we will denote by FVx the relatively free inverse
semigroup in V on X. If we wish to focus on the cardinality of X, we will write
Fn(V) (respectively, i*N0CV)) for FVx with |X| = n (respectively, No).

If |X| = No, then each variety of inverse semigroups, V, is completely determined
by a fully invariant congruence on Fix- We shall denote this congruence by py.

We shall want to take advantage of two ways of describing the free inverse semi-
group on a set X.

Let X-1 denote a set disjoint from X and in one-to-one correspondence with X
via x <-> x_1. Now extend this to a unary operation a —> a-1 on the free semigroup
•fxux-i by defining

(x~1)-1=x,        (ab)-1 =6"1a"1

for all x E X, a, b E F^ux-1- Let P be the smallest congruence on FXux~l sucri
that

(a,aa~la) E p,        [aa~lbb~x,bb~l aa~l) E p

for all a, b E Fxux-1- Then FXux~l/p 1S the free inverse semigroup Fix on X.
Since our focus is on FIX and not F"xux-li we will suppress the congruence p.
Then each element of Fix can be written as a word which is a product of elements
of the form x and y~~1, x, y E X.
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RELATIVELY FREE INVERSE SEMIGROUPS 245

There is a natural homomorphism of Fix onto the free group F^x on X, where
F§x is considered as the set of all reduced words on X U X-1. For any word
w E Fix, let it; denote the "reduced form" of w obtained by deleting successively
all adjacent pairs of the form aa"1. Then w —> w is an epimorphism of Fix onto
F9x-

Every word w in Fix can be written in the form w = a\ax a?a2 ■ • ■ ama^a
where the a and az contain no successive terms of the form bb^1. Thus o, considered
as a word in FQx, is reduced as written so that w = a and we can write w in the
canonical form

(1) w = a\a±   ■••ama~1w.

We also wish to take advantage of Scheiblich's construction of Fix- Let 1 denote
the identity of FQx ■ We will say that a subset A of FQx is convex if A contains all
initial segments, including 1, of all words (in reduced form) in A. Let ]j denote the
set of all finite convex subsets of F§x containing 1 and at least one other element.
Let

F={(A,g)£yxF9x:gEA}
and define a product in F by

{A,g){B,h) = (AUgB,gh).
Then F is the free inverse semigroup on X (with respect to the embedding x —>
({l,x},x)). The isomorphism between Fix considered as words on the alphabet
X U X-1 and Scheiblich's description is given as follows. For any word w E Fix,
let

A(w) = {u:u is an initial segment of w}.

If w is written in the canonical form (1), then

A(W)=(]jA(al))uA(w)

and the mapping
w —> (A(w),w)

is an isomorphism of Fix onto F.
Henceforth, we will pass between these two descriptions of the free inverse semi-

group on X, as convenient.
With regard to computations within Scheiblich's description of Fix, the follow-

ing observations will be useful: for any A E y, g E A, u,v E Fix,

(2) i^gr^ig-^g-1),
(3) A{uv) = A(u)lluA(v),        A(u-1) = u~lA(u).

Also, for any w E Fix, written as a word in XUX-1, the content c(w) of w is the
set of elements of X appearing in w.

For any inverse semigroup S, let E(S) denote the semilattice of idempotents of
S.

For any congruence p on an inverse semigroup S,

ker p = {a £ S: apaa~1} = {a £ S: (ap)2 = ap},

trp = pn{E{S) xE(S)).
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246 N. R. REILLY AND P. G. TROTTER

Any congruence p on an inverse semigroup S is completely determined by ker p, the
kernel of p, and tr p, the trace of p (see Petrich [6]). We say that p is idempotent
pure if and only if kerp = E(S) and that p is idempotent separating if and only if
trp = le(S)- Equivalently, p is idempotent separating if and only if p C M.

On any inverse semigroup S, there is a minimum congruence a — as such that
S/a is a group. If ker a — E(S), then S is said to be E-unitary (over the group G =
S/o). There is also a maximum congruence p = ps (°r, P>{S)) on S such that
p C H or, equivalently, such that tr/i = i£(s)- If /^s = ts, then S is said to be
fundamental. If #s = ts, then 5 is said to be combinatorial. Equivalently, S is
combinatorial if it contains no nontrivial subgroups.

LEMMA 2.1  (SEE [3]).   For any inverse semigroup S and any a,b£S,

(a,b) £ ps •<=> a~1ea = b~1eb,    for all e E E(S).

An inverse semigroup P is an E-unitary cover of the inverse semigroup S if P
is F-unitary and there is an idempotent separating homomorphism of P onto S; if
Pja = G then P is an E-unitary cover of S over G.

A variety V of inverse semigroups has E-unitary covers if, for every S E V, there
is an F-unitary cover of S in V and V has E-unitary covers over a variety of groups
U if for every S in V there is an F-unitary cover of S over some group in U.

THEOREM 2.2 (SEE [7]). The following conditions on a variety V of inverse
semigroups are equivalent.

(i) V has E-unitary covers.
(ii) The free objects in V are E-unitary.

(iii) "V is generated by its E-unitary members.

An inverse semigroup is completely semisimple if and only if each of its principal
factors is a Brandt semigroup or, equivalently, if and only if it does not contain the
bicyclic semigroup c as a subsemigroup (see Theorem 2.54 of [1]).

THEOREM 2.3 (SEE [9]).   For a variety of inverse semigroups V, the following
statements are equivalent.

(1)C<?V;
(2) Every member of V is completely semisimple;
(3) For some positive integer n,xnx~n = x~nxn is a law in V.

3. Inherited properties. In this section we begin to address the general
question of when it is possible to obtain information about the structure of the
relatively free objects in a variety V of inverse semigroups. Assuming that a detailed
construction of FVx is not available, it is natural to ask if FVx falls into any well-
known classes of inverse semigroups, such as .E-unitary, completely semisimple,
fundamental or combinatorial.

We identify certain properties which, if possessed by an inverse semigroup S,
will be inherited by the relatively free objects of V(S).

THEOREM 3.1. Let S be an inverse semigroup and V = V(S). If S is combi-
natorial (respectively, completely semisimple or E-unitary) then F = FVx is also
combinatorial (respectively, completely semisimple or E-unitary). If S is funda-
mental and \X\ > Nq, then so is FVx-
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PROOF. Let p be the fully invariant congruence on Fix corresponding to V(S).
Then p = f]{6 o 8~l\9: FIX -» S is a homomorphism} and F = FIx/p-

Let a,b £ Fix be such that ap ^ 6p. Then there exists a homomorphism
0: Fix -> S such that a0 ^ 60.

If 5 is combinatorial, then it follows that (a6,b6) E' Ms- Since p C 6 o 6~l, it
follows that (ap,bp) & Uf- Thus F is combinatorial.

Now let S be completely semisimple and let a E Fix be such that (ap)(ap)~1 ^
(ap)-1(ap). Then, for some 0:FIx -» S, (a^M)"1 ^ (afl)"1^). Since 5 is
completely semisimple, (a#)(a#)-1 and (af?)_1(a0) are incomparable (^-equivalent)
idempotents. Hence (ap)(ap)~1 and (ap)~l(ap) are also incomparable. Thus F
cannot contain a copy of the bicyclic semigroup and so F is completely semisimple.

That F will be F-unitary if S is F-unitary was established in [4 and 7].
Finally suppose that 5 is fundamental and that |X| = No- Again let a, b £ Fix

be such that ap / bp so that there exists a homomorphism 9: Fix —► S with
ad ^ bd. Since S is fundamental, there exists an idempotent e £ S such that

(a8)-le(a8) ^ (b8)-le(b8).

Let c(a)Uc(6) = {zi,... ,xn} and z £ X\{zi,... ,xn}. Define a homomorphism
<p: Fix —* S by its action on X as follows:

I e      if x — z,xip = -i
I z#    otherwise.

Then
(a~1zz~1a)<p = (atp)~1(zip)(zip)~x(a<p) = (a9)~1e(a8)

?t(W)-1e(W) = (M"1MM"1(M

so that (a_12,z-1a, b_1;zz_16) ^ p. Therefore,

{ap)-\zz'l)p(aP) + {bpY\zz^)p(bp)

and
(a/j,6p) tPF-

Thus F is fundamental.
It was shown in [10] that the free inverse semigroup on two generators contains

the free inverse semigroup on a countably infinite set of generators so that, for
n > 2, V{Fn{I)) = V{Fk0(I)) = I and FIX is well known. However, *\){Fi(I)) =
C ^ I (see [6, Proposition XII.4.11]), and so it is natural to ask if FCx has any of
the properties referred to in Proposition 3.1.

COROLLARY 3.2. For allX / 0, FCx is combinatorial, completely semisimple
and E-unitary.

PROOF. Since FiJ is combinatorial, completely semisimple and F-unitary, so
also is FCx, by Proposition 3.1.

THEOREM 3.3. Let V and ~W be varieties of inverse semigroups with V C "W
and ker/?-y = kerpx;. If FVx is combinatorial, fundamental or E-unitary, then so

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



248 N. R. REILLY AND P. G. TROTTER

also is F~Wx- If FVx is completely semisimple and combinatorial, then FWx is
completely semisimple.

Proof. Let F = FVX and F' = FVt>x. Since V C W, it follows that pv C pV-
Since p-y and pw have the same kernel, the congruence p = pv/pw induced on F'
by p-y is necessarily idempotent pure.

Suppose that F is F-unitary, that is, the minimum group congruence o on F is
idempotent pure. Then

r = {(a, b) E F' x F': (ap, ftp) G <r}

is an idempotent pure congruence on F' such that F'/t = F ja is a group. Hence
r is the minimum group congruence on F' and therefore F' is F-unitary.

Now let F be combinatorial. Let a E F'\E(F'). Since p is idempotent pure,
ap £" E(F). Since F is combinatorial (ap, (ap^ap)"1) g" #jr. Hence (0,0a"1) %t Mf>
and F' is combinatorial.

Now suppose that F is fundamental and let a E F'\E(F'). Then again ap E
F\E(F) and so, by Lemma 2.1, there exists an idempotent y E E(F) such that

(4) y<(ap)(ap)~1    and    (ap)"1y(ap) / y.

Let e G F(F') be such that y = ep. Then, from (4) we have a~lea^ e. By Lemma
2.1, (a,aa~l) £ p(F'). Hence kerp(F') = E(F'). Since tr/z(F') is the identity
relation on E(F'), it follows that p(F') is the identity and F' is fundamental.

Now suppose that F is combinatorial and completely semisimple. Let a E Fix
be such that a~1apyn < aa~~lpyl>. Then a_1ap-y < aa_1p-y. Since F is completely
semisimple, a_1apy — aa~lp\. Hence (apy,aa~1py) E M. But F is combinatorial.
Therefore apy = aa~1 p-y. Since p-y jpyj is idempotent pure, it follows that apyj —
aa~lpyj. Hence there is no element apyn such that (apyj)~l(apyj) ^ (apw)(apyj)~l
so that F' cannot contain a copy of C and is, therefore, completely semisimple.

In regard to the last statement of Theorem 3.3, the fact that FVx is completely
semisimple does not, by itself, imply that F~Wx is completely semisimple. We will
see this in Remark 4.3.

Notation 3.4.   For any fully invariant subgroup N of FQx, let &n denote the
congruence on Fix such that FIx/on — FQx/N and let pjv = fmin, the minimum
congruence on Fix with the same kernel as OO-

LEMMA 3.5.     (i) pn is a fully invariant congruence on Fix-
(ii) Pn is the smallest congruence p on FIX such that FIx/p is E-unitary over

F9x/N.
(iii) pn is the congruence on Fix generated by {((A,m), (A,n)):m,n E N}.

PROOF. Part (i) follows from Theorem 3.6 of [5].
By the definition of p^, kerp^r = kertr^v so that ctjv/pn is an idempotent pure

congruence. Since (FIxIpn)I{onIpn) — FIx/ctn — F$x/N it follows that
FIx/pn is F-unitary over F^x/N. The minimality of pN follows from the fact
that pn is the smallest congruence with the same kernel as o~n- Hence (ii) holds.

Let r be the congruence generated by the set given in the statement of (iii).
Since kerpw = {(A,m):m £ N} it follows that

(A,m) pn (A, 1) pn (A,n)    for all m,n £ N,
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so that t C pn- On the other hand, it is clear that ker pn C ker r. Hence ker pn =
kerr. But r C pN while pw is the minimum congruence with its kernel. Therefore
pN -t.

Notation 3.6. For any variety U of groups, corresponding to the fully invariant
subgroup N of F^x, let

Umax = V(FIx/pn)-

THEOREM 3.7.   Letli and N be as in Notation 3.6 and let W = timax.
(i) W is the largest variety such that ker pyj = ker o~n ■

(ii) ~W is the variety for which pyj is the smallest fully invariant congruence with
ker pyj — ker o~n ■

(iii) ~W is the largest variety with E-unitary covers over 11.

PROOF. By the definition of "W — Umax, it is clear that pyj = Pn- Then (i)
follows from the definition of pN- Part (ii) is equivalent to (i).

By Lemma 3.5(h), F"Wx is F-unitary, for all nonempty sets X. By Theorem 2.2,
"W has F-unitary covers which will be over the variety Q n W = U. On the other
hand, if V has F-unitary covers over U, then FVx is F-unitary over U. Hence
ker p-y = ker pu — kertr^. Since pyj is the minimum congruence with ker pyj =
kertTjv, it follows that pyj C py and so "V C "W.

Recalling that C is the variety generated by the bicyclic semigroup, it follows
from Corollary 3.2 and [6, Theorem XII.6.9] that

AGCCQ AGmax.

COROLLARY 3.8. For any variety V such that C C V C AGmiiX, FVX is
combinatorial, completely semisimple and E-unitary over AG.

PROOF Since AG CC CV C AG"1**, it follows that kerpv = kerpc. The claim
now follows from Corollary 3.2 and Theorem 3.3.

We will see in §6, that the interval [C, /!Gmax] contains at least No distinct
members.

PROPOSITION 3.9.   LetU,V,Vd be varieties such that
(i) U C V,

(h) trpa C trpyv,
(iii) ker p-y = ker(p-y V pw).

Then
Vn(UvW) = Uv(VnyD).

PROOF. Let 0 = pv V (pu n pw), 7 — pu n {py V pw). We wish to show that
0 = 1-

By (i), p-y C pu, from which it follows easily that 0 C -y.
Define the relation 8 on the lattice A(5) of congruences on S by

(p, <r) £ 8 O tr p — trtr.

Then, by [6, Chapter III], 8 is a congruence relation on A(S). Part (ii) of the
hypothesis then implies that pu9 < pyi/6. Therefore,

09 = [py V (pu n pW)}9 = py9 V (pU9 A pW0)
= py9 V p^6> = (pv V pu)8 = pu9.
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On the other hand, by (ii)
pu9 <py>8< (py \l pyj)9

so that
7# = pu9 A (p-y \l pyj)9 = pu9.

Thus 09 = 19ortr0 = tr 7. Also
ker-) = ker(pun(py V pyj))

- ker pu n ker(p-y V pw)
= kerp^ n ker p-y    by (iii)
= ker p-y    since py Q pu-

On the other hand, it is clear that

ker p-y C ker/?.

Thus ker 7 C ker 0, so that 7 C 0. Hence 0 = 7.
Notation 3.10. For any u £ Fix, let l(u) denote the length of u in reduced form.

Let
In = {u£FI1:l(u) >n},

and let
Mn = FI1/In,        n = 2,3,....

Problem XII.6.12(iii) of [6] poses the question: Is

Cn(V(Mn)vg) = V(Mn)\/(Cng)l
We can use Proposition 3.9 to answer this affirmatively.
Since conditions (ii) and (iii) of Proposition 3.9 are satisfied automatically when-

ever W = Cj and FVx is F-unitary, we have the following

COROLLARY 3.11. Let U,V be varieties such that U E V and FVX is E-
unitary.  Then

Vn(Uv9) = Uv{Vng).
In particular, ifll = V(Mn) and V = C then

C n (V(Mn) v 9) = V(Mn) v (C n G) = V(Mn) v AG.
4. A noncompletely semisimple example. Every relatively free inverse

semigroup that has been studied in the literature in any depth to date is com-
pletely semisimple and it has long been conjectured that all relatively free inverse
semigroups might be completely semisimple. This section is devoted to a remark-
able example, due to P. G. Trotter, of a relatively free inverse semigroup which is
not completely semisimple.

THEOREM 4.1.   Letx,y £X,x^y, and let

a = xyxy(xyxy)~1xyx~1y~1 E Fix-

Let V be the variety defined by the identity

(5) aa'1 = a2a~2.

Then FVx is not completely semisimple.
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PROOF. Let g = apy. Then clearly gg'1 = g2g~2. Moreover, by (5),

{g'lg){gg~l) = (rtXff^Xrt) = g~'g2g-2g
= g~1gg~1g = g~1g-

Thus g~xg < gg~l. Our objective, therefore, is to show that

(6) g-'g^gg-1

since it will then follow from [1, Lemma 1.31], that the inverse subsemigroup of
FIx/pv — FVx generated by g is isomorphic to the bicyclic semigroup so that
FVx is not completely semisimple.

The relation

6 = {((aa-1)(£, (a2a~2)(p): <p is an endomorphism of Fix}

is clearly a fully invariant relation on Fix- By Lemma 2.2 of [5], the congurence p
generated by 6 is a fully invariant congruence. Now py is the smallest fully invariant
congruence on Fix containing (aa"1 ,o?a~2) so that p-y C p. On the other hand,
6 C p-y so that p C p-y. Hence py = p is the congruence generated by 6.

It follows easily that (aa~x,ana~n) E py, for all n > 1. Now

A(a) = A(aa~x) = {l,x,xy,xyx,xyxy,xyx~x ,xyx~1y~1}

and, writing h = a, we have

h = a = xyx~1y~1.

In Scheiblich form,

a=(A(a),h)    and    aa'1 = (A(a), 1).

By repeated applications of (3), we have, for m > 1,

m— 1
A(am) = A{ama-m) = I J hlA(a)

= {hl, hlx, hlxy, hlxyx, hlxyxy, hlxyx~1,hl+1: i = 0,... ,m — 1}.

The main work of the proof lies in the following

LEMMA 4.2.   Let b E FIX and (aa'1 ,bb~x) E py.   Then A(b) C ,4(am), for
some m>\.

PROOF. Since py is the congruence generated by 6, there exist elements pi, a^, 6;
£ FIx,i = 0,..., n, with po = ao — bo = aa~x such that

aa'1 =p0boPo1,

(8) PjijPj1 = Pj+ibj+iPjli,        J = 0,..., n - 1,
Pnanp'1 = bb~1,

where (a,-, 6;) € <5 U o"1 U i for 0 < i < n. Note that, by the definition of S we may
assume that each a^ and each 6; is an idempotent.
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The proof is by induction on n. If n = 0, then

aa"1 = poaoPo1 = PoOoPo* = bb"1

and the claim holds. So suppose that the claim holds for all sequences of the form
(8) of shorter length and consider the sequence (8).

Since the subsequence of (8) up to

pn-ian-ip~lx =pnbnp"1

is of shorter length, we may assume that

(9) A(pnbnp~1) C A(am)    for some m > 1.

As observed above we can assume that each bn is an idempotent so that bn = 1.
Then, by (2) and (3) and writing P = A(pn),

A(pnbnPn1) = A(pn) U p„A(bn) U pnbnA(p~x)

= P U pnA(bn) U pnp" 1A(pn)

= PUpnA(bn).

Therefore, by (9), we have

(10) PUpnA(bn)CA(am).

Now (an,bn) £ 8 U 5"1 U t.   If an = bn, then the conclusion holds easily.   So
suppose that (an,bn) E 6 U 6"1. Then, for some endomorphism ip of Fix,

an,bn £ {aa~1ip,a2a~2<p}.

Let xip — d and y<p = e and t — a<p — dede(dede)~1ded~1e~1. Then

a^bnEitt-^th-2}

so that there are two cases to consider.
Case (i). bn = t2t-2,an = tt_1. Then, by (3),

A(b) = A(pnanp~1) = A(pntr1p-1)

= A(pnt) C A(pnt2)
= A(pnt2r2p-1) = Aip^p-1) C A(am)

and the result holds.
Case (ii). bn = tt~1,an = t2t~2. Let p = pn. Then, by (10)

(11) PUpA{t) = PUpA(bn)CA(am),

for some m > 1, while

A(b) = A(pt2t-2p-1) = PUpA(t)UpiA{t).

From this and (11), we see that it remains to show that

piA(t) C A(am)    for some m.

This will follow from (11), if we can show that, for all choices of tp,

(12) either (a) t = 1 or (0) p and i are both powers of h — a.
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Note that, in FGX,
i=ded~xe~x.

Let
u = pde,        v = pded, w = pdede.

Now it follows easily from the definition of t that

1, d, de, ded, dede, ded~x, ded~x<Tx E A(t)

so that, by (11),

(13) p,pd,u,v,w,pded~1e~1,up~1u,uv~1u,uw~1u E A(am).

Also, for future reference we note that

(14) d = u~xv    and    e = v~1w.

Now proceed by considering all the possible combinations of values for p, u, v, w
from (7), since these elements all lie in A(am), for some m > 1, by (13). This
requires an exhaustive case-by-case argument. We only include here a few sample
cases, including the hardest. (The others may be found in the appendix which is
obtainable from the authors.) We focus on the possible values of u in A(am). The
key to the argument is the fact that for z = p, v, w we also have

z and uz~xu £ A(ak),    for some k > 0.

We begin with an easy illustrative case,
(i) u = a1 =hl, for some i > 0.

As z runs through the possible values in

A(ak) — {&, h3x, h3xy, h3xyx, hJxyxy, h3xyx~x,h3+x; j = 0,..., k — 1}

then uz~xu runs through the values of the form

h2i-3,hlx-1hl-3,h1(xy)-1hl-3,hi{xyx)-1h1'3,

h\xyxy)-1hx-3,hx(xyx-1)-1hx-3.

Of these, only h2l~3 (j < 2i) lies in ^l(afc), for some k. Therefore, z = h3, for some
j > 0, so that u, v and w are all of the form h3. Hence d and e are also of this form,
by (14), and therefore t = 1.

The cases where u = hxx, hlxyx, hlxyxy or h%xyx~x are not much more compli-
cated than Case (i). However, the case u = hlxy has many subcases. We consider
a few:

(ii) u = hlxy, i > 0. In this case, each possible value of z E A(ak) requires a
separate consideration.

(a) z = h3,j > 0. Then uz~xu = hlxyhl~3xy. If i > j, then this is in reduced
form and cannot lie in A(ak), for any k > 0. If i < j then

uz~xu — hlxyhl~3+x(yxy~xx~x)xy

= hlxyht-3+xyx & A{ak)    for any k > 0.

If i = j, then uz~xu — h%xyxy £ A(am). Thus z = hz is a possibility.
(b) z = h3x,j > 0. Then uz~xu = hlxyx~xhl~3xy. If i = j, then this becomes

uz~~xu = hlxyy £ A(a ),     for any k.
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If i < j, then we obtain

uz~ u = hl xyx~x hx~3 + x yxy~x x~x xy

= htxyx~xhl~3+xyx

in reduced form, which does not lie in A(ak) for any k. If i > j, then we obtain

uz~xu = hl xyx~x xyx~x y~x hl~3~x xy

— hlxyyx~xy~xhl~3~xxy g" A(ak),    for any k.

Thus z — hlx is not possible.
Investigating in a similar way the cases z — h3xy,h3xyx,h3xyxy and h3xyx~x

we find that the possible values for z (that is, p, v or w) are

(15) hl,h3xy(j < 2i), hlxyx, hlxyxy, hlxyx~x.

We must now consider each of these possibilities in turn. We focus on the value
of v. Of course, we still have u — hlxy, i > 0.

(1) v = h\ Then from (14)

d = u~xv = (xy)~x.

Now p is one of the elements listed in (15) so that pd is of one of the forms

hl(xy) ~1, h3, hlxyxy~xx~x, hlxy, hlxyx ~xy~xx~x.

By (13), pd £ A(am). Hence we must have

pd — h?    or    hlxy,

that is, either p = h3xy or p — hxxyxy.
If p = h%xyxy, then

hlxy = u = pde = hlxyxy(xy)~xe = hlxye

so that e = 1 and i = 1, which is satisfactory.
So suppose that p = hPxy. Then

hlxy = u = pde = h3xy(xy)~ e

so that e = hl~3xy. But then

pded~xe~x — h3 xy(xy)~x hl~3 xy(xy)(xy)~x h3 ~l — hlxyh3~l

which, by (13), must lie in A(am). This can only happen if j = i. Then e = xy, d =
(xy)~x and again i=l.

(2) v = h3xy. Then d — u~xv = (xy)~xh3~lxy.
If ^ = i, then d = 1 so that i = 1. So suppose first that j > i. Then

d— (xy)~xh3~lxy = (xy)~xxyx~xy~xh3~l~xxy

= x~xy~xh3~z~xxy.

From (15), p must be of one of the form

h1, hkxy, hlxyx, hlxyxy, hlxyx~x.
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Then pd £ A(am) only if p = hkxy. In this case

e = d~xp~xu = (xy)~xhl~3xy(xy)~xh~khlxy

= (xy)-xh2x-3-kxy.

Hence ed — de and t — 1.
So now suppose that i > j. Then

d= (xy)-xh3~lxy = (xy)_1fcJ'-i+1fc_1xy
= (xy)~xh3~l+xyxy~xx~xxy = (xy)~xh3~l+xyx.

In order that pd lie in ^4(am), the initial (xy)-1 of d must cancel and so, by (15),
we must have

p — hkxy    or   p = hlxyxy.

But, if p = hlxyxy, then
pd = hlxyh3~l+xyx

which does not lie in A(am). The only remaining possibility is p = hkxy. Then,
since d = (xy)~xh3~lxy, we have

e = d~xp~xu

= (xy)~xhl~3 xy(xy)~xh~khlxy

= (xy)-xh2l-3-kxy.

Thus e and d are both conjugates of powers of h by xy so that ed = de and F = 1.
The remaining cases where v = hzxyx,hlxyxy,hlxyx~x are all similar. (One

possibility when v = hlxyx leads to the outcome p = hl and t = h = a. In all other
cases t = 1.)

Once all possible cases are checked (for full details see the appendix) the proof
of the lemma is complete and we can return to the proof of Theorem 4.1.

Now
A(a"1) = a~xA(a) = yxy~xx~xA(a)

= {1,2/, yx, yx2, yx2y, yxy~x, yxy~xx~x}

so that ^4(a-1) % A(am) for any m > 1. Hence, from Lemma 4.2, we see that

(a~xa, aa~x) £" py

so that g~xg ^ gg~x and (6) holds. This completes the proof of Theorem 4.1.
REMARK 4.3. Let V be the variety defined in Theorem 4.1. Since any group

satisfies the identity (5), it follows that ^ C "V. Hence

kerp5 = E(FIx) = ker p-y.

Also 9 is a variety of completely semisimple semigroups. Thus the hypotheses of
the last claim in Theorem 3.3 are satisfied except that F9x is not combinatorial.
We see from Theorem 4.1, that FVx is not completely semisimple and therefore
some additional assumption such as "FVx is combinatorial" is required in order to
be able to deduce in Theorem 3.3 that FWx is completely semisimple.
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5. Minimal varieties with fundamental free objects. Theorems 3.1 and
3.3 enable us to deduce properties of the relatively free objects in one variety from
the properties of those in a related variety. In order to take advantage of this it is
important to have a good set of reference points. In this section we consider just
such a family of varieties.

It is convenient at this point to introduce a special case of the construction
introduced in [11].

For any nonempty set /, let M(I) denote the combinatorial Brandt semigroup
M°(I, {1}, I; A). For any group G, let

M(G,G) = GUM(G)
be the ideal extension of M(G) by G (with a zero adjoined) for which products in
G and H(G) are as given while for g EG, (x, l,y) £ M{G)

g(x,l,y) = (xg~x,l,y),        (x, l,y)g = (x, 1, yg),        gO = 0 = Og.

LEMMA 5.1 (SEE [11])- For any group G,M(G,G) is a fundamental inverse
semigroup and satisfies the identity x2x~2 = x~2x2.

PROPOSITION 5.2. LetG be a group, S = M{G,G),U = V(G),V = V(S) and
X be a nonempty set.

(i) FVx is E-unitary and completely semisimple.
(ii) // |X| > No, then FVx is fundamental.

(iii) V C i/max.

PROOF. Part (ii) follows from Lemma 5.1 and Theorem 3.1. That FVx is
completely semisimple follows from Lemma 5.1 and Theorems 2.3 and 3.1. We now
consider the first part of (i).

Let Go = G and T = {S\{0}} U G0. We define a multiplication on T. The
product of any two elements in 5\{0} is as before provided it is nonzero. The
product of any two elements in Go is as before. Other products are defined as
follows: for (a, 1,6), (c, l,d) £ S\{0}, g£G0,u£G,

(a, 1, b)(c, 1, d) = a-xbc~xd E G0    (if b £ c),
g{a,l,b) = ga~xb,
(a, 1,6)9 = a~xbg,

gu = gu£G0,        ug = ug E G0-

Then T is an inverse semigroup, in fact, an ideal extension of Go by S.  Thus S
is isomorphic to the Rees quotient T/Gq.  Moreover, the natural homomorphism
v. T —> T/Go = S separates the idempotents of T.

Let 9: T -> G0 = G be defined by:
g9 = g (ge G),

(a,l,6)c? = a"16        ((a, 1,6) £ S\{0}),
h9 = h (hEG0).

Then 9 is an epimorphism such that the kernel of the congruence 9 o 9~x is E(T).
Since G is a group it follows that T is F-unitary.
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Now let tp be the homomorphism of T into S x G defined by

x<p = (xu,x9).

Since u separates the idempotents of T and the kernel of 9 o 9~x is E(T), it follows
that the congruence ip o ip~x has trivial trace and trivial kernel. Hence <p o ip~x is
the identity congruence and tp embeds T in S x G. Hence T eV(S x G) = V. On
the other hand, since S 2 T/G0 we have S £V{T). Therefore V = V(T). But T
is F-unitary and so, by Theorem 2.2, FVx is also F-unitary. This establishes the
other half of (i).

Since T is F-unitary over G, we have T Elimax and therefore, V = V(T) C £imax
so that (iii) holds.

COROLLARY 5.3. Let V be a variety of inverse semigroups with E-unitary
covers and letll = 9V\V. If j\l{FUx,FUx) £ V and |X| > N0, then FVX is
fundamental.

PROOF. Let ~W = V(M(FUx,FUx))- By Theorem 2.2, FVX is F-unitary so
that ker p-y = kerp^. By Proposition 5.2, U C IV C £/max. Hence ker pyj = ker pu =
ker p-y- The result now follows from Theorem 3.3.

COROLLARY 5.4. Let U be a variety of groups, W = Umax and \X\ > N0. Then
FWx is fundamental.

PROOF. By Theorem 3.7, IV has F-unitary covers and U = W H 9- By Propo-
sition 5.2(iii), M(FUx,FUx) £ ~W- The result now follows from Corollary 5.3.

Notation 5.5. For any prime p, let Zp denote the additive group of integers
modulo p and let Sp = H(ZP,ZP) and Vp = V(SP).

We can now show that the restriction on the cardinality of X in Theorem 3.1,
in order to obtain the conclusion in the case when S is fundamental, is indeed
necessary.

LEMMA 5.6.   For any prime p > 2, Fn(Vp) is not fundamental.

PROOF. Let u = (xi • • • xn)2, v = (x\ ■ ■ ■ xn)3 E Fn(I). The homomorphism
9: Fn(I) -* Sp defined by xt9 = 1 E Zp, x%9 = 0 E Zp (i ^ 1) is such that u8 ^ v9.
Hence, if p is the fully invariant convergence on Fn(I) such that Fn(I)/p = Fn(Vp),
then up ^ vp.

Now consider any homomorphism 9: Fn(I) —> Sp and let T = Fn(I)9. Suppose
there exists an i such that Xi9 # Zp. Then either (xi ■ ■ • xn)9 is an idempotent in
M(ZP) in which case u9 = v9 or (x% ■ • ■ xn)9 is not an idempotent, in which case
u8 = 0 = v8. In both of these cases (u8, v8) £ pr- Now suppose that Xi9 £ Zp, for
all i. Then Fn(I)9 C Zp and again (u9,v9) £ pr- Hence, since p = f]{9 o 9~x:9
is a homomorphism of Fn(I) into Sp}, (up,vp) E p, in Fn(Vp). although up ^ vp.
Thus Fn(Vp) is not fundmental.

By Lemma 5.1, the inverse semigroups M(ZP,ZP), p a prime, and H(Z,Z) are
fundamental and therefore, since M ^ t, such that M is not a congruence. In
[11], it is shown that the varieties V(M(Zp,Zp)), p a prime, and V(M(Z,Z)) are
pairwise incomparable and that they are minimal in the lattice of varieties of inverse
semigroups with respect to the property of containing inverse semigroups in which
M is not a congruence.
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Our next goal is to show that the varieties V(M{FUx,FUx)) where U is any
variety of groups and |X| > N0 have similar minimality properties.

Notation 5.7. For any x,y £ X, let
e(x,y) = xx~xx~xxyy~xy~xy(x~xyy~xx)(xyy~xx~x){y~xxx~xy)(yxx"xy~x).

LEMMA 5.8. For any group G and any x\,... ,xn £ S = M(G,G), n > 2, let
e = e(x\,..., xn) be defined by

e = Y{e(xl,xJ).

Then

(16) (e,exl)£M,    for all i = 1,... , n.

PROOF. The claim is clearly true if the Xi are all idempotents or if the Xi all
lie in the unit group G or if any one of the X{ is zero. We consider the remaining
cases.

Case (i). For some i,x% £ M°\E(M°). Then xxx~x ^ x~xxt so that xlx~xx~xxl
= 0. Hence e — 0 and (16) holds.

Case (ii). For some i,j,xx E G, the unit group of S, Xi ^ 1 and Xj E F(A1°).
Let Xj = (a, 1, a) then

x~xx0x~xXi = x^x(a, \,a)xt = (axl,l,axl).

Since axt ^ a,
V   i       j    i    XijXjX- U.

Hence e = 0 and (16) holds.

COROLLARY 5.9. Let G be a group, V = V(M(G,G)) and S £ V. For any
xx,..., xn E S, with the notation of Lemma 5.8

(17) (e,exi)EU,    for all i = 1,... ,n.

PROOF. The statement (17) is equivalent to the equations

(18) e = (exi)(exi)~x = (exl)~1(exl).

By Lemma 5.8, the equations (18) are identities for the variety V generated by
M(G, G) and therefore hold in any member of V, such as S. But this is equivalent
to (17).

THEOREM 5.10.   Let U be a nontrivial variety of groups and \X\ > No-   Then
the variety V — V(j\l(FUx,FUx)) is minimal with respect to the properties

(i) FVx is fundamental,
(ii)Vng = U.
PROOF. Let TV be a variety which satisfies (i) and (ii) and for which y\l C V. By

Theorem 2.3 and Lemma 5.1, V is a variety of completely semisimple semigroups
and therefore so also is ~W. Now it is not difficult to show that N(FUx,Fllx) is
embeddable in the product

l[M(Fn(U),Fn(U)).
n
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Therefore, in order to establish that W = V, it suffices to show that M(Fn(U), Fn(U))
£ "W for each n.

Let |X| = No,x\,... ,xn £ X and Fn(I) be the inverse subsemigroup of Fix
generated by xi,... ,xn. As it should not cause any confusion, let us denote the
restrictions of pu and pyj to Fn(I) also by pu and pyj, respectively. Then Fn(U) =
Fn(I)/pu andFn(W) = Fn(I)/pyj. Let st = xlpyj, gi = xxpu and e = e(si,...,sn)
be defined as in Lemma 5.8. Then, by Corollary 5.9, the elements es% are all )i-
equivalent to e. However, the mapping 9:sl —> gt (x = 1,..., n) determines an
epimorphism 9 of F„(Tf) onto Fn(U). But the es, all lie in the subgroup He of
FnCW) and generate a subgroup H, say. Therefore 9 must map H onto Fn{U).
However, H £ ~W n 9 — ^ an(l is generated by n elements. Therefore, 9 must
induce an isomorphism of H onto F„(Zi).

Gocd. Our goal now is to show that ~W contains j\l(H,H).
By (i), W = FWx is fundamental. Hence, for every a £ H' = H\{e}, there

exists an idempotent e(a) < e such that

(19) a~xe(a)a^ e(a).

Let Ka be the inverse subsemigroup of W generated by e(a) and H. Let J(e(a))
be the principal ideal of Ka generated by e(a) and let I(e(a)) be the ideal of
Ka consisting of the elements of J(e(a)) which do not generate J(e(a)). Since
Ka EW eVi), Ka is completely semisimple. Hence Ka\I(e(a)) contains just the
two ./-classes H and J(e(a))\I(e(a)). Let La = Ka/I(e(a)). Then La must be an
ideal extension of the Brandt semigroup Ba — J(e(a))/I(e(a)) by the group H with
a zero adjoined.

We may regard Ba as being the set (J(e(a))\I(e(a))) U {0} where the multi-
plication is inherited from W with the exception that if, for u,v £ Ba, either
uv E I(e(a)), in W, or u = 0 or v = 0, in Ba, then we put uv — 0.

Now since e(a) < e, any idempotent of Ba can be expressed in the form

hiXe(a)hih22e(a)h2 ■ ■ ■ h~xe(a)hn,        hi E H.

Since the product of distinct idempotents in J(e(a)) falls into I(e(a)), the nonzero
idempotents of Ba are of the form h~1e(a)h (h E H), that is

(20) E(Ba)\{0} = {h-xe(a)h:hEH}.

In particular, H is the unit group of La. Now let

aeH'

and let

Q = {/ £ P: either (i) for all a, f(a) E H or (ii) for all a, f(a) E Ba}.

Then Q is an inverse subsemigroup of P and

R = {f eQ: f(a) = 0, for some a E H'}

is an ideal of Q. The Rees quotient S = Q/R is then the union of the unit group

n>
aeH'
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and the Brandt semigroup

We now embed M(H, H) in S.
Let if: M(H, H) —> S be defined as follows: for all a £ H',

{g<p){a) = g,        g £ H,
{(h, 1,k)p)(a) = h~x(e(a))k,        (h, 1, jfc) £ M(H),

0<p = 0.
Clearly <p is one-to-one on H. Now let r = (h, 1, k) and s — (hf, 1, k') be distinct

nonzero elements of M(H). Then either h ^ h' or k ^ fc'. First consider the
case h ^ h' and let a = h'h~x(^ e). Suppose that (rp)(a) = (sip)(a). Then
h~1e(a)k = (h')~xe(a)k' and, since e(a) < e, we have e(a) = hh~xe(a)kk~x =
^(^"^(ajfc'fc-1. Hence

e(a) = e(a)e(a)-1 = rl(/i')-1e(a)(/i(/i')"1)-1 = a^cOa,

contradicting (19). Therefore, (rip)(a) ^ (sip) (a) so that rip ^ s<p. We obtain the
same conclusion if k ^ A;'. Thus p is one-to-one on M(/f) and, therefore, on the
whole of M(H,H).

It is easily seen that p is a homomorphism on H. Now let r and s be as above.
First suppose that k = h!. Then rs = (h, 1, fc') and, for all a £ H', ((rip)(sip))(a) —
h~1e(a)k(h')~1e(a)k' — he(a)k' = ((rs)ip)(a) so that (np)(sp) = (rs)<p.

Now suppose that k ^ h!. Then (rs)p = Op = 0. On the other hand,

r_1r=(fc,l,fc)    and    ss~x = (/i', l,/i')
so that (r_1r)p and (ss_1)ip are distinct elements of B. Since (r~xr)ip and (ss~x)p
are clearly idempotents as well, their product in the Brandt semigroup B must be
zero. Thus, for some a E H'

0 = ((r-xr)p(ss-x)p)(a) = k-xe{a)k(h')-xe(a)h'.

Then
{{rp)(s<p))(a) = h-xe(a)k(h')-xe(a)k'

= h-xk(k-xe(a)k)(h')-xe{a)h'(h')~xkl
= 0.

Thus (r<p)(stp) = 0 = {rs)ip so that ip is a homomorphism on M(iY).
Now let g £ H and r be as before. For all a £ H', ((gr)ip)(a) — (hg~x, 1, k)p(a)

— gh~xe(a)k — (gip)(r(p)(a) so that (gr)ip = (g<p)(r<p). Similarly (rg)<p = (np)(gp).
Clearly (0x)p = (z0)p = (0p)(xp) = (x<p)(0<p) = 0, for all x £ M(H,H), so that
<p is a homomorphism and therefore a monomorphism of M(H,H) into S. Since
S £ W, it follows that M(H,H) G If, as required. This completes the proof of
Theorem 5.10.

6. The interval [C,AGmax]. In Corollary 3.8, we saw that for any variety
V such that C E V E AGmax, FVx is combinatorial, completely semisimple and
F-unitary. We can now say something about the size of this interval.

Recall that, for any prime p, Vp is the variety of inverse semigroups generated
by M(Zp,Zp).
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LEMMA 6.1 (SEE [11])- (i) For any positive integer p > 2,VP satisfies the
identity

(xp)2 = xp.

(ii) The variety C satisfies the identities

yy~xxnyy~x = yy~x{xyy~x)n   for n = 1,2,3,....

LEMMA 6.2.   For any distinct primes p,q, the identity

(21) yy-1x^yy-x=yy^1(xpyy-1r

is satisfied by Vp but not by Vg.

PROOF. Consider any elements x,y £ N(ZP, Zp). If x E Zp, an additive group,
then px = 0 and equality holds in (21). If x is an idempotent in M(ZP) then it is
clear that equality again holds. If x E M(ZP) but is not an idempotent, then x2 = 0
so that both sides of (21) are zero and equality again holds.

To see that M{Zq, Zq), and therefore also Vq, does not satisfy (21), let x — 1 G Zq,
the unit group, and y = (0,1,0). Then the left-hand side of (21) is—noting that 0
is the identity of Zq —

(0,1,0)-0-(0,1,0) = (0,1,0)
while the right-hand side is

(0,l,0)-(p-(0,l,0))9 = (0,l,0).(o-p,l,0)"
= the zero in Sl(Zq, Zq)

since (a - p, 1,0)2 is zero in M(Zq, Zq). Thus (21) does not hold in Vq.

PROPOSITION 6.3. The varieties VpW C, p is a prime, constitute a countably
infinite family of distinct varieties in [C, AGmax].

PROOF. Since V(Zp) C AG, for all primes p, it follows from Proposition 5.2 (iii)
that Vp V C C AGmax, so that, for all primes p,Vp\/C£ [C, AGmax}.

Now let p and q be distinct primes. By Lemma 6.1(ii), C satisfies the identity
(21) as does Vp, by Lemma 6.2. Therefore Vp V C also satisfies (21). However, by
Lemma 6.2, Vq V C does not satisfy (21). Hence Vp V C and Vq V C are distinct.

7. The varieties [xnx~n = x~nxn}. For each positive integer n, let "Wn denote
the variety defined by the identity xnx~n = x~nxn. By virtue of Lemma 2.3, the
varieties ~Wn have a significant role to play in the study of the lattice of varieties of
inverse semigroups. We apply the techniques of earlier sections in order to obtain
information regarding the relatively free objects in Wn. In doing so, we see that
there are fundamental relatively free objects which are not combinatorial.

THEOREM 7.1. Letn>2, W = Wn and \X\ > N0. Then FWX is fundamental
and E-unitary but not combinatorial.

PROOF. Since any group satisfies the identity xnx~™ = x~nx™, it follows that
9 C "W. hence, ker pyj — ker pg = E(FIx) so that FWx is F-unitary.

Now let V = V(M(F9x,F9x))- By Lemma 5.1, V C W. Now Fgx is a
subgroup of M(F9x,F9x), so that F9x £ V and  C  C  V.   Hence ker p-y  =
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ker pg = kerp-^. Since M(F9x,F9x) is fundamental, it follows from Theorem 3.1,
that FVx is fundamental and therefore, by Theorem 3.3, that F"Wx is fundamental.

To see that FWx is not combinatorial, let y £ X and a — ypyj. By the defining
identity for W, ana~n = a~nan so that an lies in a subgroup of FWx- However, the
mapping xpyj —> xpg defines a homomorphism of FWx onto F9x in which ypyj
is mapped onto a free generator. Hence, (ypg )n is not an idempotent. Therefore
a" — {yP\v)n is n°t an idempotent and the ^/-class of an is a nontrivial group.
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