PROPERTIES OF SOLUTION SET OF STOCHASTIC INCLUSIONS¹

MICHAŁ KISIELEWICZ

Institute of Mathematics
Higher College of Engineering
Podgórna 50, 65-246 Zielona Góra, POLAND

ABSTRACT

The properties of the solution set of stochastic inclusions $x_t - x_s \in cl_{L^2}(\int\limits_s^t F_\tau(x_\tau)d\tau + \int\limits_s^t G_\tau(x_\tau)dw_\tau + \int\limits_s^t \int\limits_{\mathbb{D}^n} H_{\tau,\,z}(x_\tau)\widetilde{\nu}\;(d\tau,dz)) \quad \text{are}$

investigated. They are equivalent to properties of fixed points sets of appropriately defined set-valued mappings.

Key words: Stochastic inclusions, existence solutions, solution set, weak compactness.

AMS (MOS) subject classifications: 93E03, 93C30.

1. INTRODUCTION

There is a large number of papers (see for example [1], [4] and [5]) dealing with the existence of optimal controls of stochastic dynamical systems described by integral stochastic equations. Such problems can be described (see [10]) by stochastic inclusions (SI(F,G,H)) of the form

$$x_t - x_s \in cl_{L^2} \left(\int_s^t F_{\tau}(x_{\tau}) d\tau + \int_s^t G_{\tau}(x_{\tau}) dw_{\tau} + \int_s^t \int_{\mathbb{R}^n} H_{\tau,z}(x_{\tau}) \widetilde{\nu} (d\tau, dz) \right),$$

where the stochastic integrals are defined by Aumann's procedure (see [7], [9]).

The results of the paper are concerned with properties of the set of all solutions to SI(F,G,H). To begin with, we recall the basic definitions dealing with set-valued stochastic integrals and stochastic inclusions presented in [10]. We assume, as given, a complete filtered probability space $(\Omega, \mathfrak{F}, (\mathfrak{F}_t)_{t\geq 0}, P)$, where a family $(\mathfrak{F}_t)_{t\geq 0}$, of σ -algebras $\mathfrak{F}_t \subset \mathfrak{F}$ is assumed to be increasing: $\mathfrak{F}_s \subset \mathfrak{F}_t$ if $s \leq t$. We set $\mathbb{R}_+ = [0, \infty)$, and \mathfrak{B}_+ will denote the Borel σ -algebra on

¹Received: April, 1993. Revised: July, 1993.

We consider set-valued stochastic processes $(F_t)_{t\geq 0}$, $(\mathfrak{G}_t)_{t\geq 0}$ and $(\mathfrak{R}_{t,z})_{t\geq0,z\in\mathbb{R}^n}$, taking on values from the space $Comp(\mathbb{R}^n)$ of all nonempty compact subsets of n-dimensional Euclidean space \mathbb{R}^n . They are assumed to be predictable and such that $E\int_0^\infty \parallel \mathfrak{T}_t \parallel^p dt < \infty, p \ge 1, E\int_0^\infty \parallel \mathfrak{Q}_t \parallel^2 dt < \infty$ and $E \int_{0}^{\infty} \int_{\mathbb{R}^n} \| \mathcal{R}_{t,z} \|^2 dt q(dz) < \infty$, where q is a measure on the Borel σ -algebra \mathfrak{B}^n of $\mathbb{R}^n \ \text{ and } \ \|A\| \colon = \sup\{\mid a\mid : a\in A\}, \ A\in Comp(\mathbb{R}^n). \quad \text{ The space } Comp(\mathbb{R}^n) \text{ is }$ considered with the Hausdorff metric h defined in the usual way, i.e., $h(A,B) = \max\{\bar{h}(A,B), \bar{h}(B,A)\},\$ for $A, B \in Comp(\mathbb{R}^n),$ h(A,B)where $= \{dist(a, B): a \in A\}$ and $\bar{h}(B, A) = \{dist(b, A): b \in B\}$. Although the classical theory of stochastic integrals (see [3], [8], [12]) usually deals with measurable and \mathfrak{F}_{t} -adapted processes, it can be finally reduced (see [4], pp. 60-62) to predictable ones.

2. BASIC DEFINITIONS AND NOTATIONS

Throughout the paper we shall assume that a filtered complete probability space $(\Omega, \mathfrak{F}, (\mathfrak{F}_t)_{t \geq 0}, P)$ satisfies the following usual hypotheses: (i) \mathfrak{F}_0 contains all the P-null sets of \mathfrak{F} , (ii) $\mathfrak{F} = \bigvee_{t \geq 0} \mathfrak{F}_t$ and (iii) $\mathfrak{F}_t = \bigcap_{u > t} \mathfrak{F}_u$, for all $t, 0 \leq t < \infty$. As usual, we consider a set $\mathbb{R}_+ \times \Omega$ as a measurable space with the product σ -algebra $\mathfrak{B}_+ \otimes \mathfrak{F}$. Moreover, we introduce on $\mathbb{R}_+ \times \Omega$ the predictable σ -algebra \mathfrak{P} generated by a semiring \mathfrak{K} of all predictable rectangles in $\mathbb{R}_+ \times \Omega$ of the form $\{0\} \times A_0$ and $(s,t] \times A_s$, where $A_0 \in \mathfrak{F}_0$ and $A_s \in \mathfrak{F}_s$ for s < t in \mathbb{R}_+ . Similarly, besides the usual product σ -algebra on $\mathbb{R}_+ \times \Omega \times \mathbb{R}^n$, we also introduce the predictable σ -algebra \mathfrak{P}^n generated by a semiring \mathfrak{K}^n of all sets of the form $\{0\} \times A_0 \times D$ and $(s,t] \times A_s \times D$, with $A_0 \in \mathfrak{F}_0$, $A_s \in \mathfrak{F}_s$ for s < t in \mathbb{R}_+ and $D \in \mathfrak{B}_0^n$, where \mathfrak{B}_0^n consists of all Borel sets $D \subset \mathbb{R}^n$ such that their closure does not contain the point 0.

An n-dimensional stochastic process x, understood as a function $x: \mathbb{R}_+ \times \Omega \to \mathbb{R}^n$ with \mathfrak{F} -measurable sections x_t , each $t \geq 0$, is denoted by $(x_t)_{t \geq 0}$. It is measurable (predictable) if x is $\mathfrak{B}_+ \otimes \mathfrak{F}$ (\mathfrak{P} , resp.)-measurable. The process $(x_t)_{t \geq 0}$ is \mathfrak{F}_t -adapted if x_t is \mathfrak{F}_t -measurable for $t \geq 0$. It is clear (see [3], [8], [11]) that every predictable process is measurable and \mathfrak{F}_t -adapted. In what follows the Banach space $L^p(\mathbb{R}_+ \times \Omega, \mathfrak{P}, dt \times P, \mathbb{R}^n)$, $p \geq 1$, with the norm $\|\cdot\|_{L^p_n}$ defined in the usual way, will be denoted by L^p_n . Similarly, the Banach spaces

 $L^p(\Omega, \mathfrak{T}_t, P, \mathbb{R}^n)$ and $L^p(\Omega, \mathfrak{T}, P, \mathbb{R}^n)$ with the usual norm $\|\cdot\|_{L^p_n}$ are denoted by $L^p_n(\mathfrak{T}_t)$ and $L^p_n(\mathfrak{T})$, respectively.

Throughout the paper, by $(w_t)_{t\geq 0}$, we mean a one-dimensional \mathfrak{F}_t -Brownian motion starting at 0, i.e., such that $P(w_0=0)=1$. By $\nu(t,A)$ we denote a \mathfrak{F}_t -Poisson measure on $\mathbb{R}_+\times \mathbb{B}^n$, and then define a \mathfrak{F}_t -centered Poisson measure $\widetilde{\nu}(t,A),\ t\geq 0,\ A\in \mathbb{B}^n$, by taking $\widetilde{\nu}(t,A)=\nu(t,A)-tq(A),\ t\geq 0,\ A\in \mathbb{B}^n$, where q is a measure on \mathbb{B}^n such that $E\nu(t,B)=tq(B)$ and $q(B)<\infty$ for $B\in \mathfrak{B}_0^n$.

For a given \mathfrak{T}_t -centered Poisson measure $\widetilde{\nu}(t,A)$, $t\geq 0$, $A\in \mathfrak{B}^n$, \mathcal{W}_n^2 denotes the space $L^2(\mathbb{R}_+\times\Omega\times\mathbb{R}^n,\ \mathfrak{P}^n,dt\times P\times q)$, with the norm $\|\cdot\|_{\mathcal{W}_n^2}$ defined in the usual way. We shall also consider the Banach spaces $L^p(\mathbb{R}_+,\mathfrak{B}_+,dt,\mathbb{R}_+)$, $p\geq 1$ and $L^2(\mathbb{R}_+\times\mathbb{R}^n,\mathfrak{B}_+\otimes\mathfrak{B}^n,\ dt\times q,\mathbb{R}_+)$, with the usual norms by $\|\cdot\|_p$ and $\|\cdot\|_2$, respectively. They will be denoted by $L^p(\mathfrak{B}_+)$ and $L^2(\mathfrak{B}_+\times\mathfrak{B}^n)$, respectively. Finally, by $\mathcal{M}_n^p(\mathfrak{P})$, $p\geq 1$ and $\mathcal{M}_n^2(\mathfrak{P}^n,q)$ we shall denote the families of all \mathfrak{P} -measurable and \mathfrak{P}^n -measurable functions $f:\mathbb{R}_+\times\Omega\to\mathbb{R}^n$ and $h:\mathbb{R}_+\times\Omega\times\mathbb{R}^n\to\mathbb{R}^n$, respectively, such that $\int\limits_0^\infty \|f_t\|^pdt<\infty$ and $\int\limits_0^\infty \int\limits_{\mathbb{R}^n} \|h_{t,z}\|^2dtq(dz)<\infty$, a.s. Elements of $\mathcal{M}_n^p(\mathfrak{P})$, $p\geq 1$ and $\mathcal{M}_n^2(\mathfrak{P}^n,q)$ will be denoted by $f=(f_t)_{t\geq 0}$ and $h=(h_{t,z})_{t\geq 0,z\in\mathbb{R}^n}$, respectively. We have

$$\begin{split} \mathcal{L}_n^p &= \{f \in \mathcal{M}^p(\mathfrak{P}) : E \int\limits_0^\infty \mid f_t \mid {}^p dt < \infty \}, \ p \geq 1, \\ \text{and} \qquad & \mathcal{W}_n^2 = \{h \in \mathcal{M}^2(\mathfrak{P}^n,q) : E \int\limits_0^\infty \int\limits_{\mathbb{R}^n} \mid h_{t,z} \mid {}^2 dt q(dz) < \infty \}. \end{split}$$

Given $g \in \mathcal{M}^2(\mathfrak{P})$ and $h \in \mathcal{M}^2(\mathfrak{P}^n,q)$, by $(\int_0^t g_{\tau}dw_{\tau})_{t\geq 0}$ and $(\int_0^t \int_{\mathbb{R}^n} h_{\tau,z} \tilde{\nu} (d\tau,dz))_{t\geq 0}$, we denote their stochastic integrals with respect to a \mathfrak{T}_t -Brownian motion $(w_t)_{t\geq 0}$ and a \mathfrak{T}_t -centered Poisson measure $\tilde{\nu}(t,A), t\geq 0$, $A \in \mathfrak{B}^n$, respectively. These integrals, understood as n-dimensional stochastic processes, have quite similar properties (see [6]).

Let us denote by D the family of all n-dimensional \mathfrak{F}_t -adapted cádlág processes $(x_t)_{t>0}$ such that

$$\begin{aligned} Esup_{t\geq 0} \mid x_t \mid^2 < \infty \\ lim_{\delta \to 0} sup_{t\geq 0} sup_{t\leq s\leq t+\delta} E |x_t - x_s|^2 = 0. \end{aligned}$$

and

Recall that an *n*-dimensional stochastic process is said to be a cádlág process if it has almost all sample paths right continuous with finite left limits. The space D is considered as a normed space with the norm $\|\cdot\|_{\ell}$ defined by

 $\|\xi\|_{\ell} = \|\sup_{t\geq 0} |\xi_t|\|_{L^2_1}$ for $\xi = (\xi_t)_{t\geq 0} \in D$. It can be verified that $(D, \|\cdot\|_{\ell})$ is a Banach space.

Given $0 \le \alpha < \beta < \infty$ and $(x_t)_{t \ge 0} \in D$ let $x^{\alpha,\beta} = (x_t^{\alpha,\beta})_{t \ge 0}$ be defined by $x_t^{\alpha,\beta} = x_{\alpha}$ and $x_t^{\alpha,\beta} = x_{\beta}$ for $0 \le t \le \alpha$ and $t \ge \beta$, respectively, and $x_t^{\alpha,\beta} = x_t$ for $\alpha \le t \le \beta$. It is clear that $D^{\alpha,\beta} := \{x^{\alpha,\beta} : x \in D\}$ is a linear subspace of D, closed in the $\|\cdot\|_{\ell}$ -norm topology. Then $(D^{\alpha,\beta}, \|\cdot\|_{\ell})$ is also a Banach space. Finally, as usual, by $\sigma(D,D^*)$ we shall denote a weak topology on D.

In what follows we shall deal with upper and lower semicontinuous setvalued mappings. Recall that a set-valued mapping R with nonempty values in a topological space (Y, \mathcal{I}_Y) is said to be upper (lower) semicontinuous [u.s.c. (l.s.c.)] on a topological space (X, \mathcal{T}_X) if $\Re^-(C) := \{x \in X : \Re(x) \cap C \neq \emptyset\}$ $(\mathfrak{R}_{-}(C)):=\{x\in X:\mathfrak{R}(x)\subset C\}$ is a closed subset of X for every closed set $C \subset Y$. In particular, for \Re defined on a metric space (\mathfrak{A},d) with values in $\lim_{n \to \infty} \overline{h}\left(\Re(x_n), \Re(x)\right) = 0$ (see [9]) to $Com p(\mathbb{R}^n)$, it is equivalent $(\lim_{n \to \infty} \bar{h}(\Re(x), \Re(x_n)) = 0)$ for every $x \in \Re$ and every sequence (x_n) of \Re converging to x. If, moreover, R takes convex values then it is equivalent to upper (lower) semicontinuity of a real-valued function $s(p, \Re(\cdot))$ on \mathbb{R}^n for every $p \in \mathbb{R}^n$, where $s(\cdot, A)$ denotes a support function of a set $A \in Comp(\mathbb{R}^n)$. In what follows, we shall need the follow well-known (see [9]) fixed point and continuous selection theorems.

Theorem (Schauder, Tikhonov): Let (X, \mathcal{T}_X) be a locally convex topological Hausdorff space, \mathcal{K} a nonempty compact convex subset of X and f a continuous mapping of \mathcal{K} into itself. Then f has a fixed point in \mathcal{K} .

Theorem (Covitz, Nadler): Let (\mathfrak{S},d) be a complete metric space and $\mathfrak{R}:\mathfrak{S} \to Cl(\mathfrak{S})$ a set-valued contraction mapping, i.e., such that $H(\mathfrak{R}(x),\mathfrak{R}(y)) \leq \lambda d(x,y)$ for $x,y \in \mathfrak{S}$ with $\lambda \in [0,1)$, where H is the Hausdorff metric induced by the metric d on the space $Cl(\mathfrak{S})$ of all nonempty closed bounded subsets of \mathfrak{S} . Then there exists $x \in \mathfrak{S}$ such that $x \in \mathfrak{R}(x)$.

Theorem (Kakutani, Fan): Let (X, \mathcal{T}_X) be a locally convex topological Hausdorff space, $\mathfrak R$ a nonempty compact convex subset of X and $CCl(\mathfrak R)$ a family of all nonempty closed convex subsets of $\mathfrak R$. If $\mathfrak R: \mathfrak R \to CCl(\mathfrak R)$ is u.s.c. on $\mathfrak R$ then there exists $x \in \mathfrak R$ such that $x \in \mathfrak R(x)$.

Theorem (Michael): Let (X, \mathbb{T}_X) be a paracompact space and let \mathbb{R} be a set-valued mapping from X to a Banach space $(Y, \|\cdot\|)$ whose values are closed and convex. Suppose, further \mathbb{R} is l.s.c. on X. Then there is a continuous function $f: X \rightarrow Y$ such that $f(x) \in \mathbb{R}(x)$, for each $x \in X$.

3. SET-VALUED STOCHASTIC INTEGRALS

Let $\mathfrak{G}=(\mathfrak{G}_t)_{t\geq 0}$ be a set-valued stochastic process with values in $Comp(\mathbb{R}^n)$, i.e. a family of \mathfrak{F} -measurable set-valued mappings $\mathfrak{G}_t\colon\Omega\to Comp(\mathbb{R}^n)$, $t\geq 0$. We call \mathfrak{G} measurable (predictable) if it is $\mathfrak{B}_+\otimes\mathfrak{F}$ (\mathfrak{P} , resp.)-measurable. Similarly, \mathfrak{G} is said to be \mathfrak{F}_t -adapted if \mathfrak{G}_t is \mathfrak{F}_t -measurable for each $t\geq 0$. It is clear that every predictable set-valued stochastic process is measurable and \mathfrak{F}_t -adapted. It follows from the Kuratowski and Ryll-Nardzewski measurable selection theorem (see [9]) that every measurable (predictable) set-valued process with nonempty compact values possesses a measurable (predictable) selector. We shall also consider $\mathfrak{B}_+\otimes\mathfrak{T}\otimes\mathfrak{B}^n$ and \mathfrak{P}^n -measurable set-valued mappings $\mathfrak{R}:\mathbb{R}_+\times\Omega\times\mathbb{R}^n\to Cl(\mathbb{R}^n)$. They will be denoted as families $(\mathfrak{R}_{t,z})_{t\geq 0,z\in\mathbb{R}^n}$ and called measurable and predictable, respectively set-valued stochastic processes depending on a parameter $z\in\mathbb{R}^n$. The process $\mathfrak{R}=(\mathfrak{R}_{t,z})_{t\geq 0,z\in\mathbb{R}^n}$ is said to be \mathfrak{F}_t -adapted if $\mathfrak{R}_{t,z}$ is \mathfrak{F}_t -measurable for each $t\geq 0$ and $z\in\mathbb{R}^n$.

Denote by $\mathcal{M}_{s-v}^p(\mathfrak{P})$, $p \geq 1$, and $\mathcal{M}_{s-v}^2(\mathfrak{P}^n,q)$ the families of all set-valued predictable processes $F = (F_t)_{t \geq 0}$ and $\mathfrak{R} = (\mathfrak{R}_{t,z})_{t \geq 0, z \in \mathbb{R}^n}$, respectively, such that $E \int_0^\infty \|F_t\|^p dt < \infty$ and $E \int_0^\infty \int_{\mathbb{R}^n} \|\mathfrak{R}_{t,z}\|^2 dt q(z) < \infty$. Immediately from the Kuratowski and Ryll-Nardzewski measurable selection theorem it follows that for every $F \in \mathcal{M}_{s-v}^p(\mathfrak{P})$, $p \geq 1$, and $\mathfrak{R} \in \mathcal{M}_{s-v}^2(\mathfrak{P}^n,q)$ the sets

$$\mathfrak{F}^p(F):=\{f\in \mathcal{L}_n^p: f_t(\omega)\in F_t(\omega),\ dt\times P-a.e.\}$$

 and

$$\mathfrak{I}_{a}^{2}(\mathbb{R}):=\{h\in\mathcal{W}_{n}^{2}:h_{t,z}(\omega)\in\mathbb{R}_{t,z}(\omega),dt\times P\times q-a.e.\}$$

are nonempty.

Given set-valued processes $F = (F_t)_{t \geq 0} \in \mathcal{M}^p_{s-v}(\mathfrak{P}), \quad \mathfrak{G} = (\mathfrak{G}_t)_{t \geq 0}$ $\in \mathcal{M}^2_{s-v}(\mathfrak{P})$ and $\mathfrak{R} = (\mathfrak{R}_{t,z})_{t \geq 0, z \in \mathbb{R}^n} \in \mathcal{M}^2_{s-v}(\mathfrak{P}^n,q)$ by their stochastic integrals $\mathfrak{I}F$, $\mathfrak{I}\mathfrak{G}$ and $\mathfrak{T}\mathfrak{R}$ we mean families $\mathfrak{I}F = (\mathfrak{I}_tF)_{t \geq 0}, \quad \mathfrak{I}\mathfrak{G} = (\mathfrak{I}_t\mathfrak{G})_{t \geq 0}, \quad \text{and}$ $\mathfrak{T}\mathfrak{R} = (\mathfrak{T}_t\mathfrak{R})_{t \geq 0}$ subsets of $L^p_n(\mathfrak{T}_t), \quad p \geq 1$ and $L^2_n(\mathfrak{T}_t), \quad \text{respectively, defined by}$

$$\begin{split} &\mathfrak{I}_t F = \{\mathfrak{I}_t f \colon f \in \mathfrak{I}^p(F)\}, \ \ \mathfrak{J}_t \mathfrak{G} = \{\mathfrak{J}_t g \colon g \in \mathfrak{I}^2(\mathfrak{G})\} \ \ \text{and} \ \ \mathfrak{T}_t \mathfrak{R} = \{\mathfrak{T}_t h \colon h \in \mathfrak{I}_q^2(\mathfrak{R})\}, \ \ \text{where} \\ &\mathfrak{I}_t f = \int\limits_0^t f_s ds, \ \ \mathfrak{J}_t g = \int\limits_0^t g_s dw_s \ \ \text{and} \ \ \mathfrak{T}_t h = \int\limits_0^t \int\limits_{\mathbb{R}^n} h_{s,z} \widetilde{\nu} \left(ds,dz\right). \quad \text{Given} \ \ 0 \leq \alpha < \beta < \infty, \\ &\text{we also define} \ \ \int\limits_{\alpha}^{\beta} F_s ds = \{\int\limits_{\alpha}^{\beta} f_s ds \colon f \in \mathfrak{I}^p(F)\}, \ \ \int\limits_{\alpha}^{\beta} \mathfrak{G}_s dw_s = \ \{\int\limits_{\alpha}^{\beta} g_s dw_s \colon g \in \mathfrak{I}^2(\mathfrak{G})\} \ \ \text{and} \\ &\int\limits_{\alpha}^{\beta} \int\limits_{\mathbb{R}^n} \mathfrak{R}_{s,z} \widetilde{\nu} \left(ds,dz\right) = \{\int\limits_{\alpha}^{\beta} \int\limits_{\mathbb{R}^n} h_{s,z} \widetilde{\nu} \left(ds,dz\right) \colon h \in \mathfrak{I}^2(\mathbb{R})\}. \quad \text{The following properties of} \\ &\text{set-valued stochastic integrals are given in [10]}. \end{split}$$

 $\begin{array}{lll} & \text{Proposition} & 1: & Let & F \in \mathcal{M}^p_{s-v}(\mathfrak{P}), & p \geq 1, & \mathfrak{G} \in \mathcal{M}^2_{s-v}(\mathfrak{P}) & and \\ & \mathfrak{R} \in \mathcal{M}^2_{s-v}(\mathfrak{P}^n,q). & Then \end{array}$

- (i) $\exists_t \mathfrak{G}$ and $\mathfrak{T}_t \mathfrak{R}$ are closed subsets of $L_n^2(\mathfrak{F}_t)$ for each $t \geq 0$.
- (ii) If, moreover, F, G and R take on convex values then $\mathfrak{I}_t F$, $\mathfrak{J}_t G$ and $\mathfrak{T}_t R$ are convex and weakly compact in $L^p_n(\mathfrak{F}_t)$ and $L^2_n(\mathfrak{F}_t)$, respectively, for each $t \geq 0$.

$$x_{t}-x_{s}\in cl_{L^{2}}\left(\int\limits_{s}^{t}F_{\tau}d\tau+\int\limits_{s}^{t}\mathfrak{G}_{\tau}dw_{\tau}+\int\limits_{s}^{t}\int\limits_{\mathbb{R}^{n}}\mathfrak{R}_{\tau,z}\widetilde{\nu}\left(d\tau,dz\right)\right)$$

for every $0 \le s < t < \infty$. Then for every $\epsilon > 0$ there are $f^{\epsilon} \in \mathcal{I}^p(F)$, $g^{\epsilon} \in \mathcal{I}^2(\mathfrak{G})$ and $h^{\epsilon} \in \mathcal{I}^2(\mathfrak{R})$ such that

$$\sup_{t \, \geq \, 0} \parallel \, \mid (x_t - x_0) \, - \left(\, \int\limits_0^t f_\tau^\epsilon d\tau \, + \, \int\limits_0^t g_\tau^\epsilon dw_\tau \, + \, \int\limits_0^t \int\limits_{\mathbb{R}^n} h_{\tau, \, z}^\epsilon \widetilde{\nu} \left(d\tau, dz \right) \right) \mid \, \parallel_{L^2} \leq \epsilon.$$

Proposition 3: Assume $F \in \mathcal{M}^2_{s-v}(\mathfrak{P})$, $\mathfrak{G} \in \mathcal{M}^2_{s-v}(\mathfrak{P})$ and $\mathfrak{R} \in \mathcal{M}^2_{s-v}(\mathfrak{P}^n,q)$ take on convex values and let $(x_t)_{t\geq 0} \in D$. Then

$$x_{t}-x_{s}\in\int\limits_{s}^{t}F_{\tau}d\tau+\int\limits_{s}^{t}\mathsf{G}_{\tau}dw_{\tau}+\int\limits_{s}^{t}\int\limits_{\mathbb{R}^{n}}\Re_{\tau,\,z}\widetilde{\nu}\left(d\tau,dz\right)$$

for $0 \le s < t < \infty$ if and only if there are $f \in \mathcal{F}^2(F)$, $g \in \mathcal{F}^2(\mathfrak{G})$ and $h \in \mathcal{F}^2_q(\mathfrak{R})$ such that

$$x_t = x_0 + \int\limits_0^t f_\tau d\tau + \int\limits_0^t g_\tau dw_\tau + \int\limits_0^t \int\limits_{\mathbb{R}^n} h_{\tau,z} \widetilde{\nu}\left(d\tau,dz\right), \ a.s. \ for \ each \ t \geq 0.$$

4. STOCHASTIC INCLUSIONS

 $\begin{array}{lll} \text{Let} & F=\{(F_t(x))_{t\,\geq\,0}:x\in\mathbb{R}^n\}, & G=\{(G_t(x))_{t\,\geq\,0}:x\in\mathbb{R}^n\} & \text{and} & H=\\ \{(H_{t,\,z}(x))_{t\,\geq\,0,\,z\,\in\,\mathbb{R}^n}:x\in\mathbb{R}^n\}. & \text{Assume} & F,G & \text{and} & H & \text{are such that} & (F_t(x))_{t\,\geq\,0}\\ &\in\mathcal{M}^p_{s\,-v}(\mathbb{P}), & (G_t(x))_{t\,\geq\,0}\in\mathcal{M}^2_{s\,-v}(\mathbb{P}) & \text{and} & (H_{t,\,z}(x))_{t\,\geq\,0,\,z\,\in\,\mathbb{R}^n}\in\mathcal{M}^2_{s\,-v}(\mathbb{P}^n,q) & \text{for each} & x\in\mathbb{R}^n. \end{array}$

By a stochastic inclusion, denoted by SI(F,G,H), corresponding to F,G and H given above, we mean the relation

$$x_t - x_s \in \operatorname{cl}_{L^2} \left(\int_s^t F_\tau(x_\tau) d\tau + \int_s^t G_\tau(x_\tau) dw_\tau + \int_s^t \int_{\mathbb{R}^n} H_{\tau,z}(x_\tau) \widetilde{\nu} \left(d\tau, dz \right) \right)$$

that is to be satisfied for every $0 \le s < t < \infty$ by a stochastic process $x = (x_t)_{t \ge 0} \in D$ such that $F \circ mx \in \mathcal{M}^p_{s-v}(\mathbb{P})$, $G \circ mx \in \mathcal{M}^2_{s-v}(\mathbb{P})$ and $H \circ mx \in \mathcal{M}^2_{s-v}(\mathbb{P}^n,q)$, where $F \circ mx = (F_t(x_t))_{t \ge 0}$, $G \circ mx = (G_t(x_t))_{t \ge 0}$ and $H \circ mx = (H_{t,z}(x_t))_{t \ge 0, z \in \mathbb{R}^n}$. Every stochastic process $(x_t)_{t \ge 0} \in D$, satisfying the conditions mentioned above, is said to be global solution to SI(F,G,H).

Corollary 1: If F,G and H take on convex values then SI(F,G,H) has a form

$$x_t - x_s \in \int\limits_s^t F_\tau(x_\tau) d\tau + \int\limits_s^t G_\tau(x_\tau) dw_\tau + \int\limits_s^t \int\limits_{\mathbb{R}^n} H_{\tau,\,z}(x_\tau) \widetilde{\nu} \, (d\tau,dz)$$

and $(x_t)_{t\geq 0} \in D$ is a global solution to SI(F,G,H) if and only if there are $f \in \mathcal{F}^2(F \circ mx), g \in \mathcal{F}^2(G \circ mx)$ and $h \in \mathcal{F}^2_a(H \circ mx)$ such that

$$x_t = x_0 + \int\limits_0^t f_\tau d\tau + \int\limits_0^t g_\tau dw_\tau + \int\limits_0^t \int\limits_{\mathbb{R}^n} h_{\tau,z} \widetilde{\nu} (d\tau, dz), a.s. \ for \ each \ t \geq 0.$$

Given $0 \le \alpha < \beta < \infty$, a stochastic process $(x_t)_{t \ge 0} \in D$ is said to be a local solution to SI(F, G, H) on $[\alpha, \beta]$ if

$$x_t - x_s \in \operatorname{cl}_{L^2} \left(\int\limits_s^t F_\tau(x_\tau) d\tau + \int\limits_s^t G_\tau(x_\tau) dw_\tau + \int\limits_s^t \int\limits_{\mathbb{R}^n} H_{\tau,\,z}(x_\tau) \widetilde{\nu} \left(d\tau, dz \right) \right)$$

for $\alpha \leq s < t \leq \beta$.

Corollary 2: A stochastic process $(x_t)_{t\geq 0} \in D$ is a local solution to SI(F,G,H) on $[\alpha,\beta]$ if and only if $x^{\alpha,\beta}$ is a global solution to $SI(F^{\alpha\beta},G^{\alpha\beta},H^{\alpha\beta})$, where $F^{\alpha\beta} = \mathbb{I}_{[\alpha,\beta]}F$, $G^{\alpha\beta} = \mathbb{I}_{[\alpha,\beta]}G$ and $H^{\alpha\beta} = \mathbb{I}_{[\alpha,\beta]}H$.

A stochastic process $(x_t)_{t\geq 0}\in D$ is called a global (local on $[\alpha,\beta]$, resp.) solution to an initial value problem for stochastic inclusion SI(F,G,H) with an initial condition $y\in L^2(\Omega,\mathfrak{F}_0,\mathbb{R}^n)$ $(y\in L^2(\Omega,\mathfrak{F}_\alpha,\mathbb{R}^n), \text{ resp.})$ if $(x_t)_{t\geq 0}$ is a global (local on $[\alpha,\beta]$, resp.) solution to SI(F,G,H) and $x_0=y$ $(x_\alpha=y, \text{ resp.})$. An initial-value problem for SI(F,G,H) mentioned above will be denoted by $SI_y(F,G,H)$ $(SI_y^{\alpha,\beta}(F,G,H), \text{ resp.})$. In what follows, we denote a set of all global (local on $[\alpha,\beta]$, resp.) solutions to $SI_y(F,G,H)$ by $\Lambda_y(F,G,H)$ $(\Lambda_y^{\alpha,\beta}(F,G,H), \text{ resp.})$.

Suppose F, G and H satisfy the following conditions (A_1) :

- $$\begin{split} (i) & \quad F = \{(F_t(x))_{t \, \geq \, 0} \colon x \in \mathbb{R}^n\}, \, G = \{(G_t(x))_{t \, \geq \, 0} \colon x \in \mathbb{R}^n\} \text{ and } H = \\ & \quad \{(H_{t,\,z}(x))_{t \, \geq \, 0,\, z \, \in \, \mathbb{R}^n} \colon \ x \in \mathbb{R}^n\} \text{ are such that mappings } \mathbb{R}^+ \times \Omega \times \mathbb{R}^n \ni \\ & \quad (t,\omega,x) {\rightarrow} F_t(x)(\omega) \in Cl(\mathbb{R}^n), \quad \mathbb{R}_t \times \Omega \times \mathbb{R}^n \ni (t,\omega,x) {\rightarrow} G_t(x)(\omega) \in Cl(\mathbb{R}^n) \\ & \quad \text{and } \mathbb{R}_t \times \Omega \times \mathbb{R}^n \times \mathbb{R}^n \ni (t,\omega,z,x) {\rightarrow} H_{t,\,z}(x)(\omega) \in Cl(\mathbb{R}^n) \text{ are } \mathfrak{P} \otimes \mathfrak{B}^n \text{ and } \\ & \quad \mathfrak{P}^n \otimes \mathfrak{B}^n\text{-measurable, respectively.} \end{split}$$
- (ii) $(F_t(x))_{t\geq 0}$, $(G_t(x))_{t\geq 0}$, $(H_{x,z}(x))_{t\geq 0, z\in\mathbb{R}^n}$ are uniformly p- and square-integrable bounded, respectively, i.e.,

$$(sup_{x \in \mathbb{R}^{n}} \| F_{t}(x) \|)_{t \geq 0} \in \mathcal{L}_{1}^{p}, (sup_{x \in \mathbb{R}^{n}} \| G_{t}(x) \|)_{t \geq 0} \in \mathcal{L}_{1}^{2}$$
 and
$$(sup_{x \in \mathbb{R}^{n}} \| H_{t,z}(x) \|)_{t \geq 0, z \in \mathbb{R}^{n}} \in \mathcal{W}_{1}^{2}.$$

Corollary 3: For every $(x_t)_{t\geq 0} \in D$ and F, G, H satisfying (\mathcal{A}_1) one has $F \circ mx \in \mathcal{M}^p_{x-v}(\mathfrak{P}), \ G \circ mx \in \mathcal{M}^2_{s-v}(\mathfrak{P}) \ and \ H \circ mx \in \mathcal{M}^2_{s-v}(\mathfrak{P}^n, q).$

Now define a linear continuous mapping Φ on $\mathcal{L}_n^p \times \mathcal{L}_n^2 \times \mathcal{W}_n^2$ by taking $\Phi(f,g,h) = (\mathfrak{I}_t f + \mathfrak{J}_t g + \mathfrak{T}_t h)_{t \geq 0}$ to each $(f,g,h) \in \mathcal{L}_n^p \times \mathcal{L}_n^2 \times \mathcal{W}_n^2$. It is clear that Φ maps $\mathcal{L}_n^p \times \mathcal{L}_n^2 \times \mathcal{W}_n^2$ into D. Given above F,G and H satisfying (\mathcal{A}_1) , define a set-valued mapping \mathcal{H} on D by setting

$$\mathfrak{F}(x) = \operatorname{cl}_{\ell}(\Phi(\mathfrak{F}^p(F \circ mx) \times \mathfrak{F}^2(G \circ mx) \times \mathfrak{F}^2_q(H \circ mx))) \tag{1}$$

for $x = (x_t)_{t \ge 0} \in D$, where the closure is taken in the norm topology in $(D, \|\cdot\|_{\ell})$. Similarly, for given $0 \le \alpha < \beta < \infty$, we define a set-valued mapping $\mathcal{H}^{\alpha,\beta}$ on D by taking

$$\mathfrak{F}^{\alpha,\,\beta}(x)=cl_{\ell}(\Phi(\mathfrak{I}^p(F^{\alpha\beta}\circ mx)\times\mathfrak{I}^2(G^{\alpha\beta}\circ mx)\times\mathfrak{I}^2_q(H^{\alpha\beta}\circ mx)) \tag{2}$$

where $F^{\alpha\beta}$, $G^{\alpha\beta}$ and $H^{\alpha\beta}$ are as above.

Corollary 4: For every F,G and H taking on convex values and

satisfying (\mathcal{A}_1) , one has $\mathfrak{K}(x) = \Phi(\mathfrak{I}^p(F \circ mx) \times \mathfrak{I}^2(G \circ mx) \times \mathfrak{I}^2_q(H \circ mx))$ and $\mathfrak{K}^{\alpha,\,\beta}(y) = \Phi(\mathfrak{I}^p(F^{\alpha\beta} \circ mx) \times \mathfrak{I}^2(G^{\alpha\beta} \circ mx) \times \mathfrak{I}^2_q(H^{\alpha\beta} \circ mx))$ for $x \in D$.

Let S(F,G,H) and $S^{\alpha,\beta}(F,G,H)$ denote the set of all fixed points of \mathfrak{A} and $\mathfrak{A}^{\alpha,\beta}$, respectively. It will be shown below that $S^{\alpha,\beta}(F,G,H) \subset D^{\alpha,\beta}$. Immediately from Proposition 2 (see [10]) the following result follows.

Proposition 4: Assume F,G and H satisfy (A_1) and take on convex values. Then $\Lambda_0(F,G,H) = S(F,G,H)$ and $\Lambda_0^{\alpha,\beta}(F,G,H) = S^{\alpha,\beta}(F,G,H)$ for every $0 \le \alpha < \beta < \infty$, respectively.

Proposition 5: Assume F,G and H satisfy (A_1) and let $0 \le \alpha < \beta < \infty$. Then $x \in S^{\alpha,b}(F,G,H)$ if and only if

- (i) $x_t = 0$ a.s. for $t \in [0, \alpha]$,
- (ii) $x_t = x_\beta$ a.s. for $t \ge \beta$,

Proof: (\Rightarrow) Let $x \in S^{\alpha,\beta}(F,G,H)$. By the definition of $\mathcal{K}^{\alpha,\beta}$, for every $\epsilon > 0$, there is $(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) \in \mathcal{I}^{p}(F^{\alpha\beta} \circ mx) \times \mathcal{I}^{2}(G^{\alpha\beta} \circ mx) \times \mathcal{I}^{2}_{q}(H^{\alpha\beta} \circ mx))$ such that $\|x - \Phi(f^{\epsilon}, g^{\epsilon}, h^{\epsilon})\|_{\ell} < \epsilon$. We have of course $\Phi_{t}(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) = 0$ and $\Phi_{t}(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) = \Phi_{\beta}(f^{\epsilon}, g^{\epsilon}, h^{\epsilon})$, a.s. for $0 \le t \le \alpha$ and $t \ge \beta$, respectively. Then

$$\begin{split} \|\sup_{0\,\leq\,t\,\leq\,\alpha}\mid x_t\mid \; \|\;_{L^2_1} &=\; \|\sup_{0\,\leq\,t\,\leq\,\alpha}\mid x_t-\Phi_t(f^\epsilon,g^\epsilon,h^\epsilon)\mid \; \|\;_{L^2_1} \\ &\leq\; \|\;x-\Phi(f^\epsilon,g^\epsilon,h^\epsilon)\,\|\;_{\ell}<\epsilon. \end{split}$$

and

$$\begin{split} \parallel \sup_{t \geq \beta} \mid x_t - x_\beta \mid \ \parallel_{L_1^2} &= \ \parallel \sup_{t \geq \beta} \mid x_t - \Phi_t(f^\epsilon, g^\epsilon, h^\epsilon) \mid \ \parallel_{L_1^2} \\ &+ \ \parallel \sup_{t \geq \beta} \mid x_\beta - \Phi_\beta(f^\epsilon, g^\epsilon, h^\epsilon) \mid \ \parallel_{L_1^2} < 2\epsilon. \end{split}$$

Therefore, $\sup_{0 \le t \le \alpha} |x_t| = 0$ and $\sup_{t \ge \beta} |x_t - x_\beta| = 0$ a.s.

By the properties of $\Phi(f^{\epsilon}, g^{\epsilon}, h^{\epsilon})$, (i) and (ii), (iii) easily follow.

 (\Leftarrow) Conditions (i) - (iii) imply

$$\parallel x - \Phi(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) \parallel_{\ell} = \parallel \sup_{\alpha \ < \ t \ < \ \beta} \mid x_{t} - \Phi_{t}(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) \mid \ \parallel_{L^{2}_{1}} < \epsilon.$$

Therefore, $x \in cl_{\theta}\Phi(\mathfrak{I}^p(F^{\alpha\beta} \circ mx) \times \mathfrak{I}^2(G^{\alpha\beta} \circ mx) \times \mathfrak{I}^2_{\theta}(H^{\alpha\beta} \circ mx)).$

Proposition 6: Assume F,G and H satisfy (A_1) and let $(\tau_n)_{n=1}^{\infty}$ be a sequence of positive numbers increasing to $+\infty$. If $x^1 \in S^{0,\tau_1}(F,G,H)$ and $x^{n+1} \in x_{\tau_n}^n + S^{\tau_n,\tau_{n+1}}(F,G,H)$ for $n=1,2,\ldots$, then $x=\sum_{n=1}^{\infty} \mathbb{I}_{\{\tau_{n-1},\tau_n\}}(x^n-x_{\tau_{n-1}}^{n-1})$ belongs to S(F,G,H), where $x_0^0=0$.

Proof: For every $n=1,2,\ldots$ one has $x^n-x_{\tau_{n-1}}^{n-1}\in S^{\tau_{n-1},\tau_n}(F,G,H)$. Then, by Proposition 5, for every $n=1,2,\ldots$ and $\epsilon>0$ there is $(f^n,g^n,h^n)\in \mathfrak{I}^p(F^{\tau_{n-1}\tau_n}\circ mx^n)\times \mathfrak{I}^2(G^{\tau_{n-1}\tau_n}\circ mx^n)\times \mathfrak{I}^2_q(H^{\tau_{n-1}\tau_n}\circ mx^n)$ such that

$$\|\sup_{\tau_{n-1} \le t \le \tau_n} |(x_t^n - x_{\tau_{n-1}}^{n-1}) - \Phi_t(f^n, g^n, h^n)| \|_{L^2_1} < \epsilon/2^n.$$

Put $f^{\epsilon} = \sum_{n=1}^{\infty} \mathbb{I}_{[\tau_{n-1}, \tau_n)} f^n$, $g^{\epsilon} = \sum_{n=1}^{\infty} \mathbb{I}_{[\tau_{n-1}, \tau_n)} g^n$ and $h^{\epsilon} = \sum_{n=1}^{\infty} \mathbb{I}_{[\tau_{n-1}, \tau_n)} h^n$. By the decomposability (see [9], [10]) of $\mathcal{I}^2(F \circ mx)$, $\mathcal{I}^2(G \circ mx)$ and $\mathcal{I}^2_q(h \circ mx)$, we get $f^{\epsilon} \in \mathcal{I}^2(F \circ mx)$, $g^{\epsilon} \in \mathcal{I}^2(G \circ mx)$ and $h^{\epsilon} \in \mathcal{I}^2_q(H \circ mx)$. Moreover

$$\leq \sum_{n=1}^{\infty} \| \sup_{\tau_{n-1} \leq t \leq \tau_n} |(x_t^n - x_{\tau_{n-1}}^{n-1} - \Phi_t(f^n, g^n, h^n))| \|_{L^2_1} < \epsilon.$$

Therefore, $x \in cl_{\ell}\Phi(\mathfrak{I}^2(F\circ mx)\times \mathfrak{I}^2(G\circ mx)\times \mathfrak{I}^2_q(H\circ mx).$

In what follows we shall deal with $F=\{(F_t(x))_{t\,\geq\,0}:x\in\mathbb{R}^n\}$, $G=\{(G_t(x))_{t\,\geq\,0}:\,x\in\mathbb{R}^n\}$ and $H=\{H_{t,\,z}(x))_{t\,\geq\,0,\,z\,\in\,\mathbb{R}^n}:x\in\mathbb{R}^n\}$ satisfying conditions (\mathcal{A}_1) and any one of the following conditions.

 $(\mathcal{A}_2) \quad F,G \quad and \quad H \quad are \quad such \quad that \quad set-valued \quad functions \quad D\ni x \to (F\circ mx)_t(\omega)\subset \mathbb{R}^n,$ $D\ni x \to (G\circ mx)_t(\omega)\subset \mathbb{R}^n \quad and \quad D\ni x \to (H\circ mx)_{t,\,z}(\omega)\subset \mathbb{R}^n \quad are \quad w.\text{-}w.s.u.s.c.$ on $D, \quad i.e., \quad for \quad every \quad x\in D \quad and \quad every \quad sequence \quad (x_n) \quad of \quad (D, \|\cdot\|_{\ell})$ $converging \quad weakly \quad to \quad x, \quad one \quad has \quad \bar{h}\left(\int\int_A (F\circ mx_n)_t \ dtdP, \int\int_A (F\circ mx_n)_t \ dtdP\right) \to 0,$ $\int\int_A (F\circ mx)_t dtdP\to 0, \quad \bar{h}\left(\int\int_A (G\circ mx_n)_t dtdP\right) \int\int_A (G\circ mx)_t dtdP\to 0,$ and $\bar{h}\left(\int\int\int_B (H\circ mx_n)_{t,\,z} \ dtq(dz)dP\right) \int\int_B (H\circ mx)_{t,\,z} dtq(dz)dP\to 0.$

- $(\mathcal{A}_3) \quad F,G \quad and \quad H \quad are \quad such \quad that \quad set-valued \quad functions \quad D\ni x \to (F\circ mx)_t(\omega)\subset \mathbb{R}^n,$ $D\ni x \to (G\circ mx)_t(\omega)\subset \mathbb{R}^n \quad and \quad D\ni x \to (H\circ mx)_{t,\,z}(\omega)\subset \mathbb{R}^n \quad are \quad s.-w.s.l.s.c.$ on $D, \quad i.e., \quad for \quad every \quad x\in D \quad and \quad every \quad sequence \quad (x_n) \quad of \quad (D, \parallel\cdot\parallel_{\ell})$ converging weakly to $x, \quad one \quad has \quad \overline{h}\left((F\circ mx)_t(\omega), (F\circ mx^n)_t(\omega)\right)\to 0,$ $\overline{h}\left((G\circ mx)_t(\omega), (G\circ mx^n)_t(\omega)\right)\to 0 \quad and \quad \overline{h}\left((H\circ mx)_{t,\,z}(\omega), \quad (H\circ mx^n)_{t,\,z}(\omega)\right)\to 0$ a.e.
- $\begin{array}{ll} (\mathcal{A}_{4}) \!\!: \; There \; are \; k,\ell \in \mathcal{L}_{1}^{2} \; and \; m \in \mathcal{W}_{1}^{2} \; such \; that \; \left\| \int\limits_{0}^{\infty} h[(F \circ mx)_{t},(F \circ my)_{t}]dt \, \right\|_{L_{1}^{2}} \leq \\ & \quad E \int\limits_{0}^{\infty} k_{t} \, \left\| x_{t} y_{t} \, \right\| dt, \; \left\| h(G \circ mx,G \circ my) \, \right\|_{\mathcal{L}_{1}^{2}} \leq \; E \int\limits_{0}^{\infty} \ell_{t} \, \left| x_{t} y_{t} \, \right| dt \; and \\ & \quad \left\| h(H \circ mx,\; H \circ my) \, \right\|_{\mathcal{W}_{1}^{2}} \leq \; E \int\limits_{0}^{\infty} \int\limits_{\mathbb{R}^{n}} m_{t,z} \, \left| x_{t} y_{t} \, \right| dt q(dz) \; for \; x, y \in D. \end{array}$
- $\begin{array}{llll} (\mathcal{A}_4') & There & are & k,\ell \in L^2(\mathfrak{B}_+) & and & m \in L^2(\mathfrak{B}_+ \times \mathfrak{B}^n) & such & that & h(F_t(x_2)(\omega), \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$

It is clear that the upper (lower) semicontinuity of F,G and H does not imply their weak (strong) - weak sequential upper (lower) semicontinuity presented above. We shall show that in some special cases, i.e., for concave (convex, resp.), set-valued mappings such implication holds true. Recall a set-valued mapping \mathbb{R} , defined on a locally convex topological space (X, \mathbb{T}_X) with values in a normed space is said to be concave (convex) if $\mathbb{R}(\alpha x_1 + \beta x_2) \subset \alpha \mathbb{R}(x_1) + \beta \mathbb{R}(x_2)$ ($\alpha \mathbb{R}(x_1) + \beta \mathbb{R}(x_2) \subset \mathbb{R}(\alpha x_1 + \beta x_2)$), for every $x_1, x_2 \in X$ and $\alpha, \beta \in [0,1]$ satisfying $\alpha + \beta = 1$.

Lemma 1: Suppose F,G and H satisfy (A_1) with p=1, take on convex values and are concave (convex) with respect to $x \in \mathbb{R}^n$. If moreover F,G and H are u.s.c. (l.s.c.) with respect to $x \in \mathbb{R}^n$ then they are w.-w.s.u.s.c. (s.-w.s.l.s.c.).

Proof: Let $x \in D$ be fixed and let (x^n) be a sequence of D weakly converging to x. Denote $K_p(t, \omega, y) = -s(p, F_t(y_t)(\omega))$ for $p \in \mathbb{R}^n$, $y \in D$, $t \geq 0$ and $\omega \in \Omega$. We shall show that for every $A \in \mathfrak{P}$ and every $p \in \mathbb{R}^n$ one has

$$\int \int_A K_p(t,\omega,x) dt dP \leq \lim_{n \to \infty} \inf \int \int_A K_p(t,\omega,x^n) dt dP,$$

which is equivalent to the weak-weak sequential upper semicontinuity of F at $x \in D$ in the sense defined in (A_2) . Similarly, the weak-weak sequential upper

semicontinuity of G and H can be verified.

Let $A\in \mathfrak{P},\ p\in \mathbb{R}^n$ be given. Denote $j_n=\int\int_A K_p(t,\omega,x^n)dtdP$ for $n=1,2,\ldots$ and put $i:=\liminf_{n\to\infty}\int\int_A K_p(t,\omega,x^n)dtdP$. By taking a suitable subsequence, say (n_k) of (n) we may well assume that $j_{n_k}\to i$ as $k\to\infty$. By the Banach and Mazur theorem (see [2]) for every $s=1,2,\ldots$ there are numbers $\alpha_k^s\geq 0$ with $k=1,2,\ldots,N$ and $N=1,2,\ldots$ satisfying $\sum\limits_{k=1}^N \alpha_k^s=1$ and such that $\|z_N^s-x\|_{\ell}\to 0$ as $N\to 0$, where $z_N^s(t,\omega)=\sum\limits_{k=1}^N \alpha_k^s x_t^{n_k+s}(\omega)$. By the definition of the norm $\|\cdot\|_{\ell}$ there is a subsequence, say again (z_N^s) , of (z_N) such that $\sup_{t\geq 0}\|z_N^s(t,\omega)-x_t(\omega)\|\to 0$ a.s. for $s=1,2,\ldots$ Put

$$\eta_N^s := \sum_{k=1}^N \alpha_k^s K_p(\cdot, \cdot, x^{n_k+s}),$$

$$j_k^s = \int \int_A K_p(t, \omega, x^{n_k+s}) dt dP$$

and let $\delta_s = \max_{N \geq s+1} \max_{1 \leq k \leq N} |j_k^s - i|$ for $s = 1, 2, \ldots$ We have $\delta_s \to 0$ as $s \to \infty$. By the uniform square boundedness of F there is $m_F \in \mathcal{L}_1^2$ such that $\eta_N^s \geq -m_F$ a.e. for $N, s = 1, 2, \ldots$ Therefore, $\liminf_{N \to \infty} \eta_N^s \geq -m_F$ a.e. for $s = 1, 2, \ldots$ Then by Fatou's lemma one obtains

$$\int \int\limits_{A} \underset{N \rightarrow \infty}{limin} f \eta_{N}^{s} dt dP \leq \underset{N \rightarrow \infty}{limin} f \int \int\limits_{A} \eta_{N}^{s} dt dP \leq i + \delta_{s}$$

for $s=1,2,\ldots$, because for every $s=1,2,\ldots$, we have $i-\delta_s \leq \int \int_A \eta_N^s dt dP \leq i+\delta_s$. Taking $\eta=\liminf_{s\to\infty}[\liminf_{N\to\infty}\eta_N^s]$ a.e., we get $\eta\geq -m_F$ a.e. and $\int \int \eta dt dP \leq i$. We shall verify that we also have $K(t,\omega,x)\leq \eta(t,\omega)$ for a.e. $(t,\omega)\in\mathbb{R}_+\times\Omega$. Indeed, by upper semicontinuity of F with respect to $x\in\mathbb{R}^n$, a real valued function $x\to -s(p,F_t(x))$ is lower semicontinuous on \mathbb{R}^n , a.s. for every $t\geq 0$ and $p\in\mathbb{R}^n$. Therefore for every $m,s=1,2,\ldots$ there is $M\geq 1$ such that

$$-s(p, F_t(x_t)) - \frac{1}{m} < -s(p, F_t(\sum_{k=1}^N \alpha_k^s x_t^{n_k + s}))$$

a.s. for every $t \geq 0$ and $N \geq M$. Hence, by the properties of F, it follows

$$-s(p, F_t(x_t)) - \frac{1}{m} < \sum_{k=1}^{N} \alpha_k^s [-s(p, F_t(x_t^{n_k + s}))] = : \eta_N^s(t, \cdot)$$

a.s. for $t \ge 0$, s, m = 1, 2... and $N \ge M$. Therefore, for m = 1, 2,... almost everywhere, one gets

$$K_p(\,\cdot\,,\,\cdot\,,x)-\frac{1}{m}\leq \underset{s\to\infty}{limin}f[\underset{N\to\infty}{limin}f\eta_N^s]=\eta.$$

Finally, we get

$$\int \int_A K_p(t,\omega,x) dt dP \le \int \int_A \eta(t,\omega) dt dP \le i.$$

5. PROPERTIES OF SOLUTION SET

We shall prove here the existence theorems for SI(F,G,H). We show first that conditions (\mathcal{A}_1) and anyone of conditions (\mathcal{A}_2) - (\mathcal{A}_4) or (\mathcal{A}'_4) imply the existence of fixed points for the set-valued mappings \mathcal{H} and $\mathcal{H}^{\alpha,\beta}$ defined above. Hence, by Propositions 4 and 5, the existence theorems for SI(F,G,H) will follow. We begin with the following lemmas.

Lemma 2: Assume F,G and H take on convex values, satisfy (\mathcal{A}_1) with p=2 and (\mathcal{A}_2) . Then a set-valued mapping \mathbb{H} is u.s.c. as a multifunction defined on a locally convex topological Hausdorff space $(D,\sigma(D,D^*))$ with nonempty values in $(D,\sigma(D,D^*))$.

Proof: Let C be a nonempty weakly closed subset of D and select a sequence (x^n) of $\mathcal{H}^-(C)$ weakly converging to $x \in D$. There is a sequence (y^n) of C such that $y^n \in \mathcal{H}(x^n)$ for $n = 1, 2, \ldots$ By the uniform square-integrable boundedness of F, G and H, there is a convex weakly compact subset $\mathbb{B} \subset \mathcal{L}_n^2 \times \mathcal{L}_n^2 \times \mathcal{W}_n^2$ such that $\mathcal{H}(x^n) \subset \Phi(\mathbb{B})$. Therefore, $y^n \in \Phi(\mathbb{B})$, for $n = 1, 2, \ldots$ which, by the weak compactness of $\Phi(\mathbb{B})$, implies the existence of a subsequence, say for simplicity (y^k) , of (y^n) weakly converging to $y \in \Phi(\mathbb{B})$. We have $y^k \in \mathcal{H}(x^k)$ for $k = 1, 2, \ldots$ Let $(f^k, g^k, h^k) \in \mathcal{I}^2(F \circ mx^k) \times \mathcal{I}^2(G \circ mx^k) \times \mathcal{I}^2(H \circ mx^k)$ be such that $\Phi(f^k, g^k, h^k) = y^k$, for each $k = 1, 2, \ldots$ We have of course $(f^k, g^k, h^k) \in \mathbb{B}$. Therefore, there is a subsequence, say again $\{(f^k, g^k, h^k)\}$ of $\{(f^k, g^k, h^k)\}$ weakly converging in $\mathcal{L}_n^2 \times \mathcal{L}_n^2 \times \mathcal{W}_n^2$ to $(f, g, h) \in \mathbb{B}$. Now, for every $A \in \mathbb{P}$ one obtains

$$\begin{split} \operatorname{dist}\!\!\left(\int\int\limits_{A}f_{t}dtdP,\;\int\int\limits_{A}F_{t}(x)dtdP\right) \! \leq \\ \leq &\left|\int\int\limits_{A}[f_{t}-f_{t}^{k}]dtdP\right| \! + \operatorname{dist}\!\!\left(\int\int\limits_{A}f_{t}^{k}dtdP,\int\int\limits_{A}F_{t}(x_{k})dtdP\right) \end{split}$$

$$+ \bar{h} \left(\int \int_{A} F_{t}(x^{k}) dt dP, \int \int_{A} F_{t}(x) dt dP \right)$$

Therefore (see [8], Lemma 4.4) $f \in \mathcal{I}^2(F \circ mx)$. Quite similarly, we also get $t \in \mathcal{I}^2(G \circ mx)$ and $h \in \mathcal{I}^2_q(H \circ mx)$. Thus, $\Phi(f,g,h) \in \mathcal{K}(x)$, which implies $g \in \mathcal{K}(x)$. On the other hand we also have $g \in C$, because G is weakly closed. Therefore, $g \in \mathcal{K}^-(C)$. Now the result follows immediately from Eberlein and Šmulian's theorem.

Lemma 3: Assume F,G and H take on convex values, satisfy (\mathcal{A}_1) with p=2 and (\mathcal{A}_3) . Then a set-valued mapping \mathbb{K} is l.s.c. as a multifunction defined on a locally convex topological Hausdorff space $(D,\sigma(D,D^*))$ with nonempty values in $(D,\sigma(D,D^*))$.

Proof: Let C be a nonempty weakly closed subset of D and (x^n) a sequence of $\mathcal{H}_-(C)$ weakly converging to $x \in D$. Select arbitrarily $y \in \mathcal{H}(x)$ and suppose $(f,g,h) \in \mathcal{I}^2(F \circ mx) \times \mathcal{I}^2(G \circ mx) \times \mathcal{I}^2_q(H \circ mx)$ is such that $y = \Phi(f,g,h)$. Let $(f^n,g^n,h^n) \in \mathcal{I}^2(F \circ mx^n) \times \mathcal{I}^2(G \circ mx^n) \times \mathcal{I}^2_q(H \circ mx^n)$ be such that

$$|f_t(\omega) - f_t^n(\omega)| = dist(f_t(\omega), (F \circ mx^n)_t(\omega)),$$

$$|g_t(\omega) - g_t^n(\omega)| = dist(g_t(\omega), (G \circ mx^n)_t(\omega))$$
 and

 $| h_{t,z}(\omega) - g_{t,z}^n(\omega) | = \operatorname{dist}(h_{t,z}(\omega), \ (H \circ mx^n)_{t,z}(\omega)) \text{ on } \mathbb{R}_+ \times \Omega \text{ and } \mathbb{R}_+ \times \Omega \times \mathbb{R}^n,$ respectively, for each $n = 1, 2, \ldots$ By virtue of (\mathcal{A}_3) one gets $| f_t(\omega) - f_t^n(\omega) | \to 0,$ $| g_t(\omega) - g_t^n(\omega) | \to 0 \text{ and } | h_{t,z}(\omega) - h_{t,z}^n(\omega) | \to 0 \text{ a.e., as } n \to \infty.$ Hence, by (\mathcal{A}_1) we can easily see that a sequence (y_n) , defined by $y^n = \Phi(f^n, g^n, h^n)$, weakly converges to y. But $y^n \in \mathcal{H}(x^n) \subset C$ for $n = 1, 2, \ldots$ and C is weakly closed. Then $y \in C$ which implies $\mathcal{H}(x) \subset C$. Thus $x \in \mathcal{H}_-(C)$.

Lemma 4. Suppose F,G and H satisfy (\mathcal{A}_1) and (\mathcal{A}_4) or (\mathcal{A}'_4) . Then $H(\mathfrak{B}(x),\mathfrak{B}(y)) \leq L \parallel x-y \parallel_{\ell}$ or $H(\mathfrak{B}(x),\mathfrak{B}(y)) \leq L' \parallel x-y \parallel_{\ell}$, respectively, for every $x,y \in D$, where H is the Hausdorff metric induced by the norm $\parallel \cdot \parallel_{\ell}$, $L = \parallel \int\limits_{0}^{\infty} k_t dt \parallel_{L_1^2} + 2 \parallel \int\limits_{0}^{\infty} \ell_t dt \parallel_{L_1^2} + 2 \parallel \int\limits_{0}^{\infty} \int\limits_{\mathbb{R}^n} m_{\tau,z} d\tau q(dz) \parallel_{L_1^2}$ and $L' = \lfloor k \rfloor_1 + 2 \lfloor \ell \rfloor_2 + 2 \parallel m \parallel_2$.

Proof: Let $x, y \in D$ be given and let $u \in \mathcal{K}(x)$. For every $\epsilon > 0$, there is $(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) \in \mathcal{I}^{2}(F \circ mx) \times \mathcal{I}^{2}(G \circ mx) \times \mathcal{I}^{2}_{q}(H \circ mx)$ such that $\|u - \Phi(f^{\epsilon}, g^{\epsilon}, h^{\epsilon})\|_{\ell} < \epsilon$. Select now $(\tilde{f}^{\epsilon}, \tilde{g}^{\epsilon}, \tilde{h}^{\epsilon}) \in \mathcal{I}^{2}(F \circ my) \times \mathcal{I}^{2}(G \circ my) \times \mathcal{I}^{2}_{q}(H \circ my)$ such that

$$\begin{split} \mid f_t^\epsilon(\omega) - \widetilde{f}_t^\epsilon(\omega) \mid &= dist(f_t^\epsilon(\omega), (F \circ my)_t(\omega)), \\ \mid g_t^\epsilon(\omega) - \widetilde{g}_t^\epsilon(\omega) \mid &= dist(g_t^\epsilon(\omega), (G \circ my)_t(\omega)) \end{split} \quad \text{and} \quad \end{split}$$

 $|h_{t,z}^{\epsilon}(\omega) - \widetilde{h}_{t,z}^{\epsilon}(\omega)| = dist(h_{t,z}^{\epsilon}(\omega), (H \circ my)_{t,z}(\omega)) \text{ on } \mathbb{R}_{+} \times \Omega \text{ and } \mathbb{R}_{+} \times \Omega \times \mathbb{R}^{n},$ respectively. Now, by (A_4) it follows

$$\begin{split} E & \left[\sup_{t \geq 0} \left| \int_{0}^{t} (f_{\tau}^{\epsilon} - \widetilde{f}_{\tau}^{\epsilon}) d\tau \right| \right]^{2} \leq E \left[\int_{0}^{\infty} \left| f_{\tau}^{\epsilon} - \widetilde{f}_{\tau}^{\epsilon} \right| d\tau \right]^{2} \\ & \leq E \left[\int_{0}^{t} \overline{h} \left((F \circ mx)_{\tau}, (F \circ my)_{\tau} \right) d\tau \right]^{2} \leq \left(E \int_{0}^{t} k_{\tau} \left| x_{\tau} - y_{\tau} \right| d\tau \right)^{2} \\ & \leq \left[E \left(\sup_{t \geq 0} \left| x_{t} - y_{t} \right| \cdot \int_{0}^{\infty} k_{\tau} d\tau \right) \right]^{2} \leq E \left(\int_{0}^{\infty} k_{\tau} d\tau \right)^{2} \cdot \left\| x - y \right\|_{\ell}^{2}. \end{split}$$

Similarly, by Doob's inequality, we obtain

$$\begin{split} E\left[\sup_{t \geq 0} \ \left| \int\limits_{0}^{t} (g_{\tau}^{\epsilon} - \widetilde{g}_{\tau}^{\epsilon}) dw_{\tau} \right| \right]^{2} &\leq 4E\int\limits_{0}^{\infty} \left| \ g_{\tau}^{\epsilon} - \widetilde{g}_{\tau}^{\epsilon} \right|^{2} d\tau \\ &\leq 4E\int\limits_{0}^{\infty} \left[\overline{h} \left((G \circ mx)_{\tau}, (G \circ my)_{\tau} \right) \right]^{2} d\tau \leq 4 \left(E\int\limits_{0}^{\infty} \ell_{\tau} \left| \ x_{\tau} - y_{\tau} \right| d\tau \right)^{2} \\ &\leq 4 \left[E\left(\sup_{t \geq 0} \left| \ x_{t} - y_{t} \right| \right| \cdot \int\limits_{0}^{\infty} \ell_{\tau} d\tau \right) \right]^{2} \leq 4E\left(\int\limits_{0}^{\infty} \ell_{\tau} d\tau \right)^{2} \left\| \ x - y \right\|_{\ell}^{2}. \end{split}$$

Quite similarly, we also get

$$\begin{split} E \left[\sup_{t \geq 0} \left\| \int_{0}^{t} \int_{\mathbb{R}^{n}} h_{\tau}^{\epsilon} - \widetilde{h}_{\tau,z}^{\epsilon} \right) \widetilde{\nu} \left(d\tau, dz \right) \right\|^{2} \\ \leq 4 E \left(\int_{0}^{\infty} \int_{\mathbb{R}^{n}} m_{\tau,z} d\tau q(dz) \right)^{2} \cdot \| x_{\tau} - y_{\tau} \|_{\ell}^{2}. \\ \| u - \Phi(\widetilde{f}^{\epsilon}, \widetilde{g}^{\epsilon}, \widetilde{h}^{\epsilon} \|_{\ell}) \end{split}$$

Therefore

$$\parallel u - \Phi(\widetilde{f}^{\epsilon}, \widetilde{g}^{\epsilon}, \widetilde{h}^{\epsilon} \parallel_{\ell})$$

 $\leq \| \, u - \Phi(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) \, \|_{\,\ell} + \| \, \Phi(f^{\epsilon}, g^{\epsilon}, h^{\epsilon}) - \Phi(\tilde{f}^{\epsilon}, \tilde{g}^{\epsilon}, \tilde{h}^{\epsilon}) \, \|_{\,\ell} \leq \epsilon + L \, \| \, x - y \, \|_{\,\ell},$ where L is such as above. This implies $\bar{H}(\mathfrak{K}(x), \mathfrak{K}(y)) \leq L \, \| \, x - y \, \|_{\,\ell}$. Quite similarly we also get $\bar{H}(\mathfrak{K}(y), \mathfrak{K}(x)) \leq L \, \| \, x - y \, \|_{\,\ell}$. Therefore $H(\mathfrak{K}(x), \mathfrak{K}(y)) \leq L \, \| \, x - y \, \|_{\,\ell}$. Using conditions (\mathcal{A}'_4) instead of (\mathcal{A}_4) we also get $H(\mathfrak{K}(y), \mathfrak{K}(x)) \leq L' \, \| \, x - y \, \|_{\,\ell}$.

Lemma 5: Suppose F,G and H satisfy (\mathcal{A}_1) and (\mathcal{A}_4) or (\mathcal{A}'_4) . Then for every $0 \leq \alpha < \beta < \infty$ one has $H(\mathfrak{R}^{\alpha,\beta}(x),\mathfrak{R}^{\alpha,\beta}(y)) \leq L_{\alpha\beta} \| x - y \|_{\ell}$ or $H(\mathfrak{R}^{\alpha,\beta}(x),\mathfrak{R}^{\alpha,\beta}(y)) \leq L'_{\alpha\beta} \| x - y \|_{\ell}$, respectively, for every $x,y \in D^{\alpha,\beta}$, where H is a Hausdorff metric induced by the norm $\| \cdot \|_{\ell}$, $L_{\alpha,\beta} = \| \int_{0}^{\infty} \mathbf{I}_{[\alpha,\beta]}(t)k_t dt \|_{L_1^2} + 2 \| \int_{0}^{\infty} \mathbf{I}_{[\alpha,\beta]}(t)\ell_t dt \|_{L_1^2} + 2 \| \int_{0}^{\infty} \mathbf{I}_{[\alpha,\beta]}(t) \|_{L_1^2}$ and $L'_{\alpha,\beta} = \| \mathbf{I}_{[\alpha,\beta]}k \|_{1} + 2 \| \mathbf{I}_{[\alpha,\beta]}\ell \|_{2} + 2 \| \mathbf{I}_{[\alpha,\beta]}m \|_{2}$.

Proof: The proof follows immediately from Lemma 4 applied to $F^{\alpha\beta} = I_{[\alpha,\beta]}F$, $G^{\alpha\beta} = I_{[\alpha,\beta]}G$ and $H^{\alpha\beta} = I_{[\alpha,\beta]}H$.

Immediately from Lemma 2 and the Kakutani and Fan fixed point theorem the following result follows.

Lemma 6: If F,G and H take on convex values and satisfy (A_1) and (A_2) , then $S(F,G,H) \neq \emptyset$.

Proof: Let $\mathfrak{B} = \{(f,g,h) \in \mathcal{L}_n^2 \times \mathcal{L}_n^2 \times \mathcal{W}_n^2 : | f_t(\omega) | \leq || F_t(\omega) ||, | g_t(\omega) | \leq || G_t(\omega) ||, | h_{t,z}(\omega) | \leq || H_{t,z}(\omega) || \text{ and put } \mathfrak{K} = \Phi(\mathfrak{B}).$ It is clear that \mathfrak{K} is a nonempty convex weakly compact subset of D such that $\mathfrak{K}(x) \subset \mathfrak{K}$ for $x \in D$. By (ii) of Proposition 1, $\mathfrak{K}(x)$ is a convex and weakly compact subset of D, for each $x \in D$. By Lemma 2, \mathfrak{K} is u.s.c. on a locally convex topological Hausdorff space $(D, \sigma(D, D^*))$. Therefore, by the Kakutani and Fan fixed point theorem, we get $S(F, G, H) \neq \emptyset$.

Lemma 7. If F,G and H take on convex values and satisfy (A_1) and (A_3) , then $S(F,G,H) \neq \emptyset$.

Proof. Let \mathfrak{K} be as in Lemma 6. By virtue of Lemma 3, \mathfrak{K} is *l.s.c.* as a set-valued mapping from a paracompact space \mathfrak{K} considered with its relative topology induced by a weak topology $\sigma(D, D^*)$ on D into a Banach space $(D, \|\cdot\|_{\ell})$. By (ii) of Proposition 1, $\mathfrak{K}(x)$ is a closed and convex subset of D, for

each $x \in \mathcal{K}$. Therefore, by Michael's theorem, there is a continuous selection $f: \mathcal{K} \to D$ for \mathcal{K} . But $\mathcal{K}(\mathcal{K}) \subset \mathcal{K}$. Then f maps \mathcal{K} into itself and is continuous with respect to the relative topology on \mathcal{K} , defined above. Therefore, by the Schauder and Tikhonov fixed point theorem, there is $x \in \mathcal{K}$ such that $x = f(x) \in \mathcal{K}(x)$.

Lemma 8. If F,G and H satisfy (A_1) and (A_4) or (A'_4) then $S(F,G,H) \neq \emptyset$.

Proof. Let $(\tau_n)_{n=1}^{\infty}$ be a sequence of positive numbers increasing to $+\infty$. Select a positive number σ such that $L_{k\sigma,(k+1)\sigma} < 1$ or $L'_{k\sigma,(k+1)\sigma} < 1$, respectively, for $k=0,1,\ldots$, where $L_{k\sigma,(k+1)\sigma}$ and $L'_{k\sigma,(k+1)\sigma}$ are as in Lemma 5. Suppose a positive integer n_1 is such that $n_1\sigma < \tau_1 \le (n_1+1)\sigma$. By virtue of Lemma 5, $\mathcal{K}^{k\sigma,(k+1)\sigma}$ is a set-valued contraction for every $k=0,1,\ldots$ Therefore, by the Covitz and Nadler fixed point theorem, there is $z^1 \in S^{0,\sigma}(F,G,H)$. By the same argument, there is $z^2 \in z_{\sigma}^1 + S^{\sigma,2\sigma}(F,G,H)$, because $z_{\sigma}^1 + \mathcal{K}^{\sigma,2\sigma}$ is again a set-valued contraction mapping. Continuing the above procedure we can finally find a $z^{n_1+1} \in z_{n_1\sigma}^{n_1} + S^{n_1\sigma,\tau_1}(F,G,H)$. Put

$$\begin{split} x^1 = & \sum_{k=0}^{n_1-1} \mathbb{I}_{[k\sigma,(k+1)\sigma)}(z^{k+1} - z^k_{k\sigma}) \\ & + \mathbb{I}_{[n_1\sigma,,\tau_1]}(z^{n_1+1} - z^{n_1}_{n_1\sigma}) + \mathbb{I}_{(\tau_1,\infty)}(z^{n_1+1}_{\tau_1} - z^{n_1}_{n_1\sigma}), \end{split}$$

where $z_0^0 = 0$. Similarly, as in the proof of Proposition 6, we can easily verify that $x^1 \in S^{0,\tau_1}(F,G,H)$. Repeating the above procedure to the interval $[\tau_1,\tau_2]$, we can find $x^2 \in x_{\tau_1}^1 + S^{\tau_1,\tau_2}(F,G,H)$. Continuing this process we can define a sequence (x^n) of D satisfying the conditions of Proposition 6. Therefore $S(f,G,H) \neq \emptyset$.

Now as a corollary of Proposition 4 and Lemmas 6-8, the following results follow.

Theorem 1. Suppose F,G and H take on convex values, satisfy (A_1) and (A_2) or (A_3) . Then $\Lambda_0(F,G,H) \neq \emptyset$.

Theorem 2. Suppose F,G and H satisfy (A_1) and (A_4) or (A'_4) and

take on convex values. Then $\Lambda_0(F,G,H) \neq \emptyset$.

From the stochastic optimal control theory point of view (see [6]), it is important to know whether the set $\Lambda_0(F,G,H)$ is at least weakly compact in $(D, \|\cdot\|_{\rho})$. We have the following result dealing with this topic.

Theorem 3. Suppose F,G and H take on convex values and satisfy (\mathcal{A}_1) and (\mathcal{A}_2) . Then $\Lambda_0(F,G,H)$ is a nonempty weakly compact subset of $(D, \|\cdot\|_{\rho})$.

Proof. Nonemptiness of $\Lambda_0(F,G,H)$ follows immediately from Theorem 1. By virtue of Proposition 4 and the Eberein and Šmulian theorem for the weak compactness of $\Lambda_0(F,G,H)$, it suffices only to verify that S(F,G,H) is sequentially weakly compact. But $S(F,G,H) \subset \Phi(\mathfrak{B})$, where \mathfrak{B} is a weakly compact subset of $\mathcal{L}_n^2 \times \mathcal{L}_n^2 \times \mathcal{W}_n^2$ defined in Lemma 6. Hence, by the properties of the linear mapping Φ , the relative sequential weak compactness of S(F,G,H) follows. Suppose (x^n) is a sequence of S(F,G,H) weakly converging to $x \in \Phi(\mathfrak{B})$, and let $(f^n,g^n,h^n)\in \mathfrak{I}^2(F\circ mx^n)\times \mathfrak{I}^2(G\circ mx^n)\times \mathfrak{I}^2_q(H\circ mx^n)$ be such that $x^n=\Phi(f^n,g^n,h^n)$, for $n=1,2,\ldots$ By the weak compactness of \mathfrak{B} , there is a subsequence, denoted again by $\{(f^n,g^n,h^n)\}$, of $\{(f^n,g^n,h^n)\}$ weakly converging to $(f,g,h)\in \mathfrak{B}$. Similarly, as in the proof of Lemma 2, we can verify that $(f,g,h)\in \mathfrak{I}^2(F\circ mx)\times \mathfrak{I}^2(G\circ mx)\times \mathfrak{I}^2(H\circ mx)$. This and the weak convergence of $\{\Phi(f^n,g^n,h^n)\}$ to $\Phi(f,g,h)$ imply that $x=\Phi(f,g,h)\in \mathfrak{K}(x)$. Thus $x\in S(F,G,H)$

REFERENCES

- [1] Ahmed, N.U., Optimal control of stochastic dynamical systems, Information and Control 22 (1973), 13-30.
- [2] Alexiewicz, A., Functional Analysis, Monografie Matematyczne 49, Polish Scientif Publishers, Warszawa, Poland 1969.
- [3] Chung, K.L., Williams, R.J., Introduction to Stochastic Integrals, Birkhäuser, Boston-Basel 1983.
- [4] Fleming, W.H., Stochastic control for small noise intensities, SIAM J. Contr. 9 (1971), 473-517.
- [5] Fleming, W.H., Nisio, M., On the existence of optimal stochastic controls, J. Math. and Mech. 15 (1966), 777-794.
- [6] Gihman, I.I., Skorohod, A.V., Controlled Stochastic Processes, Springer-Verlag, Berlin -New York 1979.

- [7] Hiai, F., Umegaki, H., Integrals, conditional expectations and martingales of multifunctions, J. Multivariate Anal. 7 (1977), 149-182.
- [8] Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North Holland Publ. Comp., Amsterdam-Tokyo 1981.
- [9] Kisieliwicz, M., Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ., Warszawa-Dordrecht-Boston-London 1991.
- [10] Kisielewicz, M., Set-valued stochastic integrals and stochastic inclusions. Ann. Probab., (submitted for publication).
- [11] Protter, Ph., Stochastic Integration and Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York 1990.
- [12] Wentzel, A.D., Course of Theory of Stochastic Processes, Polish Scientific Publishers 1980 (in Polish).