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PROPERTIES OF SEQUENCES OF PARTIAL SUMS OF
POLYNOMIAL REGRESSION RESIDUALS WITH
APPLICATIONS TO TESTS FOR CHANGE OF
REGRESSION AT UNKNOWN TIMES!

By IaN B. MACNEILL
University of Western Ontario

Limit processes are obtained for the sequences of partial sums of poly-‘
nomial regression residuals. Properties of linear and quadratic functionals
on the sequences are discussed. Distribution theory for Cramér-von Mises
type functionals is obtained. An indication is given of the relevance of
these results to the problem of testing for change of regression at unknown
times.

1. Introduction and summary. The problem of testing for change of regres-
sion at unknown time was first considered by Quandt (1958, 1960) who proposed
a test for no change versus one change based upon the likelihood ratio. Hinkley
(1969) also discussed the likelihood ratio test and conjectured that the test sta-
tistic was approximately distributed as a y;’ variable. A different and more easily
applied approach was proposed by Farley, Hinich and McGuire (1970, 1975).
Feder (1975), in dealing with the asymptotic distribution of the likelihood ratio
statistics in regression models which have different forms in different regions in
the domain of the independent variable, finds, in the case of unknown change
point, the distribution to be complicated and to depend upon the configuration
of the observation points of the independent variable. Quandt (1972) and Gold-
field and Quandt (1973) attack a more complicated problem wherein each ob-
servation may be randomly chosen to'come from one of two regression models.

Brown, Durbin and Evans (1975) propose tests based upon recursively gene-
rated residuals. Their test statistics utilize the sequence of partial sums of these
residuals which, it turns out, are relatively easy to analyse since they are i.i.d.
asymptotically. The widely used statistical computing packages have paid little
attention to the computation of recursively generated residuals thus making it
awkward to routinely apply the tests for change of regression suggested by Brown
et al. However, these same packages nearly always make available printouts and
plots of the raw regression residuals. In this paper we consider tests for change
of polynomial regression at unknown times which are based on raw regression
residuals. We first examine the large sample properties of the sequence of partial

Received March 1976; revised June 1977.

1 This research was supported by the National Research Council of Canada and was completed
while the author was visiting the Statistical Laboratory at the University of Cambridge.

AMS 1970 subject classifications. 60J65, 62J05.

Key words and phrases. Regression residuals, weak convergence, Brownian motion, Cramér-
von Mises statistic, tests for change of parameters at unknown time.

422

]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%}ﬁ
The Annals of Statistics. RIN®IY

www.jstor.org



POLYNOMIAL REGRESSION RESIDUALS 423

sums of regression residuals. Limit processes are derived and used to obtain
large sample distributions for certain functionals on the sequences of partial
sums of residuals, including Cramér—von Mises type functionals. Related to these
functionals are tests for change of regression at unknown time. Included are
tests analogous to those proposed by Chernoff and Zacks (1964) and by Gardner
(1969).

Assume {¢;}7., to be a sequence of independent and identically distributed
random variables with zero means and variances ¢*> < co. Assume each com-
ponent of the sequence to be defined on the same probability space, (2, 4, P).
Let {(,;)7-1)7-, be a triangular array of the nonstochastic independent variable
and let {(Y,;)7_,}x-, be a similar array of the dependent variable whose com-
ponents are defined by *

Yai(w) = Ll Bith; + €4(w) wel.
In the usual matrix formulation this becomes

Y, (0) =X,8, + &,(v)
where the r, sth component of the design matrix is 73,. The Gauss-Markov esti-
mator for B, is denoted by B,,(») and is defined by
Bonl®) = (XXX, Y (@) ,

it being understood that the inverse exists. We suppress @ and the subscripts
on the vectors and matrices where no confusion results. Our purpose is to
discuss some large sample properties of

{2 (Y — Yni)}?=1]:z°=1 where ¥, = é;ntmﬁ’ = (L, ty ooy - -5 1)

and t,, =i/n.

2. Limit process for the sequence of partial sums of regression residuals.
Let Sy(w) = }i_, ¢(w) and define a sequence of stochastic processes {f,(f), t €
[0, 1]}, possessing continuous sample paths by

em1+1(@) 5

1 1

0.1, ) = — Spun(@) + (nt — [n1])

ont ont
it being understood that Si(w) = 0. If e,, is an n X 1 vector whose first j com-
ponents are 1 and the remainder zero then one can write

S (Y, — YM) =e;/(I - X(X'X)X')e, .

Whether one uses monic polynomials or orthogonal polynomials to define the
components of X the projection I — X(X’X)~!X’ assumes the same values. Hence
we shall use orthogonal polynomials in the sequel since X(X'X)~!X"' is then more
easily evaluated.

For the case of observations taken at j = 1, 2, - . ., n, Allan (1930), defining
§; = (j — (n + 1)/2), shows that the orthogonal polynominal of degree m evalu-
ated at j is

; — 1), 0 ms) G )E TN + m2 — 1 — )t (g

e = & Y Ima2] ( 9,9,m—2¢ [ (] J

Ponl) = 6 2538 0 — 2 T )
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where ‘
. _ al
| (by.bg®ep,) = XN
Since |
(&(n+;n—l)) = n {1 + 0 <'1‘>} ’
21! U n
Yn—m—1 = n’ 1
(i) = 244! {1 * 0<7>}
and

2 (E(stmn/jz;lq)_v =g {1 +0 (r: >}

it follows that

"\ — n™ m/2 (—1) (qqm—ﬂq) mon
() pnl) = pep el (- )"0 4 K

where K,, here and in the sequel, is O(1/n). The mth component of e,’X is
2351 Pum(j). Thus, if t = r/n, we have

@ T bunll) = m+1ZIM/*IL%%z§ﬁ<1+an) g (=)=

= ppp (S endod) 12)4.,%»“;; W (1 4+ Ky S — ) ds

The mth diagonal component of X'X is shown by Allen (1930) to be d,, , where

T am)! (2m £ 1)

(2m)'((r;r'r3‘+ 01 "m“‘{l +0 <%>} '

3 d )t — 1) (1 — 4) - (= )

The mth component of X'e is };7_, ¢, .(j)e;- It follows from (1) that

@) T doale = v~ miep L eeBand (14 Ko B Gy

Now
Tra (n — )" = Drd (CP(—3)" T Dia (J/n)e;
and, for k > 0,

1\*
2 (JIn)ke; = X <~*> Zz 16; = ?:1 <7> 2i=ta-nY*140 €5

= Zz =175 ( — Sti-1Vk)

=S, —on¥(l + K,,) §§0,(s"%) ds
=8, — ont(l + K, )k {3 5¢710,(s) ds .
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When k = 0 the sum reduces to S,. This implies-that
() ZiaUn— )", | :
= Su@)" " — ond(1 4+ Kop)(m — 29) §5 (s — §)" 77 0,(s) ds .
Substitution of (5) into (4) gives
1 «. .
;"E Zi=1 ¢n,m(])ei
m m, _1 7 , ,2-
© = gz = aBad 1 4 k)
X A@)"0,(1) — (m — 29)(1 + K,a) §o (s — $)"7*710,(s) ds} -
Equations (2), (3) and (6) yield ' )
1 ’ rY\-1y’ ’
—5 e I — X(X'X)"'X')e, (@)

= 0,11, @) = - Thea il T Fan(l) Tims bn()e(0)

(7) = 0,(r/n, ®) — Dheo(2m + 1)
{1+ g e

[m. (_l)q(m, ,21:‘m— ) ’
X {Zq=/02] 24q(mq;-Z) N (1 + Kv'ﬂ)

X [F)"0,(1, @) — (m — 2q) i (s — $)" 77 0.(s, 0) ds}} :
For the case p = 0 and ¢ = r/n one obtains

Bt (Yal0) — Pul@)) = 0t 0) = 1,(1,0).

For the case p = 1 one obtains

nZ
n—1

}ln; i (Yal@) — Pu@) = 0,0, @) — B,(1, ) + 31(1 — ) 0,(1, )

2
— 61(1 — 1) ng”_ - §80.(s, @) ds

thus indicating the precise nature of K, for p = 1. By letting W (1, w) equal
the right-hand side of (7) with r/n replaced by the continuous variable ¢ one
sees that W ,,(+) is a function of 6,(+). In this way, foreachp=20,1,2, ...,
the relation W, (1, 0) = h,,{0,(t, )} defines a sequence of stochastic processes
{W,.(t, @), t€[0, 1], w € Q}3_, with continuous simple paths and a sequence of
functions {4,,(+)}s-, from C[0, 1] into C[O, 1].

Let P, be the distribution of 8,(-) on C[0, 1] and let P,, be the probability
measure generated in C[0,1] by W ,(-). Now denote by {B(#), [0, 1]} the
standard Brownian motion process with continuous sample paths. The process
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is a measurable map from some probability space to C[0, 1]. Such a process is
Gaussian with zero mean and has B(0) = 0 and E[B(1)B(s)] = min (s, f). The
measure generated in C[0, 1] by Brownian motion is Wiener measure denoted by
W. Next define another process {B,(?), t€[0, 1]} called a generalized Brownian
bridge and a function 4,(.) from C[0, 1] into C[0, 1] by

B,(1) = h,{B(1)}
(8) = B(t) -2z, (2m + 1) {Z[mm (_1) (m 0.0vm— 2.,) St(s _ %)m—zq ds}

24(3)

[m/2) (_l)q(m, ,27,"m—2 )
X {Zq:O 24‘](”‘];:) q

X ()~ B(1) = (m — 2) §3(5 — $)™-*+-1B(s) ds]}

The “slack” in the generalized Brownian bridge becomes less as p increases. For
p = 0, (8) yields the Brownian bridge

By(1) = h{B(1)} = B(f) — tB(1)
and for p = 1, (8) yields
B\(1) = m{B()} = B(r) — tB(1) + 6¢(1 — 0){3B(1) — {3 B(s) ds} .

The generalized Brownian bridge is Gaussian and has B,(0) = B,(1) =
E{B,(t)} = 0. The covariance kernel is given by

Kp(sa = E{Bp(s)Bp(t)}
= min (s, 1) — 2% (2m + 1)gn(£)gn(s)
where

®) gu(t) = i (_1;45?""-3)%%) §6(r — Pn-tedr .

The first six values of g,(¢) are given in Table 1.

TABLE 1
Selected values for gu(t) which defines the mth term
of the covariance kernel of By(t)

gm(2)

t
—t(1 — 1)
(1 — 5l —20)
—t(1 — (1 — 5t + 562
1 — (1 — 201 — Tt + 782
—t(1 — £)(1 — 14t + 56¢2 — 8413 + 42¢4)

waAwN~Oof 3

If the probability measure generated in C[0, 1] by B,(+)is denoted by W, then
we have:

THEOREM 1. P, converges weakly to W ,.
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Proor. Note that for each p (i) P,, = P,k;; and (ii) W, = Wh,~'. Now,
from Theorem 10.1 (Billingsley (1968)), we have that P, converges weakly to
W. Since h,,(+) and 4,(+) are continuous in the uniform topology on C[0, 1],
and 4,,(+) converges to 4,(+) (in the sense that if {x,};_, and x are elements of
C[0, 1] and x, converges uniformly to x, then 4,,(x,) converges uniformly to
h,(x)), it follows from Theorem 5.5 (Billingsley (1968)) that P,, converges
weakly to W,.

3. Linear and quadratic functionals of sequences of partial sums of regression
residuals. We determine the conditions under which certain functionals on the
sequences of partial sums converge in distribution to the same functionals on
the generalized Brownian bridge. We first consider functionals of a quadratic
or Cramér-von Mises type. )

THEOREM 2. Assume {(+) to be a nonnegative weight function such that
(1 — OP(r)dt < oo. If Fy(f) = §5 (0)f*(¢) dt then
(10) lim,_., P[Fy(W,,) < a] = P[FyB,) < a]
uniformly in a.

ProoF. In the event that the functional F () was continuous in the uniform
topology on C[0, 1], (10) could be justified by first appealing to Theorem 1 and
secondly to the Donsker result as embodied in Theorem 5.2 of Billingsley (1968).
However, certain of the functionals satisfying the hypotheses of the theorem
are discontinuous, e.g., ¢(f) = [#(1 — #)]-'. The proof of the result for the more
general case requires weight functions ¢,(+) defined as follows. Let 0 < 7 < 3.
Then define

g =90 n=1=1—7

=0 otherwise.

F%( .) is continuous. A consequence of Theorem 1 and the aforementioned
Donsker result is that for ¢ > 0 one can choose N,, such that if n > N,, then,
uniformly in a,
(11) Pr {Fy(W,.) = @} — Pr{F,(B,) < a}| < «.
{N.,» 0 < 5 < %) can be chosen to be nondecreasing in the sense that if 7, < 7,
then N,, = N,, . It can next be observed that

oy =
E|F,(B,) — F(B,)| = § + {1, §(E(B, (1)} dr
= 8 + §i, $O(1 — G, (1) dr
where G,(f) is a polynomial of degree 2p since 1 = 0 and ¢ = 1 are zeros of
K,(t, t). Hence, for ¢ > 0 one can select 7, > 0 sufficiently small that if 0 <
7 < 7, then
(12) [Pr (F, (B,) < a} — Pr{F,(B,) < a}| < ¢

uniformly in @. It can also shown that there exists K > 0, independent of n such
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that ;
E|Fy (W) — Fy (W)l = §§ + §i, ¢(OE(W (1)} dt
S K+ §io, (0K, (1, t)dt .

Consequently, for ¢ > 0, one can select 7, > 0 sufficiently small that if 0 <
7 < 7, then

(13) [Pr{Fy(W,.) < a} — Pr{F, (W,,) < a}| <

uniformly in n and «. The proof of the theorem is completed by combining

(11) (12) and (13). For e > 0, first choose 7 < min (7,,, 7,) and then select
, such that if n > N,

[PI‘ {F¢(an) = a} — Pr {F¢(Bp) = a}l < 3e
uniformly in a.

We can now exploit this result to demonstrate the relationship between the
functional on sequences of partial sums and on the generalized Brownian bridge.

COROLLARY 3. Assume

R.(jln) = §Gizi/am ¢(1) dt j=12n—1
where ((+) satisfies the conditions of Theorem 2. Then

R { G Tt (Ve = 220f

converges in distribution to {} (t)B,X(?) dt.

Proor. Since (ont)~! 33i_ (Y, — ¥,.) = W,.(j/n), we have
53 OW3(0) df — T3t R {1 By (Yo = 2]
= T3S gOW20) — Wijim) dr
+ S5 90 (Wi — Wi, (L2 )i

We note that

EW3(t) = Wi (Im| < [E{W,u(1) + Wou(JIMPEW (1) — Woa(jm)F]E .
The dominant term in W, (f) — W (j/n) is {0,(1) — t0,(1)} — {6.(j/n) —
J/nb,(1)}. Using arguments similar to those of MacNeill (1974), page 973, with
m = n one can show that, for ¢ > 0,

oo PLSo @(O[{0u(7) — 10,(1)} — {0.(j/n) — j/nO()}f Z €] =0.
[Note the misprint in this article; an asterisk should appear on Z, in equation
(7) and in the equation above it.] The proof is completed by applying similar

arguments to the remaining terms in {W,,(f) — W,,(j/n)} and then applying
Theorem 2. ‘
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A result, analogous to Theorem 2 and its corollary, for certain linear func-
tionals is given in Theorem 4. The proof of this result is similar to the preced-
ing proofs.

THEOREM 4. Let ¢(+) be a nonnegative weight function such that {;{#(1 —
HREY()dt < oo. If R,(j[n),j= 1,2, ---,n — 1aredefined as in Corollary 3, then

T R,(jIm{(ont) "t Tis, (Yo — P,.)} converges in distribution to (} ¢(f)B,(t) dt
which is distributed as a normal variable with zero mean and variance t,’ where

7' = § 3 9(s)(¢) min (s, 1) ds dt — F5_o (2m + 1){§5 gu(5)$(s) ds}’
with g,(s) defined by (9).

4. Distributions for Cramér-von Mises type statistics. The distributions for
the stochastic integral, {} ¢(7)B,() dt, can, in theory, be calculated by applying
the method that Anderson and Darling (1952) applied to the Brownian bridge.
Consider the process {(¢(7))tB,(t), t € (0, 1)}. The method consists of expanding
this process by computing a set of orthonormal functions {¢,,(+ )}, and a set of

zero mean, uncorrelated, normal random variables {b,,}>_, with Var(b,,,,) = A,
such that

m,_., E{($(1))!By(1) — ZZ=1 by bou(N)) =
If ¢(+) satisfies the condition of Theorem 2 and those stated by. Anderson and
Darling (1952), page 199, then the characteristic function for {§ ¢(¢)B,*(¢) dt is

Q,,(5) = TIwi (1 — 21is2,,)7E.
We now consider the special case of ¢(7) = 1.
THEOREM 5. The characteristic function of (§ B,*(t) dt is
4A(p+ HL(p+ ) ; (s, (s
w0 wo- [SEEHEED, () ()
( ) P(s) ﬂ(—%(is/z)i)z”_l ]P 1 2 .]P 2
where j,(+) is the pth order spherical Bessel function of the first kind.

Proor. If the representation and the orthogonality conditions are to hold
simultaneously then {¢,,(?), 2,,}z_, must satisfy the Fredholm equation

(13) §o Ko(s, 0)9,(5) ds = 2, 6,(1)
where K (s, ) is given by (9). The eigenvalues satisfying (15) are found to be
1
21),210—1 = 4Z: i
2 gn = n=1,2, ...
P 4z:

where Z, , is the nth positive zero of the pth order spherical Bessel function of
the first kind. These eigenvalues are found by differentiating (15) p 4 2 times
thus obtaining the differential equation,

(16) 26, *(1) + 6,7(1) = 0,
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together with p 4 2 conditions that the solution must satisfy. The conditions,
along with the orthonormality requirement for the eigenfunctions, enable one
to determine the constants in the general solution and to obtain the eigenvalues.
For example, consider the case p = 1. The solution to (16) is

$i(1) = A + Be-iit 4 Cerrtt
subject to ¢,(0) = ¢,(1) = 0 and
(17) 6 §3s(1 — s)py(s)ds = 2¢,”'(1) .
#,(0) = 0 implies
é,(1) = {Ce“/‘“*’ — Be""/‘“*’}Zi sin {t/(22%)}
and ¢,(1) = 0 implies that either sin {1 /(22%)} = 0, and hente
A gny = (4n*?)1 n=12,...,
or C = Be"'/‘*, and hence
g(t) = B{e“*’—l’“* + et _ gmiat _ 1}.
Substituting g(¢) into (17) yields
Ao = (422,)71 n=1,2,...
where Z, , is the nth positive zero of the first order spherical Bessel function of
the first kind.

Replacing B,(-) with the expansion in the stochastic integral we see that
{5 B,X(t) dt is distributed as }}y_; b2, and hence has characteristic function

3} ‘ — is -+ is —%
(I)p(s) — Hn=1 (1 — ZlSan) P — H'”=1 <1 - 2———'23_1,”> H’n:l <1 — —2~—Z—;2’:> .

We obtain the result by noting that the infinite product representation of j,(¢) is
. n¥(3r)? w < £ >
H=_-21 __TITI> (1 — —).
WO = p U~ 2
The first few Bessel functions are

cos ¢

j—1(t) = 5
jo(t) = ”—Sint >
t
. A sin ¢ cost
Ji(®) = 2 7’
J{t) = <% — _1_>sint— %cost,

and others may be obtained from the formula

Joun)) = L j(0) = /() -
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If one lets p = 0 in (14) one obtains the result given by Anderson and Darling

(1952):
2is)t \¢
(I) 5) = <_(___> .
) = (2is)?
If one lets p = 1 one obtains

i (0 (5) — () n (3) e (5))
If D,(2is) = (®,(s))"* and 2 = 2is then Q, (a) = P[{; B,*(t) dt < «] is given by

1
Q@) =1 — — X (=) 515322-1m di
»

(I)I(S) =

e /e

TABLE 2
Selected quantiles for Qy(a) = P[\§ Bp(t) dt < o]

Probabilities - 1 - ? - - - Brownian
0.01 0.024798  0.017269  0.013799 0.011652 0.010156  0.009040  0.0345
0.025 0.030351  0.020260 0.015867 0.013224 0.011416 0.010087  0.0444
0.05 0.036562  0.023409 0.017986 0.014807 0.012671 0.011118  0.0565
0.10 0.046015 0.02788 0.020911 0.016954 0.014349  0.012485  0.0765
0.50 0.118880 0.055548 0.037513 0.028527 0.023079 0.019404  0.2905
0.90 0.347305 0.119220 0.071460 0.050559 0.038875 0.031446 1.1958
0.95 0.461361 0.147891 0.085955 0.059658 0.045243  0.036208 1.6557
0.975 0.580614  0.177468 0.100670  0.068799  0.051590 0.040925  2.1347
0.99 0.743458 0.217746  0.120482 0.081002 0.060010 0.047150  2.7875
Mean & 15 7% &5 188 113 3

Selected quantiles for this distribution for p = 0, 1, 2, 3, 4, 5 are given in Table
2. The case p = 0 was (essentially) obtained by Smirnov (1936).

The nth cumulant of the stochastic integral {§ B,%(¢) dt is given by
(18) Ko =270 — 1)! S5, A3
To facilitate computation of the cumulants we note the following formulae
which are derived from formulae given by Watson (1944), page 502:

D=1 (Zym)™™ = {2(2p + 3} n=
= {2(2p + 3)*(2p + 5)}* n=2
= {2 + 3@ + )2 + N} n=3.

Hence the first three cumulants are:

K, = pt1
p1 — b
22p + 1)(2p + 3)
K, = 2p* + Sp + 4 ,
T 42p + 1yC2p + 3(2p + 5)
K. — 4p® + 16p* + 27p 4 16
P2+ )2+ 32+ 52+ )
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Good approximations to higher order cumulants may be obtained by using the
first few terms of (18).

5. Tests for change of regression at unknown times. Let (z,;, Y,,)7_, be defined
and related as in Section 1 with p fixed and known. It is desired to test

H E(Ym) - pO m i= 1: 27
versus :
HA:E( )_ po'm i=1,2a"'ak
(m)'— plm l=k+1’
with 8, # B,, and B, B,,, k unknown. For the case p = 0 Gardner (1969) has
proposed as test statistic the quadratic form .

Q,=0?)%"IR, (n - J> (i (Y — TP,

Analogous to this we propose the following statistic:
0y = 07 T3 Ry (ML) (Bt (Ve — 1P

From Corollary 3 it follows that the large sample distribution of n='Q,, is that
of {§¢(¢)B(t) dt. If ¢* is unknown then, without altering the asymptotic dis-
tribution theory, ¢* may be replaced with a consistent estimator, such as the
usual variance estimator based on the sum of squares of residuals.

One-sided tests analogous to those proposed by Chernoff and Zacks (1964)
may be based upon Theorem 4.

In the event that the regression parameters are assumed known then, under
H,, the sequence of partial sums

[ 0=l T,

converges weakly to the standard Brownian motion process {B(¢), t € [0, 1]}.
Cramér-von Mises type functionals of the form (} ¢(¢)B*(r) dt are considered in
MacNeill (1974) where selected quantiles of the distribution are tabulated for
¢(f) = at* for a range of values of k > —2.

Acknowledgments. The author wishes to thank a referee for helpful com-
ments on an earlier version of this paper.
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