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PROPERTIES OF SPECTRAL EXPANSIONS CORRESPONDING TO
NON-SELF-ADJOINT DIFFERENTIAL OPERATORS
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Introduction

This paper is a survey of results in the spectral theory of differential operators generated by ordinary
differential expressions and also by partial differential expressions of elliptic type. Our main focus is on
the non-self-adjoint case.

In contrast to the theory of self-adjoint differential operators, in which a firm foundation of functional
analysis methods was laid due to the efforts of many mathematicians, in many respects, a universal
conception of approaches to studying the problems arisen was created, and, finally much experience was
accumulated in scientific publications for more than a century, the spectral theory of non-self-adjoint
operators contains at present fairly many open problems. This does not mean at all that little has been
done in this field: a list of all publications devoted to this theme, if it has ever been composed, would look
at least like that in the theory of self-adjoint problems. All this is explained by the fact that often to study
a new class of non-self-adjoint problems, we need to elaborate new methods using a “fine adjustment” of
the functional analysis technique.

Of course, the present survey does not claim to be an exhaustive presentation of scientific results
and methods of the theory of non-self-adjoint differential operators. Here, we pay considerable attention
to the studies carried out at the Chair of General Mathematics of the Department of Computational
Mathematics and Cybernetics of the M.V. Lomonosov Moscow State University over a period of more
than 30 years. They mainly concern one aspect or another of convergence of spectral expansions related
to non-self-adjoint differential operators. The methodology elaborated there turns out to be a fairly
effective tool for solving many new problems in this field. The authors try to make the reader familiar
with the main results obtained up to now and give an idea of the methods elaborated for their proof.
This specific character of the survey explains a certain “narrow specialization” and subjectiveness of the
list of literature cited.

Acknowledgment. This work was supported by the Grant of the Russian Foundation for Basic Research
“Leading Scientific Schools,” No. 00–15–9604.

Chapter 1

ORDINARY DIFFERENTIAL OPERATORS

In the first part of the survey, we speak about the properties of spectral expansions related to ordinary
differential operators of an arbitrary order on finite intervals of the real axis.

1. One-Dimensional Schrödinger Operators on a Finite Interval

We start our study of a number of problems arising in studying spectral expansions related to
differential operators from the study of the following object, which is the simplest from the technical

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory.
Vol. 96, Funktsional’nyi Analiz, 2001.

1072–3374/03/1165–3489 $ 25.00 c© 2003 Plenum Publishing Corporation 3489



point of view; namely, we study the operator on a finite interval G = (a, b) of the real axis R which is
generated by a differential expression of the form

Lu = −u′′ + q(x)u, (1.1)

in which the coefficient q(x), called the potential of the operator L in what follows, is an arbitrary, for
now, complex-valued function on the interval G.

1.1. Samarskii–Ionkin nonlocal problem. We demonstrate a specific character of non-self-adjoint
problems for the differential expression (1.1) examining the following example of the boundary-value
problem arising in studying the heat propagation in a homogeneous rod [75].

Let G = (0, 1). For expression (1.1) with the coefficient q(x) ≡ 0, let us consider the eigenvalue
problem1 {

Lu(x) ≡ −u′′(x) = λu(x), 0 < x < 1,
u(0) = 0, u′(0) = u′(1).

(1.2)

The second boundary condition here is nonlocal, since it connects the values of the function u(x) at
distinct points of the interval. Such a nonlocality in the boundary condition leads to the violation of the
self-adjointness. Indeed, an elementary integration by parts shows that the problem adjoint to (1.2) is
given by other boundary conditions2:{

L ∗v(x) ≡ −v′′(x) = λv(x), 0 < x < 1,
v′(1) = 0, v(0) = v(1).

(1.3)

The eigenvalues of problem (1.2) are equal to λk = (2πk)2, k = 0, 1, 2, . . . , and exactly one eigenfunc-

tion corresponds to each eigenvalue λk:
0
u0(x) = x for k = 0 and

0
uk(x) = sin(2πkx) for k ≥ 1. We cannot

restrict ourselves to the eigenfunctions only, since, to obtain a complete trigonometric system on the
interval (0, 1), we need infinitely many additional functions (namely, the functions cos(2πkx), k ≥ 1). We
complete the set of eigenfunctions by the so-called associated functions, i.e., the solutions of the problems{

Lu(x) = λku(x)−
0
uk(x), 0 < x < 1,

u(0) = 0, u′(0) = u′(1).
(1.4)

Here, the functions
1
uk(x) = (4πk)−1x · cos(2πkx), k ≥ 1, can be taken as such functions (for

k = 0, problem (1.4) has no solutions). By the Keldysh theorem [86], the system of eigenfunctions

{
0
uk(x), k ≥ 0}, together with the associated functions {

1
uk(x), k ≥ 1}, is now complete in L2(0, 1), and

any function from this space can be approximated (with an arbitrary accuracy in the metric of L2(0, 1))
by a linear combination of functions from this system. However, owing to the fact that the functions of

the constructed system are not orthogonal to each other (for example, (
0
uk,

1
uk) = −(32π

2k2)−1 	= 0), the
completeness of such a system in the space L2(0, 1) does not ensure its basis property in this space, i.e.,
the possibility of uniquely expanding any function from L2(0, 1) into a series in functions of this system
that converges in the metric of L2(0, 1).

To construct such an expansion in eigenfunctions and associated functions of problem (1.2), we
take eigenfunctions and associated functions of the adjoint problem (1.3), since precisely these functions,
together with the eigenfunctions and associated functions of the direct problem, form a biorthogonal pair.

The eigenvalues λ = λ∗k of the adjoint problem (1.3) coincide with λk. With each eigenvalue, one

associates a unique eigenfunction:
0
vk(x) = 1 for k = 0 and

0
vk(x) = cos(2πkx) for k ≥ 1, and only

eigenfunctions with serial numbers k ≥ 1 have the associated functions
1
vk(x) = (4πk)−1(x− 1) sin(2πkx)

as in the direct problem.

1In the literature, this problem is conventionally called the Ionkin–Samarskii problem.
2Only under such a choice of the boundary conditions does the relation (Lu, v) = (u,L ∗v) hold; here, (·, ·) stands for the

inner product in the space L2(0, 1).

3490



The biorthogonality of the chosen pair of function systems is implied, for example, from the following
argument.3

For a pair of
0
uk and

1
vk corresponding to the eigenvalues with the same serial number k, we have

λk(
0
uk,

1
vk) = (L

0
uk,

1
vk) = (

0
uk,L

∗1vk) = λk(
0
uk,

1
vk) − (

0
uk,

0
vk); this yields (

0
uk,

0
vk) = 0. If l 	= k, then, on

one hand, it follows from the relation λk(
0
uk,

0
vl) = (L

0
uk,

0
vl) = (

0
uk,L

∗0vl) = λl(
0
uk,

0
vl) that (

0
uk,

0
vl) = 0,

and, on the other hand, the relation λk(
0
uk,

1
vl) = (L

0
uk,

1
vl) = (

0
uk,L

∗1vl) = λl(
0
uk,

1
vl)− (

0
uk,

0
vl) = λl(

0
uk,

1
vl)

implies (
0
uk,

1
vl) = 0. Therefore, for k ≥ 1, the eigenfunction

0
uk(x) of problem (1.2) is orthogonal to all

eigenfunctions and associated functions of the adjoint problem (1.3), except for
1
vk(x).

Using similar arguments for the eigenfunction
0
vk(x), we obtain its orthogonality to all eigenfunctions

and associated functions of the direct problem (1.2), except for the associated function
1
uk(x).

Taking into account that (
0
u0,

0
v0) = 1/2 and (

0
uk,

1
vk) = −(

1
uk,

0
vk) = −(16πk)

−1, we renumber and
normalize the eigenfunctions and the associated functions of problems (1.2) and (1.3) so that they satisfy
the relations4 (uk, vl) = δkl:

u0(x) = x, u2k−1(x) = sin(2πkx), u2k(x) =
x

4πk
cos(2πkx),

v0(x) = 2, v2k−1(x) = 4(1− x) sin(2πkx), v2k(x) = 16πk cos(2πkx), k ∈ N.
(1.5)

Since the biorthogonal adjoint system was already constructed for the system {uk(x)}, this system
is minimal in L2(0, 1), and the spectral expansion of an arbitrary function f ∈ L2(0, 1) can be written by
using the biorthogonal series

∑∞
k=0(f, vk)uk.

It remains to answer the question whether or not this biorthogonal expansion converges in the metric
of L2(0, 1) to the function being expanded, or, in other words, whether or not the system {uk(x)} forms
a basis in the space L2(0, 1). In the system considered, we have infinitely many associated functions, and
in such a case, the results of [96,145,162] and also the results of the theory of spectral operators [33] are
no longer applicable, since the boundary conditions covered by them ensure the simplicity of eigenvalues
starting from a certain serial number and hence the existence of only finitely many associated functions
in the system considered.

We indicate one more specific peculiarity of Samarskii–Ionkin-type problems. Let us change all the
associated functions of problem (1.2), adding the corresponding eigenfunctions to them. We obtain the
following biorthogonal pair of eigenfunctions and associated functions of problems (1.2) and (1.3):

ũ0(x) = x, ũ2k−1(x) = sin(2πkx),

ũ2k(x) =
x

4πk
cos(2πkx) +Ak sin(2πkx),

ṽ0(x) = 2, ṽ2k−1(x) = 4(1 − x) sin(2πkx) − 16Akπk cos(2πkx),

ṽ2k(x) = 16πk cos(2πkx), k ∈ N, (1.6)

where Ak are numbers that are arbitrary for now.
On one hand, after such a change, each of the systems remains complete and minimal in L2(0, 1).

On the other hand, we can choose the constants Ak so that the necessary base condition in L2(0, 1) will
be violated:

sup
l≥0

(
‖ũl‖L2(0,1) · ‖ṽl‖L2(0,1)

)
<∞. (1.7)

3We note that this argument in a slightly different form can be applied to any pair of self-adjoint operators, even if they
have associated functions of a higher order.
4As a result of this, the associated functions of the adjoint problem satisfy the equation L ∗v2k−1 = λkv2k−1 + v2k.
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Indeed, ‖ũ2k−1‖
2
L2(0,1)

= 1/2, ‖ṽ2k−1‖
2
L2(0,1)

= 16(8A2kπ
2k2 + Ak) + 8/3 − (π2k2)−1, and if Ak are chosen

so that Ak ≥ A0k
ε−1, where ε,A0 > 0 are arbitrary, then condition (1.7) is violated. Therefore, none of

the systems from the biorthogonal pair (1.6) forms a basis in L2(0, 1).
However, as will be shown below, each of systems (1.5) forms a basis in L2(0, 1), moreover, even an

unconditional basis.
The “sensitivity” of the basis property to the choice of associated functions demonstrated by this

example shows that theorems on the convergence of spectral expansions for such problems cannot be
formulated in terms of belonging of boundary conditions to one type or another. The conditions of such a
theorem should include the conditions tracing a concrete form of the root functions or, for example, only
their asymptotics.

Therefore, in this sense, the class of so-called strengthened regular boundary conditions5 for an
ordinary differential operator is the only case where one can immediately obtain a positive answer to the
question on the basis property of eigenfunctions and associated functions for a whole class of operators
generated by a certain type of boundary conditions [96,145].

To study the properties of spectral expansions for a wider range of problems, a new treatment of
the concept of root (i.e., eigen- and associated) functions of differential operators was proposed in [46]; it
consists in the fact that we do not specify the boundary conditions in a certain concrete form but consider
each root function as only a regular solution of the corresponding differential equation with a spectral
parameter.

1.2. Generalization of the concept of root function. Let the potential q(x) in (1.1) be an arbitrary
locally Lebesgue integrable complex-valued function on G.

A regular solution on G of the equation

Lu = λu+ f, (1.8)

where λ ∈ C and f ∈ L1(G), is an arbitrary function u = u(x) that, together with its first derivative, is
absolutely continuous on any compact set in G and satisfies Eq. (1.8) almost everywhere on G.

By an eigenfunction of the operator L , which is given by only the differential expression (1.1), we
mean any nontrivial regular solution u0(x, λ) of the equation

Lu0(x, λ) = λu0(x, λ) (1.9)

that belongs to the space L2(G). The number λ in Eq. (1.9) is called an eigenvalue of the operator L .
We also say that the eigenfunction u0(x, λ) is an associated function of zero order.

If the associated function uk−1(x, λ) of order k−1 ≥ 0 is already defined, then the associated function
of order k corresponding to the eigenfunction u0(x, λ) and the eigenvalue λ is any regular solution uk(x, λ)
of the equation6

Luk(x, λ) = λuk(x, λ) − µ̃ uk−1(x, λ) (1.10)

from the space L2(G). Here, µ̃ = 1 for |λ| ≤ 1 and µ̃ = µ ≡
√
λ for |λ| > 1, where the value of the square

root of a complex number λ = ρ exp(iφ) (−π < φ ≤ π) everywhere means the number
√
λ =
√
ρ exp(iφ/2).

Let the eigenvalues of the operator L form a certain countable set Λ on the complex plane. With each
eigenvalue λ ∈ Λ, the definition of eigenfunctions and associated functions (root functions for brevity)
associates a chain of functions u0(x, λ), u1(x, λ), u2(x, λ), . . . . We consider only those systems of root
functions which, along with each associated function uk(x, λ), contain all the associated functions ul(x, λ)
of lower orders l < k corresponding to the same eigenvalue λ and the same eigenfunction u0(x, λ). The
maximum order of the associated function in the chain corresponding to the eigenvalue λ ∈ Λ is denoted
by m(λ), and the number m(λ)+1 is called the rank of the eigenfunction u0(x, λ). If the chain is infinite,
we set m(λ) =∞.

5In the Samarskii–Ionkin problem, the boundary condition are regular but not strengthened regular.
6The appearance of the normalizing factor µ̃ in the definition of an associated function becomes clear from what follows.
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Such a treatment of the concept of root function allows us to include into consideration not only
systems of root functions of various boundary-value problems with a point spectrum but also function
systems consisting of only solutions of differential equations with a parameter not satisfying any boundary
conditions at all (for example, the system of generalized exponentials) and also the systems obtained by
uniting subsets of root functions of two distinct boundary-value problems.

To make more precise the potential q(x) at the ends of the interval G, which ensures the belonging
of the root functions to the class L2(G), we consider the main integral representations of regular solutions
of Eq. (1.8).

1.3. Integral representations. By a direct integration, it is easy to make sure that the following “shift”
formula [164] holds,7 which expresses the value of a solution of Eq. (1.8) at a point x ± t ∈ G through
the values of the solution and its derivative at the point x ∈ G:

u(x± t) = u(x) cos µt±
u′(x)

µ
sinµt+

1

µ

t∫
0

u(x± τ)q(x± τ) sinµ(t− τ) dτ

−
1

µ

t∫
0

f(x± τ) sinµ(t− τ) dτ. (1.11)

Adding term-by-term relations (1.11) with plus and minus signs, we obtain the so-called mean-value
formula [163, p. 20]:

u(x+ t) + u(x− t)

2
= u(x) cosµt+

1

2µ

t∫
0

[u(x+ τ)q(x+ τ) + u(x− τ)q(x− τ)] sinµ(t− τ) dτ

−
1

2µ

t∫
0

[f(x+ τ) + f(x− τ)] sinµ(t− τ) dτ. (1.12)

For a fixed x, representation (1.11) is, in essence, an integral equation with respect to the unknown
function u(x ± t) of the variable t. If we solve it using the successive approximation method, then we
obtain the “explicit” variant of “shift” (1.11):

u(x± t) = u(x)F±0 (t, x;λ) ± µ−1u′(x)Φ±0 (t, x;λ) + F (t, x;λ), (1.13)

where the following notation was used:

F±0 (t, x;λ) = (E − T±)
−1 cosµt, Φ±0 (t, x;λ) = (E − T±)

−1 sinµt,

F (t, x;λ) = µ−1(E − T±)
−1

t∫
0

f(x± τ) sinµ(t− τ) dτ, (1.14)

in which E is the identity operator, T± are integral operators acting on a function χ(t) of the variable t
according to the rule

T±χ(t) = µ−1
t∫
0

χ(τ)q(x± τ) sinµ(t− τ) dτ, (1.15)

and the operator (E − T±)
−1 is equal to E +

∑∞
l=1 T

l
±. Namely, the convergence of the series in (1.14)

implies the correctness of the application of the successive approximation method in obtaining formula
(1.13).

7Here, as above, µ =
√
λ, and the expression µ−1 sinµξ for µ = 0 is assumed to be equal to ξ.
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Definition (1.15) of the operator T± obviously implies that if the potential q(x) is locally Lebesgue

integrable on G and the integral
∫ b
a (ξ − a)(b− ξ)|q(ξ)| dξ converges, then for all µ ∈ C, x ∈ G, and t > 0

such that x± t ∈ G, the following inequality holds:

|T±χ(t)| ≤ 2ω(t)(b− a)−1 · sup
0≤τ≤t

|χ(τ) cosh Imµ(t− τ)|,

where ω(t) ≡ sup
e⊂G,mes e≤t

∫
e(ξ − a)(b − ξ)|q(ξ)| dξ tends to zero as t → 0 + 0. Thus, series (1.14) for

F±0 (t, x;λ), Φ
±
0 (t, x;λ), and for F (t, x;λ) if f ∈ L1(G) converge under the condition that t is sufficiently

small.
These arguments and also the analysis of the “shift” formula (1.11), being differentiated in the

variable t, allow us to reveal the smoothness of a regular solution of Eq. (1.8) up to the ends of the
interval G.

Theorem 1.1. Let a function f(x) be Lebesgue integrable on G.
(1) If the potential q(x) of the operator L is such that

b∫
a

(ξ − a)(b− ξ)|q(ξ)| dξ <∞, (1.16)

then any regular solution of Eq. (1.8) is absolutely continuous on G.
(2) If the potential q(x) in the operator L is Lebesgue integrable on G, then any regular solution of

Eq. (1.8), together with its derivative, is absolutely continuous on G.

In particular, this theorem implies that any nontrivial regular solution of Eqs. (1.9) and (1.10) can
serve as a root function of the operator L with the potential satisfying (1.16).

The representations of regular solutions of Eq. (1.8) presented in this subsection are the main tool
for analyzing the functional properties of systems of root functions of the operator L .

1.4. Bases in Banach spaces. Let us present briefly the main definitions and facts which will be used
in what follows.

Let B be a Banach space with norm ‖ · ‖B, and let B∗ be its dual with norm ‖ · ‖B∗ .
A system of elements {ek}

∞
k=1 is said to be closed in B if the linear span of this system is everywhere

dense in B, i.e., any element of the space B can be approximated by a linear combination of elements of
this system with any accuracy in the norm of the space B.

A system {ek}
∞
k=1 is said to be minimal in B if none of its elements belongs to the closure of the

linear span of the other elements of this system.

Theorem 1.2 ([168, p. 65]). A system {ek}
∞
k=1 is minimal iff there exists a biorthogonal system dual to

it, i.e., a system of linear functionals {gk}
∞
k=1 from B

∗ such that (ek, gl) = δkl for all k, l ∈ N. Moreover,
if the initial system is simultaneously closed and minimal in B, then the system biorthogonally dual to it
is uniquely defined.

We say that a system {ek}
∞
k=1 is uniformly minimal in B if there exists γ > 0 such that for all k ∈ N,

dist(ek, E(k)) > γ‖ek‖B, (1.17)

where E(k) is the closure of the linear span of all elements el with serial numbers l 	= k.

Theorem 1.3 ([168, p. 66]). A closed and minimal system {ek}
∞
k=1 is uniformly minimal in B iff

sup
k≥1

(‖ek‖B · ‖gk‖B∗) <∞. (1.18)
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A system {ek}
∞
k=1 forms a basis of the space B if, for any element f ∈ B, there exists a unique

expansion of it in the elements of the system, i.e., the series
∑∞

k=1 ckek convergent to f in the norm of
the space B. Any basis is a closed and minimal system in B, and, therefore, we can uniquely find its
biorthogonally dual systems {gk}

∞
k=1, and hence the expansion of any element of f with respect to the

basis {ek}
∞
k=1 coincides with its biorthogonal expansion, i.e., ck = (f, gk) for all k ∈ N.

Any basis in B is a uniformly minimal system, and, therefore, (1.18) holds. However, it is well known
that a closed and uniformly minimal system may not form a basis in B.

A system biorthogonally dual to a basis in a reflexive Banach space B itself forms a basis in B∗.
A basis {ek}

∞
k=1 in the space B is said to be unconditional if it remains a basis for any permutation

of its elements.
In a Hilbert space H, along with the concept of an unconditional basis, we have the close concept of

a Riesz basis. A system {ek}
∞
k=1 is called a Riesz basis of the space H if there exists a bounded invertible

operator U such that the system {Uek}
∞
k=1 forms an orthonormal basis in H.

Theorem 1.4 ([188]). A system {ek}
∞
k=1 forms a Riesz basis of the space H iff it is an unconditional

basis almost normalized in H, i.e.,

0 < inf ‖ek‖H ≤ sup ‖ek‖H <∞. (1.19)

Any Riesz basis in H can also be characterized in terms of the behavior of coefficients (f, ek) of the
biorthogonal basis in the dual system.

A system {ek}
∞
k=1 is said to be Bessel in H if there exists a constant M > 0 such that for any f ∈ H,

the following Bessel-type inequality holds:
∞∑
k=1

|(f, ek)|
2 ≤M‖f‖2H; (1.20)

it is Hilbert in H if there exists a constant m > 0 such that for any f ∈ H, the following Hilbert-type
inequality holds:

m‖f‖2H ≤
∞∑
k=1

|(f, ek)|
2. (1.21)

The Bessel and Hilbert properties of systems in a biorthogonal pair are dual to one another: if one of the
systems is a Bessel system in H, then the other is a Hilbert system in H, and vice versa [5].

Theorem 1.5 ([5]). A system {ek}
∞
k=1 closed and minimal in H forms a Riesz basis iff it is simultaneously

a Bessel and Hilbert system in H.

We note that the Hilbert property of a system in H implies that if (f, ek) = 0 for all k ∈ N, then
f = 0. This property is called the completeness property of the system {ek}

∞
k=1 in H. In a Hilbert space,

the properties of completeness and closedness of a system are equivalent.
It should be noted that inequalities (1.20) and (1.21) are a key characteristic of Riesz bases consisting

of root functions of differential operators and are the base of many proofs.
The behavior of coefficients (f, ek) can be characterized not only for Riesz bases in H but for systems

of elements {ek}
∞
k=1 of a uniformly convex and uniformly smooth Banach space B that form an almost

normalized basis in B.

Theorem 1.6 ([32]). For an almost normalized basis {ek}
∞
k=1 of a uniformly convex and uniformly

smooth Banach space B, we can find positive constants A1 and A2 and numbers s1 and s2 connected
by the inequalities 1 < s2 ≤ 2 ≤ s1 <∞ such that for any f ∈ B∗, the following inequalities hold:

A1

(
∞∑
k=1

|(f, ek)|
s1

)1/s1
≤ ‖f‖B∗ ≤ A2

(
∞∑
k=1

|(f, ek)|
s2

)1/s2
. (1.22)
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The left inequality in (1.22) generalizes the Bessel-type inequality (1.20), and the right one generalizes
the Hilbert-type inequality (1.21).

Also, we mention a result concerning the stability of Riesz bases. We say that two systems {ek}
∞
k=1and

{ẽk}
∞
k=1 of the space H are quadratically close if

∑∞
k=1 ‖ek − ẽk‖

2
H < ∞. In [5], it was proved that any

minimal system that is quadratically close to a Riesz basis in H is also a Riesz basis in H.
Finally, we note that in this survey, as the Banach space B, we take spaces of Lebesgue integrable

functions8 Lp(G) and Lp(K), 1 ≤ p ≤ ∞, where G is the domain of the differential expression considered
and K is any compact set in G. The norms in these spaces are denoted for brevity by ‖ · ‖p and ‖ · ‖p,K ,
respectively.

1.5. Unconditional basis property of a system of root functions. We now consider the main
aspects of the approach elaborated for studying the convergence of spectral expansions in root functions
of differential operators by examining the solution of the problem on the unconditional basis property
in L2(G) of the system of root functions for the Schrödinger operator (1.1) with an arbitrary Lebesgue
integrable potential.

We assume that all chains of root functions entering the system are finite, i.e., m(λ) < ∞. Denote
by U the system of root functions enumerated in a certain way. We write relations (1.9) and (1.10), which
define the root functions of the operator L , in the unified form

Luk(x;λ) = λuk(x;λ)− sign k µ̃ uk−1(x;λ). (1.23)

We require the fulfillment of the following

Condition A:
(A1) the system of root functions U of the operator L is complete and minimal in L2(G);
(A2) the ranks of eigenfunctions are uniformly bounded:

sup
λ∈Λ

m(λ) <∞; (1.24)

(A3) the following estimate holds uniformly in t ≥ 0:∑
λ∈Λ:|Re

√
λ−t|≤1

1 ≤ B1, (1.25)

which will be called the “sum of units” in what follows;
(A4) the set of eigenvalues Λ lies inside a certain parabola, i.e., the following estimate holds uniformly

in λ ∈ Λ:

| Im
√
λ| ≤ B2. (1.26)

The latter condition on the spectrum of the operator will be called the Carleman condition.
By Theorem 1.2, condition (A1) ensures the existence of a unique system V biorthogonally dual to

U. Also, we assume that
(A5) the biorthogonal dual system V consists of root functions of the formally adjoint operator

L ∗v ≡ −v′′ + q(x)v that are understood in the generalized sense, i.e., for all λ ∈ Λ and k = 0,m(λ), the
functions of the system V are solutions of the following equation that are regular on G:

L ∗vk(x;λ) = λvk(x;λ)− sign k µ̃ vk−1(x;λ). (1.27)

We note that, as in the Samarskii–Ionkin problem, the relation (uk(·, λ1), vl(·, λ2)) = 1 holds only if
λ1 = λ2 and l = m(λ)− k.

8For 1 < p <∞, these spaces are reflexive, uniformly convex, and uniformly smooth Banach spaces.
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Theorem 1.7 ([49]). Let the potential q(x) of the operator L be Lebesgue integrable on G, and let con-
ditions (A1)–(A5) hold. Then each of the systems U and V forms an unconditional basis in L2(G) iff the

following estimate of the product of norms holds uniformly in λ ∈ Λ and k = 0,m(λ):

‖uk(·;λ)‖2 · ‖vm(λ)−k(·;λ)‖2 ≤ C. (1.28)

We note that for the system of root functions of a concrete boundary-value problem, all the conditions
of Theorem 1.7 are easily verified. Indeed, the completeness of the system U is proved by using the well-
known abstract theorems (see [86, 87, 150]). The minimality is implied by the completeness in L2(G) of
the biorthogonally dual system V. Conditions (A2), (A3), and (A4) are verified by using the leading
term of the asymptotics of eigenvalues, and estimate (1.28) is verified by using the leading term of the
asymptotics of root functions.

Let us present a brief scheme for proving Theorem 1.7. Since the necessity of estimate (1.28) is
obviously implied by Theorem 1.3, we prove its sufficiency only.

The base of the proof of the sufficiency in Theorem 1.7 consists in the justification of the Bessel
property for the systems U and V normalized in L2(G). It follows from the definition of an unconditional
basis that each of the systems U and V forms an unconditional basis in L2(G) iff each of the systems
U′ = {γk(λ)uk(x;λ)} andV

′ = {γ−1k (λ)vm(λ)−k(x;λ)}, where γk(λ) ≡ ‖uk(·;λ)‖
−1
2 , forms an unconditional

basis in L2(G). By Theorem 1.5 and the remark before it, it suffices to prove that each of the systems
U′ and V′ is a Bessel system in L2(G). It follows from condition (1.28) that the Bessel property of the
system V′ will be implied by the Bessel property of the normalized system V′′ = {γ∗k(λ)vm(λ)−k(x;λ)},

where γ∗k(λ) ≡ ‖vm(λ)−k(·;λ)‖
−1
2 . Among two systems U′ and V′′ normalized in L2(G), we choose the first

one and restrict ourselves to the verification of the Bessel property for it, because this can be done in a
similar way for the second one by condition (A5).

Let us consider an arbitrary function f(x) of the space L2(G). We justify the estimate

∑
λ∈Λ

m(λ)∑
k=0

|(γk(λ)uk(·;λ), f(·))|
2 ≤M‖f‖22 (1.29)

with the constant M > 0 independent of f .
By (1.24) and (1.25), no more than countably many summands in the left-hand side of (1.29), each of

which does not exceed ‖f‖22, correspond to the values of λ : |λ| ≤ 1. Therefore, without loss of generality,
we assume that all λ ∈ Λ satisfy the condition |λ| > 1.

To transform the coefficients of the series in the left-hand side of (1.29), we use the “shift” formula
(1.11) being applied to solutions of Eq. (1.23). We set x = (a + b)/2 and R = (b − a)/2. Then∫ b
a uk(ξ)f(ξ) dξ =

∫ R
0 uk(x + t;λ)f(x+ t) dt +

∫ R
0 uk(x− t;λ)f(x− t) dt, and after the application of the

“shift” formula to uk(x+t;λ) and uk(x−t;λ), it becomes clear that to justify (1.29), it suffices to estimate
the following series:

∑
λ∈Λ

m(λ)∑
k=0

|γk(λ)uk(x;λ)|
2

∣∣∣∣∣∣
R∫
0

f(x± t) cosµt dt

∣∣∣∣∣∣
2

, (1.30)

∑
λ∈Λ

m(λ)∑
k=0

∣∣γk(λ)µ−1u′k(x;λ)∣∣2
∣∣∣∣∣∣
R∫
0

f(x± t) sinµt dt

∣∣∣∣∣∣
2

, (1.31)
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∑
λ∈Λ

m(λ)∑
k=0

∣∣∣∣γk(λ)µ

∣∣∣∣2
∣∣∣∣∣∣
R∫
0

f(x± t)

t∫
0

uk(x± τ ;λ)q(x± τ) sinµ(t− τ) dτdt

∣∣∣∣∣∣
2

, (1.32)

∑
λ∈Λ

m(λ)∑
k=1

|γk(λ)|
2

∣∣∣∣∣∣
R∫
0

f(x± t)

t∫
0

uk−1(x± τ ;λ) sinµ(t− τ) dτdt

∣∣∣∣∣∣
2

. (1.33)

We note that if we obtain the estimates

sup
x∈G
|uk(x;λ)| = O(1)‖uk(·;λ)‖2, (1.34)

sup
x∈G
|u′k(x;λ)| = O

(
1 + |
√
λ|
)
‖uk(·;λ)‖2, (1.35)

uniform in λ ∈ Λ and k = 0,m(λ), then to estimate series (1.30) and (1.31) it suffices to estimate each of
the following series:

∑
λ∈Λ

m(λ)∑
k=0

∣∣∣∣∣∣
R∫
0

f(x± t) cosµt dt

∣∣∣∣∣∣
2

,
∑
λ∈Λ

m(λ)∑
k=0

∣∣∣∣∣∣
R∫
0

f(x± t) sinµt dt

∣∣∣∣∣∣
2

. (1.36)

Since the square of the module of the integral in (1.32) does not exceed

sup
x∈G
|uk(x;λ)|

2 ·R exp(2B2R)‖q‖
2
1 ‖f‖

2
2,

where B2 is the constant from condition (1.26), it follows from (1.34) that to estimate series (1.32), it
suffices to estimate the series ∑

λ∈Λ

m(λ)∑
k=0

|µ|−2‖f‖22. (1.37)

Finally, in each of the summands of series (1.33), we change the order of integration:

R∫
0

f(x± t)

t∫
0

uk−1(x± τ ;λ) sinµ(t− τ) dτdt

=

R∫
0

uk−1(x± τ ;λ)

R∫
τ

f(x± t) sinµ(t− τ) dtdτ ;

therefore, the square of the module of the integral in (1.33) does not exceed

sup
x∈G
|uk−1(x;λ)|

2 2e2B2RR

R∫
0


∣∣∣∣∣∣
R∫
τ

f(x± t) sinµt dt

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
R∫
τ

f(x± t) cosµt dt

∣∣∣∣∣∣
2
 .

This implies that if we obtain the estimate

sup
x∈G
|uk−1(x;λ)| = O(1)‖uk(·;λ)‖2, (1.38)

uniform in λ ∈ Λ and k = 1,m(λ), then to estimate series (1.33) it suffices to estimate the series

∑
λ∈Λ

m(λ)∑
k=1

∣∣∣∣∣∣
R∫
τ

f(x± t) cosµt dt

∣∣∣∣∣∣
2

,
∑
λ∈Λ

m(λ)∑
k=1

∣∣∣∣∣∣
R∫
τ

f(x± t) sinµt dt

∣∣∣∣∣∣
2

(1.39)
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uniformly in τ ∈ [0, R].
We now divide the summation in each of the series (1.36), (1.37), and (1.39) into blocks (or “batches”).

The summands corresponding to the eigenvalues λ for which 2πl/R ≤ Re
√
λ < 2π(l + 1)/R and all

k = 0,m(λ) enter the lth block (l = 0, 1, 2, . . . ). For µ =
√
λ entering the lth block, the representation

µ = 2πl/R+ δl holds, and, moreover, by (1.26), |δl| = O(1) uniformly in l. Thus, for example, the first of
the series (1.36) can be written as follows:

∞∑
l=0

∑
λ∈Λl

m(λ)∑
k=0

∣∣∣∣∣∣
R∫
0

f(x± t) cosµt dt

∣∣∣∣∣∣
2

, (1.40)

where Λl = Λ ∩ {2πl/R ≤ Re
√
λ < 2π(l + 1)/R}. In each of the integrals, we take into account the

representation for the parameter µ and perform integration by parts:

R∫
0

f(x± t) cosµt dt =

R∫
0

f(x± τ) cos(2πlτ/R) dτ

−

R∫
0

δl sin δlt

R∫
t

f(x± τ) cos(2πlτ/R) dτ dt−

R∫
0

δl cos δlt

R∫
t

f(x± τ) sin(2πlτ/R) dτ dt. (1.41)

Each of the integrals∫ R

0
f(x± τ) cos(2πlτ/R) dτ,

∫ R

t

f(x± τ) cos(2πlτ/R) dτ, and

∫ R

t

f(x± τ) sin(2πlτ/R) dτ

is a Fourier coefficient with respect to the almost normalized orthogonal trigonometric system of the
function f(x ± τ) or its restriction to the interval (t,R). By the classical Bessel inequality, the series in
squares of modules of these coefficients does not exceed ‖f‖22. Thus, it follows from relation (1.41) and
the estimate for δl that the series (1.40) is

O(1)‖f‖22 sup
l≥0

∑
λ∈Λl

(1 +m(λ)) = O(1)‖f‖22

by conditions (A2) and (A3) of the theorem.
In a similar way, we estimate the second of the series (1.36) and each of the series (1.39). Following

this line of reasoning, we obtain that series (1.37) is O(1)‖f‖22
∑∞

l=1 l
−2 = O(1)‖f‖22.

Therefore, we may assume that the required estimate (1.29) is proved whenever we prove that esti-
mates (1.34), (1.35), and (1.38) hold for the root functions of the operator L .

1.6. Estimates of root functions. For operator (1.1) with the Lebesgue integrable potential q(x), the
estimates connecting the Lp norms (1 ≤ p ≤ ∞) of the root functions and their first derivatives and also
the estimates for the norm of the associated function of order k − 1 through the norm of the associated
function of order k of the same chain were obtained in a more general situation than that required in
Theorem 1.7.

Theorem 1.8 ([109,111,164,165, 172,175, 181]). (1) The following estimates hold uniformly in λ ∈ C:

‖uk(·;λ)‖p = O(1)
(
1 + | Im

√
λ|
)1/s−1/p

‖uk(·;λ)‖s, (1.42)

‖u′k(·;λ)‖p = O(1)
(
1 + |
√
λ|
)
‖uk(·;λ)‖p, (1.43)

‖uk−1(·;λ)‖p = O(1)
(
1 + | Im

√
λ|
)
‖uk(·;λ)‖p, (1.44)

where 1 ≤ p, s ≤ ∞.
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(2) There exists λ0 > 0 such that the following estimate holds uniformly in λ ∈ C, |λ| ≥ λ0, and for
all p ∈ [1,∞]: (

1 + |
√
λ|
)
‖uk(·;λ)‖p = O(1)‖u′k(·;λ)‖p. (1.45)

(3) Let K be a certain compact set in G, and let a compact set Kh ⊂ K satisfy the condition
dist(Kh, ∂K) = h > 0. Then the following estimates hold uniformly in λ ∈ C for all p ∈ [1,∞]:

‖uk(·;λ)‖p,K = O(1) exp
(
h| Im

√
λ|
)
‖uk(·;λ)‖p,Kh , (1.46)

‖uk(·;λ)‖p,Kh = O(1) exp
(
−h| Im

√
λ|
)(

1 + | Im
√
λ|
)k
‖uk(·;λ)‖p,K . (1.47)

All the constants in O(1) of estimates (1.42)–(1.47) depend only on the order of the associated function k
and the potential q(x).

We stress that all the estimates of Theorem 1.8 are sharp in λ; this is easily verified by taking the
system of generalized exponentials as the system of root functions for the operator L with the potential
q(x) ≡ 0.

Estimate (1.44) of the norm of the preceding associated function through the norm of the subsequent
associated function is, in fact, the estimate of the norm of the right-hand side of an equation of a special
form Luk(x;λ) − λuk(x;λ) = −µ̃uk−1(x;λ) through its solution. Therefore, such estimates are conven-
tionally called anti-a priori bounds. For the first time an anti-a priori bound for the root function of a
differential operator was proved by V.A. Il’in in [46].

1.7. Necessity of the conditions of the theorem on the unconditional basis property. In this
subsection, we discuss the necessity of the first four conditions A of Theorem 1.7.9

The condition of uniform boundedness of the ranks of eigenfunctions is rather natural for the basis
property of systems of root functions connected with ordinary differential operators. So, for example,
this condition is necessary for the uniform minimality in L2(G) of the system of generalized exponentials
{ts exp(iµkt), s = 0, 1, . . . ,mk}

∞
k=1 without any structural restrictions on the set {µk} ⊂ C [103]. The fact

that there are infinitely many eigenfunctions of infinite rank in the basis of root functions U is probably
also not possible, as well as (by the Müntz theorem [3, p. 53]) the basis property in L2(0, 1) of the system
of powers {tk}∞k=0 is not possible (see [94]).

Let us present conditions that ensure the fulfillment of estimate (1.24) for the ranks of eigenfunctions
of the Schrödinger operator (1.1).

Theorem 1.9. Each of the following three conditions ensures the uniform boundedness of the ranks of
eigenfunctions for the operator L :

(1) the system U is almost normalized and Bessel in L2(G) [97];
(2) the system U forms an almost normalized basis of the space Lp(G), 1 < p <∞ [98];
(3) the system U is uniformly minimal in Lp(G), 1 < p < ∞, and the refined anti-a priori bound

(1.44) holds for the root functions, namely, there exists a constant C0 > 0 such that the estimate

‖uk−1(·;λ)‖p ≤ C0k
1/2−ε‖uk(·;λ)‖p (1.48)

with certain ε > 0 [94,95] holds uniformly in λ ∈ Λ and k = 1,m(λ).

The “sum of units” condition (1.25) characterizes the density of the distribution of eigenvalues on
the complex plane, and, for the first time, it was proved in [60] for an arbitrary nonnegative extension
of operator (1.1) having a complete system of eigenfunctions orthonormal in L2(G) (the potential q(x)
should belong to a certain space Lp(G), p > 1). Later on, in [52] it was proved that condition (1.25)
is necessary for the unconditional basis property in L2(G) of the system of root functions for operator

9In all the theorems of this subsection, it is assumed that the potential q(x) of the operator L is Lebesgue integrable
on G.
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(1.1) with an arbitrary Lebesgue integrable potential q(x) (under the Carleman condition (1.26) and the
condition of uniform boundedness of the ranks (1.24)).

We note that if the Carleman condition (1.26) holds, then the “sum-of-units” condition is equivalent
to the following estimate uniform in z ∈ C: ∑

λ∈Λ: |
√
λ−z|≤1

1 ≤ B̃1. (1.49)

First of all, for this estimate to be valid, it is necessary that there be no finite accumulation points
for the set Λ.

Theorem 1.10. Each of the following two conditions ensures the absence of finite accumulation points
for the set of eigenvalues of the operator L :

(1) the system U forms a basis in Lp(G), 1 < p < ∞, and either the following estimate uniform in

λ ∈ Λ and k = 1,m(λ) holds:

‖uk−1(·;λ)‖p ≤ C0‖uk(·;λ)‖p (1.50)

or the system U is almost normalized in Lp(G) [94,98];
(2) the system U is uniformly minimal in Lp(G), 1 < p < ∞, and either the anti-a priori bound

(1.48) holds or the ranks of the eigenvalues are uniformly bounded [94,95].

Obviously, condition (1.49) holds if the set {µ =
√
λ, λ ∈ Λ} is Hausdorff, i.e., inf{|µ′ − µ′′| :

(µ′)2, (µ′′)2 ∈ Λ, µ′ 	= µ′′} > 0. The Hausdorff condition arises in a natural way in studying the systems of
exponentials [161]; however, for the systems of root functions corresponding to second-order differential
operators and operators of higher order, it is not necessary to require the Hausdorff property of the set
of eigenvalues.

For example, on [0, 1], let us consider the system of functions

U = {1} ∪ {cos 2πkx, sin(2πk + δk)x}
∞
k=1,

in which δk > 0 are numbers satisfying the condition
∑∞

k=1 δ
2
k < 3. Then U is minimal and quadratically

close to a complete orthonormal system and hence forms a Riesz basis in L2(0, 1) (see [5]). However, the
set {0} ∪ {2πk, 2πk + δk}

∞
k=1 corresponding to U in this case turns out to be Hausdorff, although all the

eigenvalues are simple.
The following assertion holds for operator (1.1) with a Lebesgue integrable potential q(x).

Theorem 1.11 ([104]). If the system U is uniformly minimal in Lp(G), 1 ≤ p < ∞, then the multiple
Hausdorff property holds, i.e., there exists a number δ0 > 0 such that for any z ∈ C,∑

λ∈Λ: |
√
λ−z|≤δ0

1 ≤ 2. (1.51)

Such a multiple Hausdorff property obviously ensures the fulfillment of the uniform estimate (1.49).
We note that the “sum of units” condition (1.25) is sharp in Theorem 1.7 in the following sense.

Theorem 1.12 ([99]). If the system U forms an almost orthonormal basis in Lp(G), 1 < p < ∞, then
there exist constants M0, ν0 > 0, such that in each rectangle {|Re

√
λ − t| ≤ M0, | Im

√
λ| ≤ ν0}, t ≥ 0,

there is the number
√
λ for at least one of the eigenvalues λ ∈ Λ.

For the first time, condition (1.26) of the belonging of eigenvalues to a certain parabola appeared in
the work [171] of Carleman in connection with the study of the spectral asymptotics of elliptic operators.
The attempts undertaken to justify the necessity of this condition [10,27] led to the following final result.

Theorem 1.13 ([91–93]). Let the ranks of eigenvalues be uniformly bounded, and moreover, let the system
dual to U satisfy condition (A5) of Theorem 1.7. Then the condition of uniform minimality of the system
U in Lp(G), 1 < p <∞, is sufficient for the fulfillment of the Carleman condition (1.26).
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Taking into account all the results presented above, we can give the following final form to the
theorem on the unconditional basis property.

Theorem 1.14 ([93]). Let the potential q(x) be Lebesgue integrable on G. Let conditions (A1) and (A5)
and condition (A2) of the uniform boundedness of the rank hold. Then each of the systems U and V forms
an unconditional basis in L2(G) iff the uniform estimate (1.28) of the product of norms holds.

Indeed, under the conditions of this theorem, the “sum-of-units” estimate (1.25) and the Carleman
condition (1.26) (by Theorems 1.11 and 1.13) are consequences of the uniform minimality of the system
U in L2(G), which is equivalent to estimate (1.20) by Theorem 1.3.

The following assertion of principal character is also implied by the theorems of this subsection.

Theorem 1.15 ([93,98]). Let the potential q(x) be Lebesgue integrable on G, and let condition (A5) hold.
Moreover, let one of the following three conditions hold:

(a) the system U is almost orthonormal in L2(G);
(b) the uniform a priori bound (1.48) holds;
(c) the ranks of eigenfunctions are uniformly bounded.
Then if the system U forms a basis of the space L2(G), then this basis is unconditional.

Theorem 1.15 shows that among systems of functions connected with second-order differential oper-
ators, it is not possible to construct examples of conditional bases in L2(G) that are analogs of those in
[1,4,28].

Also, we note that by [29] any system normalized in Lp(G) for p > 1, p 	= 2, and uniformly bounded
is not an unconditional basis in Lp(G). But by estimate (1.42) and the results of Theorem 1.13, any
system of root functions U almost normalized in Lp(G) is uniformly bounded. Thus, if all the conditions
of Theorem 1.15 hold, then the system U can form only conditional bases in the spaces Lp(G) for p > 1,
p 	= 2.

1.8. Uniform equiconvergence of spectral expansions with the trigonometric Fourier series.
The Schrödinger operator (1.1) with a Lebesgue integrable potential can be considered as a perturbation
of operator (1.1) with q(x) ≡ 0 for which the classical trigonometric system is its system of eigenfunctions
satisfying the periodic boundary conditions. Therefore, it is natural to compare the biorthogonal expan-
sion in the system of root functions of the general operator (1.1) with the expansion into the trigonometric
Fourier series from the viewpoint of their convergence.

Without loss of generality, we consider operator (1.1) on the interval G = (0, 1) and assume that
q(x) ∈ L1(0, 1). We claim that the system U of root functions of the operator L , being understood in the
generalized sense, satisfies the following conditions10 Ap:

(1) the system U is closed and minimal in the space Lp(G) for a certain p ≥ 1;
(2) the ranks of the eigenfunctions are uniformly bounded (condition (1.24)) and the “sum-of-units”

condition (1.25) and the Carleman condition (1.26) hold.
The second of these conditions allows us to enumerate the root functions of the system U in nonde-

creasing order of |
√
λ|, where λ are eigenvalues from the set Λ considered, and the root functions in each

of the chains so that after each associated function, we have the associated function of order that is one
greater from the same chain or the eigenfunction of the next chain. For the root functions of the system
enumerated in such a way, we use the notation uk(x), k = 1, 2, . . . , in which, in contrast to the notation
uk(x;λ) used above, the subscript k indicates not the order of a given associated function but its serial
number in the system U. The fact that two functions uk(x) and uj(x) belong to one and the same chain
is denoted by the symbol uk ∼ uj .

The first of the conditions Ap guarantees (by Theorem 1.2) the existence of a unique closed and
minimal biorthogonal dual system V = {vl(x)} each of whose elements belongs to the space Ls(G) for

10For p = 2, these conditions coincide with the first four conditions A of the theorem on the unconditional basis property.
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s = p/(p− 1). In contrast to the conditions of Theorem 1.7 on the unconditional basis property, it is not
assumed here that the functions vl(x) satisfy any differential equation (condition (A5)).

For an arbitrary complex-valued function f ∈ Lp(G), we compose the nth partial sum of its biorthog-
onal series in the system U,

σn(x, f) =
n∑

k=1

(f, vk)uk(x), (1.52)

and compare this sum with the following modified sum of the trigonometric Fourier series of the same
function f(x)11:

Sτ (x, f) =
1

π

1∫
0

sin τ(x− y)

x− y
f(y) dy, (1.53)

of order τ = |µn| = |
√
λn|, where λn is the eigenvalue corresponding to the root function un(x).

One says that the expansions of a function f(x) into the biorthogonal series in the system U and into
the trigonometric Fourier series are equiconvergent uniformly in any compact subset of the interval G if

lim
n→∞

|σn(x, f)− S|µn|(x, f)| = 0 (1.54)

uniformly in x on each compact subset K of the interval G.
The property of the uniform equiconvergence of the spectral expansion in the system of root functions

U with the trigonometric Fourier series on any compact subset means that the biorthogonal series behaves
itself inside G as the usual trigonometric Fourier series; this allows us to apply many fairly fine results on
the convergence of the usual Fourier series to the biorthogonal expansions considered.

Theorem 1.16 ([56]). Let the potential q(x) be Lebesgue integrable on G, and let two conditions Ap hold
for a certain p ≥ 1. Then the expansions of an arbitrary function f ∈ Lp(G) into the biorthogonal series
in the system U and into the trigonometric Fourier series are equiconvergent on any compact subset of the
interval G iff, for each compact subset K ⊂ G, there exists a constant C(K) > 0 such that the following
inequality holds uniformly in k ∈ N:

‖uk‖p,K · ‖vk‖s ≤ C(K), (1.55)

where s = p/(p− 1).

In particular, all the conditions of Theorem 1.16 hold whenever the potential q(x) is a Lebesgue
integrable real-valued function on G and L is an arbitrary self-adjoint extension of operator (1.1). As
follows from [25], this expansion is semibounded, and, therefore, the Carleman condition holds. In the
self-adjoint case, vk(x) = ‖uk‖

−1
2 uk(x), and hence inequality (1.55) follows from estimates (1.42). The

rank of any eigenfunction is equal to 1, and the necessity of the “sum-of-units” condition for an arbitrary
biorthogonal system of eigenfunctions of operator (1.1) follows from [60] and [52]. Thus, the result
of Theorem 1.16 completely exhausts the problem of equiconvergence for the self-adjoint Schrödinger
operator (1.1) with a Lebesgue integrable potential.

The property of equiconvergence of the biorthogonal expansion with the trigonometric Fourier series
is closely related to the so-called local basis property in Lp.

We say that the system U has the basis property in Lp on any compact set if, for each function
f ∈ Lp(G) and each compact subset K ⊂ G, the following relation holds:

lim
n→∞

‖σn(·, f)− f(·)‖p,K = 0. (1.56)

11It is known [39, p. 94] that sum (1.53) differs from the usual partial sum of the trigonometric Fourier series of order
[2πτ ] by a summand that tends to zero as τ →∞ uniformly in x on an arbitrary compact subset of the interval (0, 1).
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Relation (1.54) and the fact that the complete trigonometric system forms a basis in Lp(G) for any
p > 1 [6, p. 593] imply that the equiconvergence of the biorthogonal series with the trigonometric Fourier
series uniform on any compact set for any function from the space Lp(G) for p > 1 ensures the local basis
property of the system U in Lp.

Let us sketch a scheme for proving Theorem 1.16.
We prove that condition (1.55) is necessary for the system U to have the basis property in Lp on

any compact set if p > 1. By what was said above, this implies the necessity of condition (1.55) in
Theorem 1.16 for p > 1.12

Assume the contrary: let there exist a compact set K ⊂ G such that

lim
k→∞

(‖uk‖p,K · ‖vk‖s) =∞.

Then, by the resonant-type theorem [76, p. 104], there exists a function f ∈ Ls(G) with support supp f ⊆
K such that

lim
k→∞

(|(f, uk)| · ‖vk‖s) =∞. (1.57)

On the other hand, for this function f and for any function g ∈ Lp(G), by the identity (
∑k

i=1(f, ui)vi −

f, g) = (f,
∑k

i=1(g, vi)ui − g) and relation (1.56), we have lim
k→∞

(
∑k

i=1(f, ui)vi − f, g) = 0, which means

the weak convergence in Ls(G) of the sequence
∑k

i=1(f, ui)vi to f . Therefore, it is bounded on Ls(G):

‖
∑k

i=1(f, ui)vi‖s ≤ C0, and hence ‖(f, uk)vk‖s ≤ 2C0, which contradicts (1.57).
The proof of sufficiency of condition (1.55) in Theorem 1.16 develops the ideas founded in the mono-

graph [55]; a detailed presentation of it is contained in [56] (see also [46, 159]). We only dwell on the
principal aspects of the technique used for it.

First of all, we note that to prove equiconvergence (1.54), it suffices to prove that for any compact
set K ⊂ G, there exists a constant C0(K) > 0 such that for all functions f ∈ Lp(G) and all x ∈ K,

|σn(x, f)− S|µn|(x, f)| ≤ C0(K)‖f‖p. (1.58)

Indeed, the closedness of the system U in Lp(G) is ensured by the fact that for any ε > 0 given

in advance, there exist constants αi, i = 1,N0, such that the function T (x) =
∑N0

i=1 αiui(x) absolutely
continuously differentiable on G satisfies the inequality

‖f − T‖p < ε. (1.59)

We note that σn(x, T ) = T (x) for n ≥ N0, and by the linearity of the partial sums, we have

σn(x, f)− S|µn|(x, f) =
[
σn(x, f − T )− S|µn|(x, f − T )

]
−
[
S|µn|(x, T )− T (x)

]
.

Owing to the choice of a sufficiently large serial number n, the module of the second square bracket can
be made less than ε for x ∈ K, and the module of the first square bracket (by (1.58)) does not exceed
C0(K)‖f − T‖p < C0(K)ε. Thus, for a sufficiently large serial number n, the inequality

|σn(x, f)− S|µn|(x, f)| < (1 +C0(K))ε

holds uniformly in x ∈ K; this implies relation (1.54).
In turn, estimate (1.58) is implied by the following inequality, which holds uniformly in x ∈ K:∥∥∥∥ n∑

k=1

uk(x)vk(y)− [π(x− y)]−1 sin[|µn|(x− y)]

∥∥∥∥
Ls(y∈G)

≤ C0(K). (1.60)

Inequality (1.60) yields an estimate for the sum
∑n

k=1 uk(x)vk(y), which is the spectral function of the
operator L by (1.52).

12The necessity of condition (1.55) for p = 1 is proved in [51].
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Let us fix an arbitrary compact set K ⊂ G and an arbitrary R0 < dist(K,∂G)/2. Consider an
arbitrary number R ∈ [R0/2, R0] and denote by θ(r, |µn|, R) the function which is equal to (πr)−1 sin |µn|r
for r < R and vanishes for r ≥ R. Let SR0ϕ(R) denote the operation of averaging a function ϕ(R) on the

closed interval R0/2 ≤ R ≤ R0, which is carried out by the formula SR0ϕ(R) = (3R20/8)
−1
∫ R0
R0/2

Rϕ(R) dR.

We set θ̂(x − y, |µn|) = SR0θ(x − y, |µn|, R). Obviously, for all x ∈ K and y ∈ G, the following
inequality holds: ∣∣∣θ̂(x− y, |µn|)− [π(x− y)]−1 sin[|µn|(x− y)]

∣∣∣ ≤ C1(K).

Therefore, to prove (1.60), it suffices to justify the following estimate uniform in x ∈ K:∥∥∥∥ n∑
k=1

uk(x)vk(y)− θ̂(x− y, |µn|)

∥∥∥∥
Ls(y∈G)

≤ C2(K). (1.61)

Let us consider the expression under the sign of norm in this estimate as a function Φ(y) of the
variable y. Then the coefficient Φk of the function Φ(y) in its biorthogonal expansion in the system V
has the form

Φk =

∫
G

Φ(y)uk(y) dy =

{
−θ̂k(x, |µn|) + uk(x) if k ≤ n,

−θ̂k(x, |µn|) if k > n,
(1.62)

where θ̂k(x, |µn|) =
∫
G θ̂(x − y, |µn|)uk(y) dy. Obviously, θ̂k(x, |µn|) = SR0θk(x, |µn|, R), where

θk(x, |µn|, R) is the coefficient of θ(x − y, |µn|, R) as a function of the variable y in its biorthogonal
expansion in the system V. We transform this coefficient into

θk(x, |µn|, R) = π−1
R∫
0

r−1 sin(|µn|r)[uk(x+ r) + uk(x− r)] dr,

and for the expression in the square brackets under the integral sign, we use the mean-value formula
(1.12). As a result, we obtain the relation

θk(x, |µn|, R) = 2π−1uk(x)

R∫
0

sin |µn|r cosµkr

r
dr + Ik(x, |µn|, R),

in which Ik(x, |µn|, R) is obviously connected with the integral summand on the right-hand side of (1.12).
We have from this relation that

θ̂k(x, |µn|) = uk(x)SR0

 2

π

R∫
0

sin |µn|r cosµkr

r
dr

+ SR0Ik(x, |µn|, R). (1.63)

For averaging in the first summand of the right-hand side of this relation, we have proved the
representation

SR0

 2

π

R∫
0

sin |µn|r cosµkr

r
dr

 = δk(|µn|) +
0
Ik(|µn|), (1.64)

in which the so-called discontinuous Dirichlet multiplier δk(|µn|) is calculated by the formulas

δk(|µn|) =

 1 for |µk| < |µn|,
1/2 for |µk| = |µn|,
0 for |µk| > |µn|,

(1.65)
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and the summand
0
Ik(|µn|) satisfies the estimate

0
Ik(|µn|) = O

(
min

{
1, | |µk| − |µn| |

−1
})

. (1.66)

Taking (1.63)–(1.65) into account in the representation of the coefficient Φk in (1.62), we obtain

Φk =


Îk(x, |µn|) for |µk| < |µn|,

0.5uk(x) + Îk(x, |µn|) for |µk| = |µn|,

Îk(x, |µn|) for |µk| > |µn|,

(1.67)

where Îk(x, |µn|) = −
0
Ik(|µn|) + SR0Ik(x, |µn|, R).

We now consider the biorthogonal series
∑∞

k=1Φkvk(y) of the function Φ(y) in the system V. If we
prove that this series converges in the metric of Ls(G), then by the closedness of the system U in Lp(G),
which is equivalent to the completeness of the system V in Ls(G), this series converges precisely to the
function Φ(y). In fact, we can prove a more general property: the following estimate holds uniformly in
x ∈ K:

∞∑
k=1

|Φk| · ‖vk‖s = O(1). (1.68)

In particular, this estimate implies that the relation ‖Φ(y)‖s = O(1) holds uniformly in x ∈ K, which is
equivalent to the required estimate (1.61).

It follows from relations (1.67) that
∞∑
k=1

Φkvk(y) = 0.5
∑

k: |µk |=|µn|

uk(x)vk(y) +
∞∑
k=1

Îk(x, |µn|)vk(y).

The estimate ∑
k: |µk|=|µn|

|uk(x)|‖vk‖s = O(1)

uniform in x ∈ K is directly implied by estimate (1.42) and the second condition of Ap. The proof of the
estimate

∞∑
k=1

∣∣∣Îk(x, |µn|)∣∣∣ ‖vk‖s = O(1)

uniform on the compact set K requires the refinement of the integral summands in the mean-value formula
(1.12) (see [71]) and a considerable analytical calculation (see [56] for more details).

Remark 1. It is necessary to call attention to the fact that in contrast to Theorems 1.7 and 1.14 on the
unconditional basis property in L2(G), in Theorem 1.16 we do not assume that the functions composing
the biorthogonally dual system V satisfy the differential equations related to the differential operator
L ∗. Therefore, as the system U in Theorem 1.16, we can consider the system of generalized exponentials
{xl exp(iµkx), l = 0,mk, k ∈ N} or nonorthogonal systems of sines and cosines. All these systems are
composed of the regular solutions of Eqs. (1.23) in the case where q(x) ≡ 0 [48]. In particular, the system
U can be composed of infinite subsets of root functions for distinct boundary-value problems [72] (see also
[30,31]).

Remark 2. In [26, 173, 179], a technique allowing one to prove the equiconvergence of the spectral ex-
pansion with the trigonometric Fourier series uniform in any compact set was elaborated; it does not
require the Carleman condition among the conditions Ap. However, as follows from Theorem 1.13, the
Carleman condition (1.26) is necessary for the uniform minimality of the system U in Lp(G), 1 < p <∞.
Since it was additionally required in [173,179] that the system U form a Riesz basis in L2(G), the results
of these works are merely contained in Theorem 1.16. Moreover, condition (1.55) is close to condition
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(1.18), which means the uniform minimality of U in Lp(G). Therefore, the Carleman condition is probably
necessary for the equiconvergence considered, and, therefore, the technique elaborated in the mentioned
works does not allow us to obtain slightly more than that in Theorem 1.16.

1.9. Essential non-self-adjointness. It follows from Theorems 1.7 and 1.16 presented above that in
proving the basis property, as well as the equiconvergence of the spectral expansion in the root system of
the Schrödinger operator with the trigonometric Fourier series, a key role is played by the upper bound
for the product of norms of the corresponding functions of the direct and dual systems: this is estimate
(1.28) for the unconditional basis property in L2(G), and estimate (1.55) for the equiconvergence on any
compact set and the basis property in Lp on any compact set.

If the systems U and V contain only finitely many associated functions (i.e., eigenfunctions such that
at least one associated function corresponds to them or there are no associated functions at all or there
are finitely many such functions), then the verification of the boundedness of the product of norms of the
corresponding root functions reduces to the verification of the product of norms of only eigenfunctions
starting from a certain moment. In this case, an answer to the question whether or not these products
are bounded in totality is independent of the choice of associated functions. Namely such systems of
root functions arise if we add the so-called strengthened regular boundary conditions (see [151, p. 71] and
further [96,145]) to the differential expression (1.1) or if we require the spectrality of the operator [33].

If, as in the example of Subsection 1.1, the total number of associated functions is infinite, then each

chain of root functions
0
u,
1
u, . . . ,

m
u can be replaced by a new chain

k

ũ =
k
u+

k∑
j=1

Aj
k−j
u , k = 0,m,

where A1, . . . , Ak are perfectly arbitrary complex constants. Since under such a transformation, infinitely
many functions are changed in the system, this can lead to a principal change in the functional properties
of the system, as takes place in the Samarskii–Ionkin problem.

Indeed, by Theorems 1.7 and 1.16, the system {uk(x)}
∞
k=0 of root functions of this problem construct-

ed in Subsection 1.1 forms an unconditional basis in L2(0, 1) and has the basis property in Lp (p ≥ 1)
on any compact subset of the interval (0, 1), and the biorthogonal expansion of any function from the
class Lp(0, 1) (p ≥ 1) in this system is equiconvergent with the trigonometric Fourier series uniformly on
any compact set. At the same time, the modified system {ũk(x)}

∞
k=0 has none of the listed properties;

moreover, the latter holds for any p ≥ 1.
Therefore, in such problems, it is not possible to reveal uniquely the indicated properties of the

system of root functions by using only the concrete form of boundary conditions. Precisely owing to
this, in the case of the regular but not strengthened regular boundary conditions, without revealing the
asymptotic behavior of the eigenfunctions and associated functions being chosen, one succeeded only in
proving results on the Riesz basis property with brackets [170] or on the equiconvergence (1.54) but by
using only a certain sequence of subscripts n [155,162,169,189, 190].

To stress the specific character of operators for which the total number of associated functions is
infinite, we call them essentially non-self-adjoint.

In choosing associated functions for essentially non-self-adjoint operators, the so-called reduced sys-
tem is one of the orienting factors [41].

For an arbitrary eigenvalue λk, let us consider the corresponding chain of eigenfunctions and associ-

ated functions
0
uk,

1
uk, . . . ,

mk
u k. If the whole system of root functions is complete and minimal in L2(G),

then there exists a unique biorthogonal system dual to it. Denote by
0
vk,

1
vk, . . . ,

mk
v k the part of this

system that corresponds to the chain considered, i.e., (
i
uk,

j
vk) = δij , i, j = 0,mk. We orthonormalize

these functions via the Hilbert–Schmidt method starting from the function
mk
v k, and then denote by

0
V k,

1
V k, . . . ,

mk
V k the obtained system. Then, correspondingly, the chain of root functions biorthogonal to
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it changes:
0
Uk,

1
Uk, . . . ,

mk
U k. We note that new root functions remain in the same space, but, in contrast

to the initial chain, they do not form now a new chain (in the sense of relations (1.9) and (1.10)) in
general.

A system in which the root functions of each chain were changed in such a way is called a reduced
system. Obviously, any reduced system remains complete and minimal in L2(G).

The following assertion13 holds.

Theorem 1.17 ([41,56]). Let the potential q(x) be Lebesgue integrable on G, and let condition A2 hold.
Then the system of root functions of the Schrödinger operator L has the basis property in L2 on any
compact set for at least one choice of associated functions iff the reduced system has this property, i.e., it
is necessary and sufficient that for any compact subset K ⊂ G, the following inequality hold uniformly in
i = 0,mk and k ∈ N:

‖
i
Uk‖2,K‖

i
V k‖2 ≤ C(K).

We indicate one more peculiarity of essentially non-self-adjoint operators.
Let us consider the Samarskii–Ionkin problem (1.2) for operator (1.1) with an arbitrary absolutely

continuous potential q(x). As follows from [137], this problem has the following properties:
(1) if q(x) ≡ 0, then the rank of each eigenfunction is equal to 2, and the system of root functions

can be chosen so that it forms an unconditional basis in L2(0, 1);
(2) if q(0) 	= q(1), then all the eigenvalues, probably except for finitely many of them, are simple,

and the product of the L2 norms of the eigenfunctions grows as the module of the square root of the
eigenvalue; therefore, the system of root function does not form a basis in L2(0, 1) for any choice of the
associated functions. We note that the condition q(0) 	= q(1) is satisfied, for example, by the potential
q(x) = εxn/n!, and, moreover, max

0≤x≤1
|q(k)(x)| ≤ ε for all k = 0, n.

This example shows that for essentially non-self-adjoint problems, even arbitrarily small changes of
the coefficients of the operator in the metric of the space C(n)[0, 1] (under preservation of the form of
the boundary conditions) can lead to a change in basis properties of the system of root functions for the
operator considered.14

An analogous instability of properties of the system of root functions is observed with respect to
boundary conditions of the problem.

Consider the problem 
−u′′ = λu, 0 < x < 1,

u(0) = 0, u(1) = −2u(1/2) + ε
1∫
0

u(x) dx.
(1.69)

If ε = 0, then the numbers λn = (2πn)2, n ∈ N, are its eigenvalues. Each eigenvalue λ2k is simple,
and one eigenfunction and two associated functions

0
u2k+1(x) = sin(4k + 2)πx,

1
u2k+1(x) = −0.5x cos(4k + 2)πx,

2
u2k+1(x) = −0.5x

2 sin(4k + 2)πx−
x cos(4k + 2)πx

2(4k + 2)π
(1.70)

correspond to the eigenvalues λ2k+1.
This system of root functions satisfies all the conditions of Theorem 1.7 (on the unconditional basis

property) and Theorem 1.16 (on the equiconvergence).

13In [41], the concept of reduced system and Theorem 1.17 are considered for ordinary differential operators of arbitrary
order with sufficiently smooth coefficients.
14For the first time, this phenomenon was discovered by V.A. Il’in in [58], and the corresponding example was constructed

for a second-order differential operator of general form.
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If ε is any arbitrarily small number different from zero, then the picture changes. The eigenvalues

λ2k = (4πk)2 are also simple (the eigenfunction
0
u2k+1(x) = sin 4kπx). Now one eigenfunction and

one associated function (the functions
0
u2k+1(x) and

1
u2k+1(x) from relations (1.70)) correspond to the

eigenvalues λ′2k+1 = ((4k + 2)π)2. Also, one more series of eigenvalues λ′′2k+1 = [(4k + 2)π + O(k−1)]2 is
added; one eigenfunction

0
u∗2k+1(x) = sin(4k + 2)πx+O(k−1) (1.71)

corresponds to each of them.
It follows from (1.70) and (1.71) that∥∥∥‖0u∗2k+1‖−12 0

u∗2k+1(x)− ‖
0
u2k+1‖

−1
2

0
u2k+1(x)

∥∥∥
2
→ 0

for k →∞; this shows the absence of the uniform minimality for the system of root functions in L2(0, 1)
(cf. (1.17)), and hence the absence of its basis property in L2(0, 1).

2. Ordinary Differential Operators of General Form

The methodology for studying biorthogonal expansions elaborated for the Schrödinger operator (1.1),
turns out to be also appropriate in many respects for the case where the differential expression generating
a given operator has the general form (n ≥ 2)

Lu = u(n) + p1(x)u
(n−1) + p2(x)u

(n−2) + · · ·+ pn(x)u, x ∈ G = (a, b). (2.1)

The results obtained in this case showed that in this case, the first step of the study of spectral
expansions consists in obtaining integral representations of solutions of differential equations with spectral
parameters that are analogous to the mean-value formula (1.12) and “shift” formulas (1.11) and (1.13),
and that here, one of the most important stages consists in proving estimates for root functions of the
operator in various Lp spaces. To prove the unconditional basis property in L2(G) for the system of
root functions, first of all, it is necessary to reveal the Bessel condition for this system, and to prove
the equiconvergence with the trigonometric Fourier series uniform in any compact set, it is necessary to
obtain an estimate of the spectral function of the operator analogous to estimate (1.60).

Of course, the arbitrary order n of operator (2.1) and the existence of the whole set of coefficients
pm(x) give their own specificity to the results obtained; however, these results can undoubtedly be qualified
as generalizations of the theorems presented in Sec. 1. The peculiarities that arise here are first of all
related to the existence of the coefficient p1(x) 	≡ 0 of the (n − 1)th derivative in (2.1) and the order of
the operator L , which is greater than 2.

2.1. Generalized concept of root functions. As for the Schrödinger operator, we introduce into
consideration the root functions of the operator L as only regular solutions of a differential equation with
a spectral parameter.

A regular solution on G of the equation

Lu = λu+ f, (2.2)

where λ ∈ C and f ∈ L1(G), is an arbitrary function u = u(x) such that it, together with its derivatives
up to the order n− 1 inclusively, is absolute continuous on any compact set in G and satisfies Eq. (2.2)
almost everywhere on G.

An eigenfunction of the operator L given by the differential expression (2.1) is any nontrivial regular
solution u0(x;λ) of the equation

Lu0(x;λ) = λu0(x;λ) (2.3)
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that belongs to the space L2(G). Also, an eigenfunction u0(x;λ) will be called an associated function of
zero order. The complex number λ in (2.3) is called an eigenvalue of the operator L . Along with λ, in
what follows, we will use the spectral parameter µ = µ(λ) defined by the relation

µ =


[
(−1)n/2λ

]1/n
if n is even,

(iλ)1/n if n is odd and Imλ ≥ 0,

(−iλ)1/n if n is odd and Imλ < 0,

where [r exp(iφ)]1/n = r1/n exp(iφ/n) for −π < φ ≤ π.
If the associated function uk−1(x;λ) of order k − 1 ≥ 0 was already defined, then by the associated

function of order k corresponding to the eigenfunction u0(x;λ) and the eigenvalue λ, we mean any regular
solution uk(x;λ) of the equation

Luk(x;λ) = λuk(x;λ) + µ̃ uk−1(x;λ) (2.4)

belonging to the space L2(G). Here,
15 µ̃ = 1 for |λ| ≤ 1 and µ̃ = µn−1 for |λ| > 1.

Let the eigenvalues of the operator L form a certain countable set Λ. We will consider only those
systems of root functions (i.e., eigenfunctions and associated functions) of the operator L which, for each
λ ∈ Λ, along with each associated function uk(x;λ) of kth order, contain the whole chain of root functions
u0(x;λ), u1(x;λ), . . . , uk−1(x;λ) of lesser orders. The maximum order of an associated function in the
chain corresponding to an eigenvalue λ is denoted by m(λ); the rank of the eigenfunction u0(x;λ) is the
number m(λ) + 1. If a chain is infinite, we set m(λ) =∞.

2.2. Integral representations. The regularity of a solution of Eq. (2.2) is closely connected with the
smoothness of the coefficients pj(x), j = 1, n, of expression (2.1) defining the operator L .

In relation (2.2), we set λ = zn, z ∈ C, and introduce linearly independent solutions of the equation
u(n) − u = 0 by the relations

sm(x) =
1

n

n∑
k=1

ηmk exp(ηkx), m = 0, n− 1, (2.5)

where ηk = exp(2πik/n), k = 1, n. Then for any regular solution u = u(x) of Eq. (2.2), using a direct
integration by parts, we easily make sure that the following relation analogous to the “shift” formula
(1.11) holds:

u(x± t) =
n−1∑
m=0

(±1)m
u(m)(x)

zm
sm(zt)

−z1−n
t∫
0

n−1∑
m=0

pm(x± τ)u(m)(x± τ)sn−1(z(t− τ)) dτ + z1−n
t∫
0

f(x± t)sn−1(z(t− τ)) dτ. (2.6)

Here, x ∈ G and t > 0 are such that x ± t ∈ G. Solving (2.6) as an integro-differential equation in the
unknown function u(x ± t) of the variable t via the successive approximation method, we obtain (for a
sufficiently small t) the following “explicit” analog of formula (2.6):16

u(x± t) =
n−1∑
m=0

(±1)m
u(m)(x)

zm
[sm(zt) + s̃m(t, x, z)] + F (t, x, z), (2.7)

where s̃m(t, x, z) and F (t, x, z) depend on t, x, and z, and the coefficients of the operator L and F (t, x, z)
depend additionally on the function f in the right-hand side of (2.2).

15In some works, in Eq. (2.4) defining an associated function, there is no multiplier µ̃. As for the Schrödinger operator,
this leads in essence to only a change in anti-a priori bounds of the root functions.
16See [101] for more details.
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If all the coefficients pj(x), j = 1, n, are Lebesgue integrable on any compact subset of the interval G
(i.e., are locally Lebesgue integrable on G), then we can show that the solution given by formula (2.7) is
absolutely continuous strictly inside G, together with its derivatives up to the (n− 1)th order inclusively
(see, e.g., [89,112,178,185]).

To ensure the belonging of all regular solutions of Eq. (2.2) to the class L2(G) and, therefore, to give
the possibility of taking any regular solution of Eqs. (2.3) and (2.4) as a root function of the operator L ,
it is necessary to refine the behavior of the coefficients of the operator at the ends of the interval G. For
example, the following conditions allow us to consider a wide class of operators whose coefficients admit
Lebesgue nonintegrable singularities at the points a and b.

Theorem 2.1 ([101]). In expression (2.1), let each of the functions pm(x), m = 1, n, be complex-valued
and satisfy the condition

b∫
a

|pm(x)|(x− a)m(b− x)m dx <∞. (2.8)

Then any regular solution of Eq. (2.2) belongs to the class L∞(G).

Also, we note that if the coefficient p1(x) is sufficiently smooth (p1(x) ∈W
n−1
1,loc(G)) and other coeffi-

cients are locally Lebesgue integrable on G, then passing to a new function

ũ(x) = u(x) exp

(
n−1

∫ x

0
p1(ξ) dξ

)
,

we obtain

Lu(x) = [L̃ ũ(x)] exp

(
−n−1

∫ x

0
p1(ξ) dξ

)
,

and, moreover, the coefficients p̃m(x) of the new operator L̃ are locally Lebesgue integrable on G and
p̃1(x) ≡ 0.

Representations (2.6) and (2.7) are not convenient for studying biorthogonal expansions in root
functions of the operator L , since the coefficients of u(m)(x), m = 0, n− 1, in these representations
written for solutions of Eqs. (2.3) and (2.4) grow exponentially as Reµ→ +∞ even under the Carleman
condition

sup
λ∈Λ
| Imµ| <∞. (2.9)

The first modification of representation (2.6) that allows one to reject such a growth condition was
proposed by E. I. Moiseev in [147]. Here, we present one of the one-sided analogs of the Moiseev mean-
value formula obtained for the operator L of any even order n by V.D. Budaev.

Theorem 2.2 ([13,17]). Let the coefficients of operator (2.1) satisfy the conditions pm(x) ∈ W
n−m
1 (G),

m = 1, n. Moreover, let the Carleman condition (2.9) hold. Then we can find constants ρ0 > 0 and
C0 > 0 such that for all x ∈ G, for all µ : Reµ ≥ ρ0, and for any r ∈ (0, C0R0), where R0 > 0 is such
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that x±R0 ∈ G, the following formula holds:

uk(x± r;λ) = cosµr

D±k1(x) + ∑
2≤2s≤k

A2sr
2sD±k−2s,1(x)

+
∑

2≤2s≤k+1

A2s−1r
2s−1D±k+1−2s,2(x) +

k∑
s=1

(n−2)/2∑
l=1

O(|µ|−1)D±k−s,3,l(x)


+sinµr

D±k2(x) + ∑
2≤2s≤k

B2sr
2sD±k−2s,2(x)

+
∑

2≤2s≤k+1

B2s−1r
2s−1D±k+1−2s,1(x) +

k∑
s=1

(n−2)/2∑
l=1

O(|µ|−1)D±k−s,3,l(x)


+

(n−2)/2∑
l=1

exp{iµηlr}

{
D±k,3,l(x) +

k∑
s=1

(Aslr
s +O(|µ|−1))D±k−s,3,l(x)

}

+O(|µ|−1)

(
‖uk(·;λ)‖2 +

k∑
s=1

‖uk−s(·;λ)‖2

)
, (2.10)

in which the constants ηl are defined after relations (2.5), Ak and Bk are nonzero constants, and D
±
k,j

(j = 1, 2) and D±k,3,l (l = 1, (n− 2)/2) are17 linear combinations of values of the function uk(x;λ) and its
derivatives up to order n− 1 inclusively at the point x.

We note that the one-sided analog of the Moiseev mean-value formula for µ satisfying the condition
| Imµ| ≥ ν0, where ν0 > 0 is sufficiently large, is presented in [18].

In a recent work [123], it was shown that the Moiseev mean-value formula remains valid if the order
n of the operator is even and all the coefficients pm(x), m = 1, n, are only Lebesgue integrable on G.

Another method for adopting “shift” formulas was proposed in [174,176,178]. Let us fix an arbitrary
x ∈ G and choose any positive r ≤ dist(x, ∂G)/n. Further, we write, for example, formula (2.6) for the
root function uk(x;λ) with the displacement t = r, 2r, . . . , nr, and express uk(x;λ) from these relations.
Thus, we obtain a representation of the root functions of the form

uk(x;λ) =
n∑

m=1

uk(x±mr;λ)f±m(µr) + I(r, x;µ), (2.11)

where the coefficients f±m(µr) are calculated via the functions sk(mµr) and the integral expression I(r, x;µ)
depends on r, x, and µ, the coefficients of the operator L , and the values of the functions uk(x;λ) and
uk−1(x;λ) (for k ≥ 1) on the closed interval between the points x and x± nr.

Other variants of representation (2.11) are presented in [101,106,177].
A slightly different approach to the obtaining of integral representations of regular solutions of Eq.

(2.2) was proposed by N.B. Kerimov [90,94].

2.3. Estimates of root functions. In the most general case, the estimates of root functions of the
operator L and their derivatives up to the order n−1 inclusively were obtained by N.B. Kerimov [94,95].

Theorem 2.3. Let all the coefficients of the operator L be Lebesgue integrable on G. Then for all
1 ≤ p, s ≤ ∞, and j = 0, n− 1, we have:

17All quantities entering formula (2.10) can be explicitly written.
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(1) the following estimates hold uniformly in λ ∈ C:

‖u
(j)
k (·;λ)‖∞ = O(1)(1 + |µ|)j+(1/p)‖uk(·;λ)‖p, (2.12)

‖u
(j)
k (·;λ)‖p = O(1)(1 + |µ|)j‖uk(·;λ)‖p, (2.13)

where the constants bounding O(1) depend on the order k of the root function considered;
(2) the following estimates hold uniformly in λ ∈ C and k ∈ N:

‖u
(j)
k (·;λ)‖∞ = O(1)(1 + |µ|)j+(1/p)

{
‖uk(·;λ)‖p

+ (1 + |µ|)−1+(1/s)−(1/p)‖uk−1(·;λ)‖s
}
, (2.14)

‖u
(j)
k (·;λ)‖p = O(1)(1 + |µ|)j

{
‖uk(·;λ)‖p

+ (1 + |µ|)−1+(1/s)−(1/p)‖uk−1(·;λ)‖s
}
. (2.15)

Remark 1. For n = 2, estimates (2.12), (2.14), and (2.15) (as their comparison with estimates (1.42)
and (1.44) of Theorem 1.8 shows) require some refinement. In this case, (1 + |µ|)j+(1/p) in (2.12) and
(2.14) should be replaced by (1 + |µ|)j(1 + | Imµ|)1/p, and the multiplier (1 + |µ|)−1+(1/s)−(1/p) in (2.14)
and (2.15) should be replaced by (1 + | Imµ|)−1+(1/s)−(1/p).

Remark 2. In contrast to the case n = 2, estimate (2.12) cannot be completed by a lower bound of the
L∞ norm of a root function through its Lp norm with preservation of the same order with respect to µ.

As is shown in [174], even for eigenfunctions of the operator Lu = u(n), we have the following estimate
for n ≥ 3:

‖u0(·;λ)‖∞ ≥ C

(
1 + min

k
|Re(µηk)|

)1/p
‖u0(·;λ)‖p, (2.16)

which is sharp on the linear subspace of all eigenfunctions corresponding to a given λ (see also [183]).

Under the Carleman condition (2.9), estimates (2.12) and (2.13) were obtained in [89] (see also
[182,184]). The methodology for obtaining estimates (2.14) and (2.15) by using the preparatory estimate

of the value u
(j)
k (x;λ) through Lp norms of the root functions uk(ξ;λ) and uk−1(ξ;λ) on an arbitrary

compact set containing x of length no more than |µ|−1 was elaborated by B.D. Budaev in [11] for the
operator L of even order with smooth coefficients pm(x) ∈W

n−m
1 (G), m = 1, n.

Theorem 2.4. Let all coefficients of the operator L be Lebesgue integrable on G. Then for all 1 ≤ p ≤ ∞,
j = 0, n− 1, and k ≥ 1, the following assertions hold:

(1) the following estimate holds uniformly in λ ∈ C for n ≥ 3:

‖uk−1(·;λ)‖p = O(1)(1 + |µ|)‖uk(·;λ)‖p, (2.17)

and for n = 2, we have the estimate

‖uk−1(·;λ)‖p = O(1)(1 + | Imµ|)‖uk(·;λ)‖p; (2.17a)

(2) for any compact sets K1 and K2 of the interval G satisfying the condition K1 ⊂ intK2, the
following estimates hold uniformly in λ ∈ C : | Imµ| ≤ c0:

‖u
(j)
k−1(·;λ)‖p,K1 = O(1)(1 + |µ|)j‖uk(·;λ)‖p,K2 , (2.18)

‖u
(j)
k−1(·;λ)‖∞,K1 = O(1)(1 + |µ|)j‖uk(·;λ)‖p,K2 , (2.19)

‖u
(j)
k (·;λ)‖∞,K1 = O(1)(1 + |µ|)j‖uk(·;λ)‖p,K2 . (2.20)
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As follows from this theorem, bounds of anti-a priori type depend on over which sets we take the
norms in the left- and right-hand sides of these bounds. The comparison of estimates (2.17) and (2.18)
shows that the second bound is better than the first one by (1 + |µ|).

For the first time, the sharp-in-order estimates (2.18)–(2.20) were obtained in [46] for the operator
L with smooth coefficients pm(x) ∈ C(n−m+1)(G). The estimates of the same theorem for the operator L
with only Lebesgue integrable coefficients (uniform in all λ ∈ C satisfying the Carleman condition) were
entirely obtained by N.B. Kerimov [89] (see also [101, 112, 184, 185]). Some generalizations of estimates
(2.18)–(2.20) to the case where the Carleman condition is violated are contained in [18].

2.4. Uniform equiconvergence of spectral expansions with the trigonometric Fourier series.
Let us indicate conditions that ensure the equiconvergence of the biorthogonal expansion in root functions
of the operator L of arbitrary order n ≥ 2 and general form uniform on any compact set and also present
a result on the basis property of the system of root functions in Lp on any compact set in G.

Let the coefficients of the operator L be smooth functions pm(x) ∈ C(n+1−m)(G). We require that
the system U of root functions of the operator L , being understood in the generalized sense, satisfy the
following four conditions Ap:

(1) the system U is closed and minimal in the space Lp(G) for a certain p ≥ 1;
(2) the ranks of the eigenfunctions of the system U are uniformly bounded:

sup
λ∈Λ

m(λ) <∞; (2.21)

(3) the “sum-of-units” condition holds, i.e., the following estimate holds uniformly in t ≥ 0:∑
λ∈Λ: |Re n

√
λ−t|≤1

1 ≤ B1; (2.22)

(4) the Carleman condition holds, i.e., the following inequality holds uniformly in λ ∈ Λ:

| Im
n
√
λ| ≤ B2. (2.23)

Let us enumerate the root functions of the system U in nondecreasing order of | n
√
λ|, λ ∈ Λ, and in

each chain, do this in increasing order of orders of associated functions. For the functions of the system
U enumerated in such a way, we use the notation U = {uk(x)}

∞
k=1.

18

The first of the conditions Ap guarantees the existence of a unique closed and minimal biorthogonal
dual system V = {vk(x)}

∞
k=1 each of whose elements belongs to the class Ls(G), s = p/(p − 1). The

functions of the system V may not satisfy any differential equation with a spectral parameter.
For an arbitrary complex-valued function f ∈ Lp(G), we compose a partial sum of the biorthogonal

series in the system U:

σt(x, f) =
∑
1≤k≤t

(f, vk)uk(x) (2.24)

and a modified partial sum St(x, f) of the trigonometric Fourier series by formula (1.53).
If, as t→∞,

σt(x, f)− exp

− 1
n

x∫
a

p1(ξ) dξ

S|µ[t]|

x, exp
 1

n

x∫
a

p1(ξ) dξ

 f(x)

→ 0 (2.25)

uniformly in x on an arbitrary compact set K in G, then we say that the expansions of the function f(x)
into the biorthogonal series and into the trigonometric Fourier series are equiconvergent on any compact
set in G.

18Here, as in the case of the Schrödinger operator (Subsection 1.8), the subscript k denotes not the order of an associated
function but its serial number in the system U.
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If, for each function f ∈ Lp(G) and any compact set K ⊂ G,

lim
t→∞
‖σt(·, f)− f(·)‖p,K = 0, (2.26)

then, as in Sec. 1, we say that the system U has the basis property in Lp on any compact set in G.
The following assertions hold.

Theorem 2.5 ([46,48]). Let 1 ≤ p < ∞, and let all conditions Ap hold. Then the expansions of an
arbitrary function f ∈ Lp(G) into the biorthogonal series in the system U of root functions of the operator
L and into the trigonometric Fourier series are equiconvergent uniformly on any compact set in G iff the
uniform bound (1.55) of the product of norms holds.

Theorem 2.6 ([46,48]). Let 1 < p <∞, and let all conditions Ap hold. Then the system U has the basis
property in Lp on any compact set in G iff the uniform estimate (1.55) holds.

If we do not take into account the technical conditions related to the application of the general
mean-value formula of E. I. Moiseev, then the method for proving these theorems is completely analogous
to that described in Sec. 1 for the Schrödinger operator. We note that for the operator L of general form,
the central role of the proof is also the proof of estimate (1.60) for the spectral function of the operator L .

Remark 1. The proof of Theorems 2.5 and 2.6 in [46] is based on the application of the Moiseev mean-
value formula, and the restrictions on the smoothness of the coefficients of the operator are in essence
related only to the conditions under which this formula was obtained in [147]. As follows from the
result of [123], this formula also remains valid in the case of Lebesgue integrable coefficients of the
operator. Thus, Theorems 2.5 and 2.6 remain valid for operators (2.1) of any even order n with coefficients
p1(x) ∈W

n−1
1 (G), pm(x) ∈ L1(G), m = 2, n.

Remark 2. The property of the equiconvergence (uniform on any compact set in G) of the biorthogonal
expansion of an arbitrary function from the class L2(G) in the system U of root functions of an operator
of an arbitrary order n ≥ 2 whose coefficients pm(x) ∈ Wn−m

2,loc (G), m = 2, n, and p1(x) ≡ 0, with the

expansion of the same function into the trigonometric Fourier series was proved in [180, 186] under the
condition that U forms a Riesz basis in L2(G) and the set Λ of eigenvalues in general satisfies no additional
conditions.

2.5. Rate of equiconvergence. The problem of estimating the rate of equiconvergence of the spectral
expansion in the system of root functions of the differential operator with expansion into the trigonometric
Fourier series was studied in [62] for the first time, where for the difference σm(x, f)−S|µm|(x, f), in which
f(x) is an absolutely continuous function and σm(x, f) is a partial sum of the expansion of this function into
Fourier series in the complete system of eigenfunctions of an arbitrary nonnegative self-adjoint expansion
of the Schrödinger operator (1.1) with the potential q(x) ∈ Lp(G), p > 1, there was obtained the estimate
O(|µm|−1) uniform in any compact set. Since the latter summands of each of the sums being compared
has the decay order O(|µm|−1) as m→∞, this estimate is sharp on the class of all absolutely continuous
functions f(x).

Later on, in [156], the mentioned estimate was extended to the non-self-adjoint Schrödinger operator
(1.1) with the potential from the same class, and in the case where the potential is only Lebesgue integrable
on G, the estimate O(|µm|−1 ln |µm|) was obtained in [152].

Since the root functions of a differential operator may not satisfied the periodicity conditions on G,
of course, in the general case, there is no uniform equiconvergence of the biorthogonal expansion with the
expansion into the trigonometric Fourier series on the whole G. However, it is interesting to study the
equiconvergence on the whole closed interval G in the integral metric. For the self-adjoint Schrödinger
operator, this was done in [110], and, moreover, the function being expanded is a function of bounded
variation or a Lebesgue integrable function whose Fourier coefficients tend to zero at a certain rate.
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Let us present, in more details, the results obtained in this direction for the general second-order
operator L ,19 i.e., for the operator

Lu = u′′ + p1(x)u
′ + p2(x)u, x ∈ G, (2.27)

with the complex-valued coefficients p1(x) and p2(x).
Let the coefficients of operator (2.27) p1(x) ∈ Ls(G), s ≥ 1, and p2(x) ∈ L1(G). For a certain r ≥ 1,

let the system U of root functions of this operator satisfy conditions Ar, and, moreover, let the following
estimate hold uniformly in k ∈ N:

‖uk‖r · ‖vk‖r′ ≤ C, (2.28)

where r′ = r/(r − 1) and V = {vk} is the system biorthogonally dual to U.
It follows from Theorems 2.5 and 2.6 that under these conditions, if the coefficient p1(x) is absolutely

continuous on G, then the system U has the basis property in Lr on any compact set in G and the biorthog-
onal series

∑∞
k=1(f, vk)uk(x) in this system of any function f from the class Lr(G) is equiconvergent with

the trigonometric Fourier series uniformly on any compact set in G.
We say that the coefficient condition Kν with a certain ν > 0 holds for a function f(x) if the

following estimate holds for |λk| ≥ 1:

‖vk‖
−1
r′ (f, vk) = O(|λk|

−ν), (2.29)

and, moreover, the ordinary Fourier coefficients of the function f(x) satisfy condition (2.29) with the same
exponent ν.

The following theorem shows the role played by the coefficient condition (2.29) in studying the
convergence of the spectral expansion in the metric Lp(G), p > 1.

Theorem 2.7 ([121]). Let p > 1 be arbitrary, and let f(x) be any complex-valued function belonging to
Lr(G) ∩ Lp(G). If conditions Ar hold, the uniform estimate (2.28) holds, and the coefficient condition
Kν, in which

ν > ν∗ ≡
[
min(2, p/(p− 1), s)

]−1
, (2.30)

holds for f(x), then the biorthogonal expansion of the function f(x) in the system U converges to f(x) in
the metric of Lp(G).

Remark. Condition (2.30) is sharp; this is justified by the example from [148]. Let s ≥ p/(p − 1),
p ≥ 2. Then ν∗ = (p − 1)/p. Consider the sine system uk(x) = sinπ(k + (2p)−1)x, k = 0, 1, 2, . . . . This
system consists of eigenfunctions of the operator Lu = u′′ on the interval G = (0, 1) corresponding to the
eigenvalues µ2k = [π(k + (2p)−1)]2. We note that s =∞ here.

The indicated system satisfies conditions Ap and estimate (2.28) and, as was proved in [148], is closed
and minimal in Lp(G). Using the explicit form of the biorthogonally dual system, we can show that the
following relation holds for f(x) ≡ 1:

0 < c1k
−ν∗ ≤ ‖vk‖

−1
p/(p−1)|(f, vk)| ≤ c2k

−ν∗ <∞,

i.e., the coefficient condition Kν holds with ν = ν∗. At the same time, it was proved in [148] that the
biorthogonal series of this function f(x) converges to a function not belonging to the class Lp(G), i.e., the
sine system considered does not form a basis in Lp(G).

In studying the rate of convergence of orthogonal series (for example, in the theory of trigonometric
Fourier series), the coefficient condition Kν is usually formulated in terms of belonging of the function
being expanded to one class or another. In the case of nonorthogonal expansions, one should note the
multiplier by the inner product in (2.29). A detailed consideration of the example from [148] shows that

19Analogous results on the convergence and the equiconvergence for the operators of any even order are contained in
[124, 125]. A number of results on the rate of equiconvergence in various metrics on compact sets in the interval G are
presented in [106].
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even for infinitely differentiable functions f(x), the exponent ν can assume any values on (1 − r−1, 1]
depending on the choice of systems of the biorthogonal pair. Therefore, it is not possible to write the
condition Kν in terms of belonging of the function f(x) to a certain class (see [122]).

Now let us present the most general theorem on the estimation of the rate of equiconvergence in the
Lp metric on the whole interval G.

Theorem 2.8 ([121]). Let p ≥ 1 be arbitrary, and let conditions Ar and the uniform estimate (2.28) hold.
Then for any function f ∈ Lr(G) for which the coefficient condition Kν holds and for all sufficiently large
serial numbers m, we have the estimate

‖σm(·, f)− S|µm|(·, f)‖p = O(1)

{
|λm|−min(1,ν−ν∗) if ν 	= 1 + ν∗,
|λm|−1 ln

ν∗ |λm| if ν = 1 + ν∗.
(2.31)

We note that the estimates of the equiconvergence on the whole G contained in Theorem 2.8 coincide
with sharp estimates of the convergence of the trigonometric Fourier series (see also [119,120]).

In the estimates of the rate of equiconvergence on compact sets, it is necessary to note the considerable
role of the exponent s of the Lebesgue integrability p1(x) in the case where the norm is taken not over
the whole G but only over a certain compact subset.

Theorem 2.9 ([122]). Let p ∈ [1,∞) and s > 1 be arbitrary, and let conditions Ar and the uniform
estimate (2.28) hold. Let f ∈ Lr(G) be such that the coefficient condition Kν holds. Then for any
compact set K ⊂ G and all sufficiently large serial numbers m, the following estimate holds:

‖σm(·, f)− S|µm|(·, f)‖p,K = O(1)max
{
|λm|

−1, |λm|
−ν ln2 |λm|, |λm|

−ν−(1/p)+(1/s) ln |λm|
}
, (2.32)

and for s =∞, the following estimate holds:

‖σm(·, f)− S|µm|(·, f)‖p,K = O(1)max
{
|λm|

−1, |λm|
−ν ln |λm|

}
. (2.33)

For s ∈ [p,∞], in the right-hand side of (2.32), we can reject the third argument of the maximum,
and, as in estimate (2.31), the obtained estimate (2.32) is independent of s. For s < p, the third argument
of the maximum begins to dominate, and the rate of convergence considerably depends on s.

In [122], estimate (2.32) was generalized to the case p = ∞. Moreover, it was shown that one can
modify estimates of the rate of equiconvergence in Theorem 2.9 if one of the coefficients p1(x) or p2(x) in
(2.27) is absent or if the total number of associated functions in the system of root functions is finite.

We finally note that the elaborated technique for studying the convergence of spectral expansions
can also be applied to the study of convergence of derivatives in x of the partial sums σm(x, f) [107].

2.6. Unconditional basis property of a system of root functions. Even in studying systems of
root functions of a fourth-order operator [88], a specific feature of results on the unconditional basis
property of operators of order n > 2 was revealed. Along with the five conditions A (Sec. 1) that are
usual for a second-order operator, one should require refined anti-a priori bounds for functions of the
systems U and V; among the necessary and sufficient conditions for the unconditional basis property, one
needs a condition characterizing the behavior of L∞ norms of root functions.

Let us consider the system U of root functions uk(x;λ) understood in the generalized sense for which
the eigenvalues λ belong to a certain countable set Λ ⊂ C and the order k varies from zero to the maximum
order m(λ) of a root function in the corresponding chain. The functions of the biorthogonally dual system
V will be denoted similarly by vk(x;λ). We combine relations (2.3) and (2.4) into one relation:

Luk(x;λ) = λuk(x;λ) + sign k µ̃ uk−1(x;λ). (2.34)

Conditions A for the operator L of an arbitrary order n ≥ 2 are as follows:
(A1) the completeness and minimality in L2(G) of the system of root functions U of the operator L ;
(A2) the uniform boundedness of ranks of eigenfunctions (2.21);
(A3) the “sum-of-units” condition (2.22);
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(A4) the Carleman condition (2.23);
(A5) the fact that the biorthogonally dual system V consists of root functions (being understood in

the generalized sense) of the formally adjoint operator

L ∗v = (−1)nv(n) + (−1)n−1(p1(x)v)
(n−1) + (−1)n−2(p2(x)v)

(n−2) + · · ·+ pn(x)v. (2.35)

We see from the form of expression (2.35) for L ∗ that condition (A5) consists of certain smoothness
requirements for the coefficients of the operator L .

Theorem 2.10 ([88]). Let the order n of operator (2.1) be equal to 4, and let the coefficients pm(x) ∈
W 4−m
1 (G). Let the system U of root functions of the operator L satisfy condition A, and, in addition, let

the following anti-a priori bounds hold uniformly in λ ∈ Λ and k = 1,m(λ):

‖uk−1(·;λ)‖2 = O(1)‖uk(·;λ)‖2,

‖vk−1(·;λ)‖2 = O(1)‖vk(·;λ)‖2.
(2.36)

Then each of the systems U and V has the unconditional basis property in L2(G) if the following two
conditions hold: there exists the uniform bound (1.28) of the product of norms and there exists a constant
τ0 > 0 such that the following estimates hold uniformly in τ ≥ τ0:

∑
τ0≤Reµ≤τ

m(λ)∑
k=0

‖uk(·;λ)‖
2
∞ · ‖uk(·;λ)‖

−2
2 = O(τ), (2.37)

∑
τ0≤Reµ≤τ

m(λ)∑
k=0

‖vk(·;λ)‖
2
∞ · ‖vk(·;λ)‖

−2
2 = O(τ). (2.38)

We note that for a second-order operator, by estimate (1.44), under the condition of the uniform
boundedness of ranks for eigenfunctions and the Carleman condition, the anti-a priori bounds (2.36) hold
automatically, and estimate (1.42) implies that estimates (2.37) and (2.38) are consequences of the “sum-
of-units” condition and the uniform boundedness of ranks. For operators of higher order, this is no longer
true. In the right-hand side of the anti-a priori bound (2.17), there is a factor that grows as |µ| → ∞,
and the “sum-of-units” condition and the uniform boundedness imply estimates of the left-hand sides of
(2.37) and (2.38) only through O(τ2).

In [13], the result of Theorem 2.10 is extended to the differential operator (2.1) of any even order
with coefficients from the classes pm(x) ∈W

n−m
1 (G), m = 2, n, and with the coefficient p1(x) ≡ 0.

It turns out that it is considerably more difficult to prove that the “sum-of-units” condition is
necessary for the basis property of the system U.

The first result in this direction was obtained by V.D. Budaev [14,17]. For this purpose, he suggested
dividing the whole system U into three classes U1, U2, and U3 depending on the asymptotics of root
functions as |λ| → ∞ and studying the root functions of each of the classes separately. The first class
U1 contains all those root functions for which the leading term of the asymptotics oscillates, or, which is
the same, there exists a constant C1 > 0 such that the estimate ‖uk(·;λ)‖∞ ≤ C1‖uk(·;λ)‖2 holds. The
second class U2 contains those root functions which do not belong to the first class and are such that for
a certain compact set K ⊂ G, the estimate ‖uk(·;λ)‖2,K ≥ C2‖uk(·;λ)‖2 holds with the constant C2 > 0
that is the same for all functions of the class U2. Thus, the class U2 contains all root functions such that
the leading term of their asymptotics contains oscillating as well as exponential summands. And finally,
the class U3 consists of all other functions of the system U (i.e., those root functions whose leading term
of the asymptotics contains only exponential summands).

By using the suggested partition of the system U into these classes, he has succeeded in proving the
criterion for the unconditional basis property in the following form.
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Theorem 2.11 ([15,19,21]). Let the order n of operator (2.1) be even, let the coefficients pm(x) ∈
Wn−m
1 (G), m = 2, n, and let p1(x) ≡ 0. Let the system U of root functions of the operator L be complete

and minimal in L2(G), let the Carleman condition (2.23) and condition (A5) hold, and, moreover, let the
functions of the system U and the biorthogonally dual system V satisfy the uniform anti-a priori bounds
(2.36). Then each of the systems U and V has the unconditional basis property in L2(G) iff:

(1) the “sum-of-units” condition (2.22) and the condition of the uniform boundedness of ranks (2.21)
hold;

(2) the uniform estimate (1.28) of the product of norms holds;
(3) the uniform bounds (2.37) and (2.38) hold.

For operators of odd order, Theorem 2.11 was proved in [117].
The role of the anti-a priori bounds (2.36) in this theorem was revealed in [22].

Theorem 2.12. Let operator (2.1) satisfy all the conditions of Theorem 2.11, and let the system U of its
root functions be complete and minimal in L2(G). Moreover, let the ranks of eigenfunctions be uniformly

bounded. Then it is possible to construct a new system Ũ of root functions of the operator L such that:
(1) each function ũk(x;λ), k = 0,m(λ), λ ∈ Λ, of this system is a linear combination of the root

functions u0(x;λ), u1(x;λ), . . . , uk(x;λ) of the system U;

(2) the functions of the system Ũ and the system Ṽ biorthogonally dual to it satisfy anti-a priori
bounds (2.36);

(3) the system Ũ is complete in L2(G) whenever the system U is complete in L2(G).
Under the additional condition (1.28) imposed on the product of norms in L2(G) of the corresponding

functions of the systems Ũ and Ṽ,
(4) the unconditional basis property of the system U in L2(G) implies the unconditional basis property

of the system Ũ in L2(G).

Therefore, it follows from Theorem 2.12 and the result of [21] that the requirement of the uniform
boundedness of the ranks for eigenfunctions and the requirement of fulfillment of the anti-a priori bounds
(2.36) are interchangeable in studying the unconditional basis property of the system of root functions of
the operator L .

The further study of the necessity of conditions A for the basis property of the system U of root
functions of the operator L was carried out by N.B. Kerimov in the case where the order n ≥ 3 of the
operator is arbitrary and the coefficients pm(x), m = 1, n, are only Lebesgue integrable on G.

Theorem 2.13 ([95]). The finiteness of the rank m(λ) of the eigenfunctions of the system U ensures its
uniform minimality in Lp(G), 1 ≤ p ≤ ∞, under the condition that the following anti-a priori bound holds

uniformly in k = 1,m(λ) and λ ∈ Λ:

‖uk−1(·;λ)‖p ≤ C0(λ)k
(n/2)−ε‖uk(·;λ)‖p, (2.39)

where ε > 0 is a certain constant and the constant C0(λ) > 0 is independent of k.

Theorem 2.14 ([94,95]). The uniform boundedness of the rank m(λ) of eigenfunctions of the system U
is ensured by its uniform minimality in Lp(G), 1 ≤ p ≤ ∞, under the condition that the anti-a priori

bound of the following form holds uniformly in k = 1,m(λ) and λ ∈ Λ:

‖uk−1(·;λ)‖p ≤ C0k
(1/2)−ε‖uk(·;λ)‖p, (2.40)

where the positive constants ε and C0 are independent of k, as well as of λ.

Theorem 2.15 ([94,95]). The absence of finite accumulation points of the set of eigenvalues Λ is ensured
by any of the following two conditions:
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(1) the system U forms a basis in Lp(G), 1 < p < ∞, and, moreover, either the anti-a priori bound

of the form below holds uniformly in λ ∈ Λ and k = 1,m(λ):

‖uk−1(·;λ)‖p ≤ C0(λ)‖uk(·;λ)‖p, (2.41)

where the constant C0(λ) > 0 is independent of k, or the rank of the eigenfunctions of the system U is
finite;

(2) the system U is uniformly minimal in Lp(G), 1 ≤ p ≤ ∞, and, moreover, the uniform anti-a
priori bound (2.39) holds.

The distribution of the eigenvalues on the complex plane in conditions A is characterized by the
following two requirements: the “sum-of-units” condition (2.22) and the Carleman condition (2.23). As
in the case of a second-order operator, under the Carleman condition, the “sum-of-units” condition is
equivalent to the following estimate uniform in z ∈ C:∑

λ∈Λ: | n
√
λ−z|≤1

1 ≤ B̃1.

Theorem 2.16 ([94,104]). If the system U is uniformly minimal in Lp(G), 1 ≤ p <∞, then the multiple
Hausdorff condition holds, i.e., there exists a number δ0 > 0 such that for any z ∈ C,∑

λ∈Λ: | n
√
λ−z|≤δ0

1 ≤ n. (2.42)

Therefore, under the Carleman condition, the “sum-of-units” condition is a necessary condition not
only for the unconditional basis property of the system U in L2(G) but also for its uniform minimality in
one of the spaces Lp(G), 1 ≤ p <∞.

It should be noted that the problem on the necessity of the Carleman condition (2.23) for the
unconditional basis property of the system of root functions of operator (2.1) of order n > 2 remains
open.

2.7. Riesz means of spectral expansions. As follows from the theorems on the unconditional basis
property (Theorems 1.7 and 2.10), condition (1.28) of the uniform boundedness for the product of L2
norms of the corresponding functions of the biorthogonally dual systems U and V is a necessary and
sufficient condition for the convergence of the biorthogonal series to the function being expanded in the
metric of the space L2(G).

However, even for a second-order operator, it is possible to find a wide class of boundary-value
problems for which the product of norms of the root functions grows when |λ| grows.

Let the operator L be defined by the differential expression (1.1) with the potential q(x) ∈ W 1
1 (G)

on the interval G = (0, 1). We consider the general two-point boundary-value problem{
Lu = µ2u,
A(u′(0) u′(1) u(0) u(1))T = 0,

(2.43)

where

A =

(
a1 b1 a0 b0
c1 d1 c0 d0

)
,

with regular but not strengthened regular boundary conditions [151, pp. 71–73]. If we denote by Aij the
second-order minor of the matrix A at its ith and jth columns, then this is equivalent to the conditions
A12 = 0 and 0 	= A14+A23 = ∓(A13+A24). Let {uk(x)} be the system of root functions of problem (2.43).
Its completeness and minimality in L2(G) [170] imply the existence of the system {vk(x)} biorthogonally
dual to it.
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Theorem 2.17 ([137]). If the conditions A14 	= A23 and 2A
2
34 	= (A13+A24)(A14−A23)(q(1)−q(0)) hold,

then all the eigenvalues µ2k, probably except for finitely many of them, are simple, the Carleman condition
(1.26) holds, and

c1(|µk|+ 1) ≤ ‖uk‖2 ‖vk‖2 ≤ c2(|µk|+ 1), (2.44)

where c1, c2 > 0.

Now let q(x) ≡ 0. We complement the differential equation (1.1) by nonlocal Bitsadze–Samarskii
boundary conditions20: {

−u′′ = µ2u, 0 < x < 1,
u(0) = 0, u′(1) + εu(1) = α0u

′(0) +
∑m

l=1 αlu
′(ξl),

(2.45)

where ε, αl, l = 0,m, are arbitrary complex numbers, 0 < ξ1 < · · · < ξm < 1. The system of root functions
{uk(x)} of this problem is also complete and minimal in L2(G) [170], there exists a biorthogonally dual
system {vk(x)} for it, and the eigenvalues of problem (2.45) satisfy the Carleman condition.

Theorem 2.18 ([137,138]). (a) If all the numbers ξl, l = 1,m, are rational, then the right inequality in
(2.44) holds, and, moreover, |µk| cannot be replaced by |µk|

1−ε, ε > 0, simultaneously for all boundary-
value problems of the form (2.45).

(b) If at least one of the points ξl is irrational, then the product ‖uk‖2 ‖vk‖2 can grow on a certain
sequence of serial numbers k more rapidly than a function of k given in advance.

In such cases, to “improve” the convergence of biorthogonal series, one uses one or another summation
method. It seems to be natural21 to use for summing multiple trigonometric series the method suggested
by S. Bochner, the summation via Riesz means. In [55, Chaps. 2 and 3], the method for studying Riesz
means of spectral expansions corresponding to an arbitrary nonnegative self-adjoint expansion of the
Laplace operator on RN , which was suggested by V.A. Il’in, is described. This method does not use the
Carleman technique and Tauberian theorems. Its modification allows one to study the convergence of
Riesz means of biorthogonal expansions corresponding to a non-self-adjoint operator L of order n of the
general form in [74].

Let the coefficients in (2.1) belong to the class pm(x) ∈ Cn+1−m(G). Let the root functions of
the operator L which are understood in the generalized sense (see (2.3) and (2.4)) be enumerated in

nondecreasing order of |µ| = | n
√
λ|, and in each of the chains, in increasing order of the orders of associated

functions.
Following the classical definition, we introduce the Riesz means of order α ≥ 0 of a partial sum of

the biorthogonal series by the relation

σαt (x, f) =
∑
1≤k≤t

(
1−

µ2k
|µ[t]|2

)α

(f, vk)uk(x). (2.46)

We say that Riesz means have the basis property in L2 on any compact set in G if, for any function
f ∈ L2(G) and any compact set K ⊂ G, we have the relation

lim
t→∞
‖σαt (·, f)− f(·)‖2,K = 0. (2.47)

Let us introduce the following modified partial sum of Riesz means of order α ≥ 0 for the trigono-
metric Fourier series:

Sατ (x, f) =
2αΓ(α+ 1)
√
2π

τ (1/2)−α
∫

|x−y|≤R

|x− y|−α−(1/2)Jα+(1/2)(τ |x− y|)f(y) dy, (2.48)

20The well-known work [9] called attention to such problems for elliptic operators.
21See the discussion of the summation methods via Riesz means below in Subsection 5.2.
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where R > 0 is any number less than dist(x, ∂G). As for the modified partial sum (1.53) of the trigono-
metric Fourier series, Sατ (x, f) differs from the ordinary partial Riesz sum of order α for the trigonometric
Fourier series by the summand that tends to zero as τ →∞ uniformly on any compact set of the interval G.

We say that the spectral expansion of a function f(x) in the system of root functions {uk(x)} and
the expansion of the same function into the trigonometric Fourier series is equisummable via the Riesz
method of order α uniformly on any compact set in G if, for each compact set K ⊂ G,

lim
t→∞
|σαt (x, f)− Sα|µ[t]|(x, f)| = 0 (2.49)

uniformly in x ∈ K.
In [74], under the assumption that the total number of associated functions in the system {uk(x)} is

finite, the following assertion was proved.

Theorem 2.19. Let α < 1, and let the first four conditions A hold. Then, if for any compact set K ⊂ G,
the estimate

‖uk‖2,K ‖vk‖2 ≤ C(K)(1 + |µk|)
α (2.50)

holds uniformly in k ∈ N, we have the following:
(a) the Riesz means (2.46) of order α have the basis property in L2 on any compact set in G;
(b) the spectral expansion of an arbitrary function f ∈ L2(G) in the system {uk(x)} and the expansion

of the same function into the trigonometric Fourier series are equisummable via the Riesz method of order
α uniformly on any compact set K in G, and, moreover, for any α′ ∈ [α, 1), the following estimate holds:

sup
x∈K
|σα

′

t (x, f)− Sα
′

|µ[t]|
(x, f)| = o(1)|µ[t]|

α−α′‖f‖2. (2.51)

In [130], for a one-dimensional Schrödinger operator with potential belonging to the Hölder class
Cα(G), A. S. Makin has succeeded in omitting the restriction α < 1 and proving the assertion of Theo-
rem 2.19 in this case for any α ≥ 0.22

The omitting of the finiteness requirement of the total number of associated functions became possible
only after works [156–158] of A. Sh. Salimov, in which a new definition of Riesz means especially adapted
for the essentially non-self-adjoint case was introduced. For a one-dimensional Schrödinger operator, the
basis property of Riesz means in L2 on any compact set and the equisummability of Riesz means uniform
on any compact set in the case of infinitely many associated functions were proved in [139].

It was revealed for the operators of higher order that this definition of Riesz means is also not
appropriate. Let us present a modification of the classical definition suggested by A. I. Zuev in [40] for
operator (2.1) of any order n ≥ 2.

The Riesz means of order α ≥ 0 of a partial sum of the biorthogonal series for an arbitrary function
f ∈ L2(G) are

σαt (x, f) =
∑

k: |Reµk |≤|Reµ[t]|

(f, vk)
{
uk(x)

[(
1−

(Reµk)
2

(Reµ[t])2

)α

−2iα Imµk
Reµk
Reµ[t]

(
1−

(Reµk)
2

(Reµ[t])2

)α−1]
+

∑
1≤l<α+1,
uk−l∼uk

(−Ĉ)luk−l(x)

l!

dl

d(Reµk)l

(
1−

(Reµk)
2

(Reµ[t])2

)α}
, (2.52)

where uk−l ∼ uk means that the root functions uk−l(x) and uk(x) belong to one and the same chain, and

the constant Ĉ depending on the order of the operator n is taken from the Moiseev mean-value formula
[147].23 We note that for real µk and the order n of the operator being equal to two, the expression in
curly brackets on the right-hand side of (2.52) coincides with the definition of Riesz means given in [139].

22Estimate (2.51) was proved for any α′ ∈ [α, α+ 2) if additionally it is known that q(x) ∈ Cα
′
(G).

23For an even n, the constant Ĉ is equal to (−1)(n/2)+1/n.
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For the Riesz means defined by relation (2.52), the following result was proved.

Theorem 2.20 ([40]). Let all four conditions A hold. Moreover, let estimate (2.50) with constant α ∈
[0, 1) hold uniformly in k ∈ N. Then:

(a) the basis property in L2 on any compact set in G holds for the Riesz means of order α
′ with

α′ − [α′] > α, α′ > M − 1, (2.53)

where M = supλk∈Λm(λk) is the maximum rank of eigenfunctions in {uk(x)}, and, moreover, the spectral
expansion of an arbitrary function f ∈ L2(G) in the system {uk(x)} and the expansion of f(x) into the
trigonometric Fourier series are equisummable via the Riesz method of order α′ uniformly on each compact
set in G; moreover, estimate (2.51) in whose right-hand side we have the value o(1)|µ[t]|

α+[α′]−α′‖f‖2 holds;
(b) if the set {|Reµk| : λk ∈ Λ} is Hausdorff, then among the conditions imposed on α

′, the second
condition in (2.53) can be omitted completely.

We note that as in studying the equiconvergence, the central place in proving Theorems 2.19 and 2.20
is occupied by the obtaining of an estimate for Riesz means of the spectral functions of the biorthogonal
expansion.

Despite the results mentioned here, the study of Riesz means of the spectral expansion in root
functions of an ordinary differential operator of an arbitrary order is still not complete.

2.8. Abel–Poisson means of spectral expansions. In [126], another method for summing spectral
expansions was proposed for the case where the condition of uniform boundedness of the product of norms
(1.28) does not hold.

For the spectral expansion of a function f ∈ L2(G) in root functions of the Schrödinger operator
(1.1), in this work, the following modified Abel–Poisson means are studied:

At(x, f) =
∞∑
k=1

e−λkt(f, vk)
∑
l≥0

uk−l∼uk

(l!)−1tluk−l(x).

It was proved that if the potential q(x) of the operator belongs to the class C [2α]+2(G), then under the first
four conditions A, when estimate (2.50) holds for any compact set K ⊂ G and any function f ∈ L2(G),
we have the relation

lim
t→0+0

‖At(x, f)− f(x)‖2,K = 0,

i.e., the modified Abel–Poisson means At(x, f) have the basis property in L2 on any compact set in G.

2.9. Singular operators. As was already shown in Subsections 1.2 and 2.2, the coefficients pm(x) of
operator (2.1) can have singularities not Lebesgue integrable at the ends of the interval G; nevertheless,
all root functions of such an operator are absolutely continuous on the closed interval G. Therefore, for
such a singular operator L , it is natural, for example, to pose the problem on the unconditional basis
property of the system of root functions in L2(G).

For the first time, such studies were carried out by A.V. Kritskov for the Schrödinger operator (1.1)
whose potential satisfies condition (1.16). Using an explicit representation of regular solutions of Eq.
(1.8), Theorem 1.7 on the basis property of Riesz means of the system of root functions U of such an
operator was proved in [99, 100], estimates (1.42) and (1.44) of the root functions were obtained, and
an analog of estimate (1.42) in which the constant in O(1) is independent of the order of an associated
function was also proved in [98, 100]. The necessity of the conditions implied by conditions A of the
theorem on the unconditional basis property was proved.

Theorem 2.21 ([98]). If the system U of root functions with potential satisfying condition (1.16) forms
an almost normed basis in Lp(G) for a certain p > 1, then:

(a) the rank of eigenfunctions of the system is uniformly bounded;
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(b) in the set of eigenvalues Λ, we can always find a sequence {λk} such that c1k ≤ Re
√
λk ≤ c2k

and | Imλk| ≤ c3 with certain positive constants c1, c2, and c3;
(c) under the Carleman condition (1.26), the uniform “sum-of-units” estimate (1.25) holds.

Some results on the properties of root functions of the operator L of an arbitrary order n ≥ 2 with
coefficients satisfying conditions (2.8) were stated in [101, 102]. The problem on the fulfillment of the
theorem on the unconditional basis property for singular differential operators of arbitrary order remains
open for now.

The basis property of root functions of a second-order differential operator with a stronger singularity,
the Bessel operator L = −u′′ − x−1u′ + ν2x−2u, 0 < x < 1, on the weighted space L2,1 = {u(x) :∫ 1
0 u
2(x)xdx <∞} was considered in [38].

2.10. Operators with matrix coefficients. The main results on the unconditional basis property of
the system of root functions and those on the equiconvergence of the spectral expansion and the expansion
into the trigonometric Fourier series uniform on any compact set can be extended, practically without
changes, to the case of operator (2.1) with matrix coefficients.

Let U(x) = (u1(x), . . . , um(x))
T be an m-dimensional vector-valued function of the argument x ∈

G = (a, b). We consider the differential expression

LU = U (n) + P1(x)U
(n−1) + · · · + Pn−1(x)U

′ + Pn(x)U, (2.54)

in which Pj(x), j = 1, n, are (m×m)-matrices all of whose entries are only Lebesgue integrable on G in
general.

In [54], operator (2.54) of the second order (n = 2) for which P1(x) ≡ 0 was considered. Theorem 1.7
on the unconditional basis property of the system of vector-valued root functions understood in the

generalized sense in the space Lm2 (G) with the norm ‖f‖ =
(∑m

i=1

∫
G |fi(x)|

2 dx
)1/2

was proved; also,
the necessity of the “sum-of-units” condition for such a basis property was proved. In [57], for the same
operator, the equiconvergence of each component of the biorthogonal expansion

f(x) ∼
∞∑
k=1

(f, Vk)mUk(x) (2.55)

of an arbitrary function f ∈ Lmp (G), p ≥ 1, in the system of vector-valued root functions and the
corresponding component of f(x) into the trigonometric Fourier series uniform in each compact set was
proved.

As a consequence of the last result, in [57], the componentwise localization principle was presented;
the essence of this principle can be expressed as follows. The convergence and the divergence of each
component of the biorthogonal expansion depend only on the behavior of this component of the function
being expanded in a certain neighborhood of a point, despite the fact that, as follows from (2.55), the
coefficients (f, Vk)m =

∑m
l=1(fl, {Vk}l) of each component contain all the components fl(x), l = 1,m, of

the functions being expanded.
The case of operator (2.54) of an arbitrary order n ≥ 2 with matrix coefficients Pm(x), m = 1, n,

whose entries pmij(x) satisfy the conditions pmij(x) ∈W
n−m
1 (G) was considered in [16,20,117]. By using

the mean-value formula obtained for such an operator, the properties of the vector-valued root functions
were studied, and a theorem on the unconditional basis property of the system formed by them in Lm2 (G)
was proved.

The componentwise estimate of the difference of a partial sum of the expansion of a function f(x) in
root vector-valued functions of the Schrödinger operator with matrix-valued potential and a partial sum
of expansion of this component of the function f(x) into the trigonometric Fourier series was proved in
[154] for the vector-valued function f(x) with monotone components.

In [34–37], a more general statement of the eigenvalue problem was studied for operator (2.54). As
eigenvalues of this operator, we consider not complex numbers but complex diagonal matrices. In other
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words, the vector-valued root functions of operator (2.54) satisfy not Eq. (2.34) but the equation

LUk(x; Λ) = ΛUk(x; Λ) + sign k M̃Uk−1(x; Λ), (2.56)

in which Λ = diag{λ(1), λ(2), . . . , λ(m)}, M̃ = E for |Λ|min ≤ 1, and M̃ = Mn−1 for |Λ|min > 1, where
M = Λ1/n and |Λ|min = min

1≤l≤m
|λ(l)|.

Let {Uk(x)} be a system of chains of vector-valued root functions of operator (2.54) enumerated in
a certain way, and let {Λk} be the set of corresponding eigenvalues. Let the following conditions hold:

(1) for a certain p ≥ 1, the system {Uk(x)} is closed and minimal in Lmp (G);
(2) the sequence of diagonal matrices {Mk} corresponding to the sequence of diagonal eigenvalues

{Λk} has the following four properties:
(a) supk | ImMk|max <∞, where |diag{α1, . . . , αm}|max = max

1≤l≤m
|αl|;

(b) sup
t≥0

∑
t≤|ReMk|min≤|ReMk|max≤t+1

1 <∞;

(c) condition numbers of the matricesMk, which are equal to |Mk|max/|Mk|min, are uniformly bound-
ed;

(d) the elements of the sequence {Mk} can be enumerated in an order such that for any l = 1,m,

the sequence {|µ
(l)
k |} monotonically nondecreases starting from a certain serial number.

For a system of vector-valued root functions {Uk(x)} satisfying these conditions, the theorem on
the componentwise equiconvergence of the biorthogonal expansion of any vector-valued function from the
class Lmp (G) with its expansion into the trigonometric Fourier series was proved.

2.11. Other results. We briefly mention a number of results characterizing other functional properties
of systems of root functions of the ordinary-differential operator (2.1).

If the Bessel-type inequality (1.20) characterizes the coefficients of the biorthogonal expansion of a
function f ∈ L2(G) as elements of the space l2, then the left-hand side of the double inequality (1.22)
shows that the sequence of these coefficients belongs to other spaces ls, s > 1. In this sense, the well-known
theorem of F. Riesz [39, pp. 153–154] on the Hausdorff–Young inequality(

∞∑
k=1

|(f, ek)|
p/(p−1)

)(p−1)/p
≤ A‖f‖p, 1 < p ≤ 2, (2.57)

for an arbitrary uniformly bounded orthonormal system {ek} shows that the coefficients {(f, ek)} belong
to the space l(p−1)/p if the function f(x) being expanded belongs to the space Lp(G), where 1 < p ≤ 2.

For systems of root functions of the Schrödinger differential operators (1.1) and an operator of an
arbitrary order, the Hausdorff–Young inequality was proved in [83,84,105,117,120] based on the technique
developed for eigenfunctions of the Laplace operator in [61].

Conditions ensuring the fulfillment of the Hilbert-type inequality (1.21) for systems of root functions
of ordinary differential operators were considered in [85,140–142]. The technique of these works develops
ideas established in [53].

A slightly different approach to the analysis of the Bessel and Hilbert properties of systems of root
functions was suggested in [2,23,24].

In a number of works [42–44], the basis properties and the equiconvergence property with the trigono-
metric Fourier series of expansions in eigenfunctions and associated functions of M.V. Keldysh’s pencils
of ordinary differential operators of arbitrary order were studied.

The relation between the basis property of systems of root functions and the integrability of nonlinear
evolutionary equations admitting P. Laks’ L−A-representation was studied in [63,64,143].
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3. Discontinuous Differential Operators

3.1. Nonlocal boundary-value problems: the concept and examples. As was already mentioned
above, attention was drawn to the nonlocal problem24 in the work [9] of A.A. Samarskii and A.V. Bitsadze.

Conditions containing values of the unknown function or its derivatives at interior points of the
domain of the differential expression considered are conventionally said to be nonlocal.

For ordinary differential operators, for example, these are the so-called multipoint problems in whose
boundary conditions we have values at fixed interior points of the interval considered. Let us present the
statements of model problems of such a type.

Let the operator L be defined by the second-order differential expression (1.1) on the interval G =
(a, b) with a Lebesgue integrable potential q(x). Consider an arbitrary set of points {ξl}

N
l=1 of the interval

G enumerated in increasing order: a < ξ1 < ξ2 < · · · < ξN < b. The problem{
Lu ≡ −u′′ + q(x)u = λu, x ∈ G,
u(a) = 0, u(b) =

∑N
l=1 αlu(ξl)

(3.1)

is called a nonlocal boundary-value problem of the first kind [68], and the problem{
Lu ≡ −u′′ + q(x)u = λu, x ∈ G,

u(a) = 0, u′(b) + εu(b) =
∑N

l=1 αlu
′(ξl)

(3.2)

is called a nonlocal boundary-value problem of the second kind [69].25

A specific feature of multipoint problems is that the problems adjoint to them are defined on a set
of discontinuous functions.

Denote by y[ξ] the jump of a function y(x) at a point ξ, which is equal to y(ξ+0)− y(ξ− 0). Taking
into account this notation, we see that the problems adjoint to (3.1) and (3.2) have the following form:{

L ∗v ≡ −v′′ + q(x)v = λ∗v, x ∈ G, x 	= ξl, l = 1,N,

v(a) = v(b) = 0, v[ξl] = 0, v′[ξl] = αlv
′(b), l = 1,N,

(3.1∗)

{
L ∗v ≡ −v′′ + q(x)v = λ∗v, x ∈ G, x 	= ξl, l = 1,N,

v(a) = 0, v′(b) + εv(b) = 0, v[ξl] = αlv(b), v
′[ξl] = 0, l = 1,N.

(3.2∗)

If spectral properties of multipoint boundary-value problems themselves can be studied on the set of
regular solutions of the corresponding differential equations with a spectral parameter, then the following
example [114] shows that the direct and adjoint operators can have discontinuous functions in their
domains: {

Lu ≡ −u′′ = λu, 0 < x < 1,
u′(0) = 0, u′(1) = u′(1/2), u′[1/2] = 0, u[1/2] = u(0),

(3.3)

{
L ∗v ≡ −v′′ = λ∗v, 0 < x < 1,
v′(1) = 0, v′(0) = −v′(1/2), v′[1/2] = 0, v[1/2] = v(1).

(3.3∗)

Since we need to consider simultaneously the root functions of the adjoint operator in studying the
basis property of root functions of the operator, in the case of nonlocal boundary-value problems it is
necessary to omit the requirement of regularity of solutions to the equation with a spectral parameter.

The boundary conditions of multipoint problems are, in essence, linear functionals on the space of
functions that are continuous, together with their first derivatives on the closed interval G. If we admit
the possibility of considering the vanishing of a linear functional of an arbitrary form as a boundary
condition, then by the Riesz theorem, the range of problems under study should include operators whose
boundary conditions contain integral summands.

24Further references on this subject are presented in [68].
25Here, ε, α1, . . . , αN are arbitrary complex numbers.
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As an example, we consider the following modification of problem (3.1):
Lu ≡ −u′′ + q(x)u = λu, x ∈ G,

u(a) = 0, u(b) =
∑N

l=1 αlu(ξl) +
b∫
a

ρ(x)v(x) dx,
(3.4)

where ρ(x) is an arbitrary complex-valued function that is Lebesgue integrable on G. The problem adjoint
to (3.3) is the problem in which the differential expression now contains the following additional summand:{

L ∗v ≡ −v′′ + q(x)v + v′(b)ρ(x) = λ∗v, x ∈ G, x 	= ξl, l = 1,N,

v(a) = v(b) = 0, v[ξl] = 0, v′[ξl] = αlv
′(b), l = 1,N.

(3.4∗)

Such differential expressions are conventionally said to be loaded.
The pairs of adjoint problems (3.1) and (3.1∗), (3.2) and (3.2∗), (3.3) and (3.3∗), and (3.4) and

(3.4∗) presented here demonstrate one of the features of nonlocal boundary-value problems with integral
conditions of general form,26 the complicated structure of the adjoint operator. We indicate the Braun
result presented in [187] in this connection, where the adjoint operator for a general differential expression
of the nth order was constructed in an explicit form.

3.2. Unconditional basis property of the system of root functions. For the first time, the case
where the operator L and its adjoint are defined on the class of discontinuous functions was studied in
[52].27 The theorem on the unconditional basis property for root functions of the discontinuous Schrödinger
operator (1.1) obtained there literally repeats Theorem 1.7 presented in the regular case.28 Only the
definition of a root function of the operator L was changed.

Let points {ξl}
N
l=1 give a partition of the interval G = (a, b) considered, and, moreover, let a ≡ ξ0 <

ξ1 < ξ2 < · · · < ξN < b ≡ ξN+1. An eigenfunction (associated function of kth order) is any nontrivial
solution of Eq. (1.9) (resp. (1.10)) on G \ {ξl}

N
l=1 that is absolutely continuous, together with its first

derivative, on each partial closed interval [ξl−1, ξl], l = 1,N + 1, of the partition.
Such a treatment of the concept of a root function of the operator requires again neither indication

of the concrete form of boundary conditions nor correction of “gluing” conditions of the root function and
its derivative at the points ξl.

For example, as the analysis of problems (3.3) and (3.3∗) carried out in [114] and also the study of
problem (3.2) in [137,138] shows, to verify all the conditions ensuring the unconditional basis property of
the system of root functions in L2(G), as in the regular case, it suffices to know only the leading terms of
the asymptotics of eigenvalues and root functions of the operator.

In [166], it was shown for the first time that Theorem 1.7 on the unconditional basis property can also
be justified for root functions of a second-order operator with a loaded differential expression containing
the value of the unknown function with deviated argument of the form u(ν(u(x)), where ν(x) : G→ G is an
arbitrary monotone function whose inverse function is continuously differentiable. However, the loaded
differential operators of such a form do not cover boundary-value problems adjoint to boundary-value
problems with integral conditions (such as problem (3.4∗)). The first steps in studying such operators
were made in [113, 167], where representations and estimates of the corresponding root functions were
obtained.

We give here a result on the unconditional basis property of root functions of a discontinuous scalar
operator generated by a second-order differential expression of the general form and with general integral
conditions on G in more detail (see [115,116]).

26Obviously, the second conditions of problems (3.1) and (3.2) can also be written by using appropriate Stieltjes integrals
with respect to discrete measures.
27A survey of results that appeared before this publication is contained in [115].
28In [54], the theorem on the unconditional basis property was also extended to the case of the discontinuous Schrödinger

operator with a matrix potential.
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On the closed interval G = [a, b], let vector singular measures29 νj(x) = (νj1(x), νj2(x)), j = 1, 2,
of bounded variations that are right-continuous at all points of the interval G be given. We write their
representation νj = νscj + νsaj in the form of the sum of the continuous parts νscj and the jump functions of

the measure νsaj . Points of discontinuity of the jump functions are denoted by {ξp}∞p=0 ⊂ G, and, without
loss of generality, we assume that they are common for νsa1 , as well as for ν

sa
2 .

Denote by D the set of those functions u ∈ L2(G) for which there exists a vector30 ϕ = (ϕ1, ϕ2)
T ∈ C2

such that the following conditions hold: (1) the functions u(x) + ν1[a, x]ϕ and −u′(x) + ν2[a, x]ϕ are
absolutely continuous on G; (2) the function u(x) has finite limit values u(a+0) and u(b− 0) at the ends
of G.

Let T = {τp}∞p=0 be an arbitrary partition of G, and, moreover, let τ0 = a, τ1 = b, τp 	= τj for

p 	= j, p, j ≥ 0. With each point τp ∈ T , we associate the functions R±jp(x), j = 1, 2, and, moreover,

R+j1 = R−j0(x) ≡ 0.
Let us consider the operator L generated by the differential expression

Lu(x) = −u′′(x) + q(x)u(x) +
2∑

j=1

±
∞∑
p=0

R±jp(x)u
(2−j)(τ±p ) + V (x)ϕ (3.5)

on the set D . Here, τ±p = τp ± 0, τ−0 = a, τ+1 = b, and the sign ± of the sum means that first, we take

the sum
∑2

j=1 of all summands with a plus sign and then the same sum of summands with a minus sign.

We assume that the functions q(x) and R±jp(x) and each of the components of the vector-valued

function V (x) are Lebesgue integrable on G, and, moreover, the numerical series

∞∑
p=0

‖R±jp‖1 <∞, j = 1, 2, (3.6)

converge.
Assume that the adjoint operator L ∗ is generated by the following expression analogous to (3.5):

L ∗v(x) = −v′′(x) + q(x)v(x) +
4∑

j=3

±
∞∑
p=0

R±jp(x)v
(2−j)(χ±p ) + Ṽ (x)ϕ (3.7)

on the set of functions D ∗, which is similar to D , but which is introduced according to a more complicated
scheme.31 Let the singular measures ν3 and ν4 in the definition of the set D ∗ have discontinuities at the
same points {ξp}∞p=0, and let the functions R±jp(x) and the components Ṽ (x) be Lebesgue integrable on

G and series (3.6) with j = 3, 4 converge.
We impose the following restrictions on the discontinuous operator considered:

(1) set NV =
⋂
x∈G

kerV (x), N a
j =

∞⋂
p=2

ker(νsaj [ξp]), N
c
j =

⋂
x∈G

ker(νscj [a, x]), j = 1, 4, and require that

these kernels satisfy the inclusions

N a
1 ⊆ N

c
1 , ∃j, l = 1, 2 : N a

j ⊆ N
c
2 ,N

a
l ⊆ NV ;

N a
3 ⊆ N

c
3 , ∃j, l = 3, 4 : N a

j ⊆ N
c
4 ,N

a
l ⊆ NṼ

;
(3.8)

(2) if N a
1 	⊆ NV , then we require that V ∈ L2(G)×L2(G), and if N a

3 	⊆ NṼ
, then Ṽ ∈ L2(G)×L2(G);

29As follows from [187], only the singular part of a measure influences the structure of solutions of the adjoint operator.
30In most boundary-value problems, the vector ϕ is expressed through the values of u and u′ at the ends of the interval

G [116].
31The classes D and D ∗ on which the discontinuous operators L and L ∗ act can be introduced in a symmetrical way

[118].
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(3) the coefficients R±jp(x) in the differential expressions (3.5) and (3.7) for j = 1 and j = 3 are such
that

∞∑
p=0

|R±jp(x)| ∈ L2(G). (3.9)

By a root function uk(x;λ) of the operator L , we mean an arbitrary nontrivial solution of the equation

Luk(x;λ) = λuk(x;λ) − sign k µ̃ uk−1(x;λ)

that belongs to the class D ; here, as in (1.10), λ ∈ C is an eigenvalue, k ≥ 0 is the order of the root

function, and µ =
√
λ is an especially chosen value of the square root of λ, µ̃ = µ for |λ| > 1 and µ̃ = 1

for |λ| ≤ 1.
We consider the set U of chains of root functions of the operator L corresponding to a certain

countable set of eigenvalues Λ ⊂ C such that U = {uk(x;λ) | k = 0,m(λ), λ ∈ Λ}. Let all conditions A of
Theorem 1.7 on the unconditional basis property in the regular case hold, i.e.,

(A1) the system U is complete and minimal in L2(G);
(A2) the ranks m(λ) of eigenvalues are uniformly bounded in λ ∈ Λ;
(A3) the uniform “sum-of-units” estimates (1.25) hold;
(A4) the Carleman condition (1.26) holds,
(A5) the system V biorthogonally dual to U consists of the functions of class D ∗ satisfying the

equation L ∗vk(x;λ) = λvk(x;λ)− sign k µ̃ vk−1(x;λ).

Theorem 3.1 ([116]). Each of the systems U and V forms an unconditional basis in L2(G) iff the uniform
estimate (1.28) of the product of norms holds.

Remark. In [116], the necessity of the “sum-of-units” estimate for the unconditional basis property of
the system U was proved, but this was done only under additional restrictions imposed on the operator L .

The base of the proof of Theorem 3.1, as in the regular case, consists in the justification of the
Bessel property for the system U normalized in L2(G). The main tool for this justification consists in the
integral representations of root functions, the “shift” formula [115, Theorem 1]. As compared with the
similar formula (1.11) of the regular case, it contains additional summands depending on the “load” of
the differential expression and the singular measures νj(x).

A principal role of such a proof is the obtaining of estimates for norms of root functions and their
derivatives in the space Lp. The corresponding result for the case of operator (3.5) considered above was
proved in [115, Theorem 2].

Theorem 3.2. Let the coefficients in the differential expression (3.5) be Lebesgue integrable, and let
conditions (3.6) and (3.8) and the Carleman condition (1.26) hold. Then there exists a compact set
K ⊂ G such that the following estimates hold uniformly in λ:

‖u
(α)
k (·;λ)‖∞ = O(1)

(
1 + |
√
λ|
)α−β

‖u
(β)
l (·;λ)‖2,K , (3.10)

where α, β ∈ {0, 1}, 0 ≤ k ≤ l, and the constant in O(1) depends only on the orders k and l of the root
functions.

Estimates (3.10) in the regular case transform into estimates (1.42)–(1.46) of Theorem 1.8.32

We note that the results of Theorems 3.1 and 3.2 extend to the case of expression (3.5) with matrix
coefficients without changes [115,116].

32The case where the Carleman condition does not hold and the norms of root functions are taken in the spaces Lp,
1 ≤ p ≤ ∞, is not considered in [115].
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The basis property of root functions of the discontinuous operator generated by the general loaded
nth-order differential expression

Lu = u(n)(x) +
n∑

m=1

pm(x)u(n−m)(x) + ∞∑
p=0

±R±mp(x)u
(n−m)(τ±p )

+ V (x)ϕ (3.11)

is studied in [118]. The representation obtained in this case and the estimates of root functions generalize
the analogous results of the regular case (see Theorems 2.3, 2.4, and 2.10).

In [7, 8], the discontinuous operator (3.5) was studied in the case where its coefficient q(x) admits
nonintegrable singularities at the ends of the interval G such that condition (1.16) holds.

3.3. Problems with multipoint boundary conditions: the uniform convergence of spectral
expansions. To justify the Fourier method for solving the mixed problem for nonstationary equations
with multipoint boundary conditions,33 it is necessary to note which conditions on the function being
expanded ensure the absolute and uniform convergence of the corresponding biorthogonal series on the
closed interval G.

In [160], for the nonlocal boundary-value problem (3.1) of the first kind with q(x) ≡ 0, it was shown
that the conditions ensuring the absolute and uniform convergence of the spectral expansion are the same
as in the self-adjoint case: the function f(x) being expanded should belong to the Sobolev space W 1

2 [0, 1]
and satisfy the boundary conditions.

The general case was studied by I. S. Lomov.34 He considered the Schrödinger operator (1.1) with an
arbitrary potential q(x) Lebesgue integrable on G on the class of functions u = u(x) that are absolutely
continuous, together with their first derivatives, on G and satisfy the multipoint boundary conditions of
an arbitrary form

B(u) ≡
2∑
i=1

∞∑
p=0

u(2−i)(ξp)α
p
i = (0 0)T , (3.12)

where the points ξp form a partition of the closed interval G, and, moreover, ξ0 = a, ξ1 = b, and the

coefficients αpi = (αpi1, α
p
i2)

T ∈ C2 are such that
∑2

i,j=1

∑∞
p=0 |α

p
ij | <∞.

Theorem 3.3. Let the domain of the operator be dense in L2(G), and let the first four of conditions A
of Theorem 1.7 hold.35 If f ∈W 1

2 (G) and

B2(f) ≡
∞∑
p=0

f(ξp)α
p
2 = (0 0)T , (3.13)

then the biorthogonal expansion of f(x) in root functions of the operator considered converges absolutely
and uniformly on G.

The requirements on the smoothness of the function being expanded are obviously sharp in terms of
Sobolev classes with integer exponents. A further refinement of the exponent of smoothness is possible
only in terms of Hölder or Nikol’skii classes.

Remark. We note that a part of formula (3.12) with i = 1 is not connected with f(x) at all in the
theorem. An analogous situation also takes place for ordinary two-point boundary conditions.

33The correctness of the statement of such problems was studied in [68–70].
34The corresponding publication is in preparation.
35The fifth of conditions A obviously holds automatically.
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3.4. Convergence of spectral expansions at a discontinuity point of coefficients. On the interval
G = (a, b), we consider the differential operator

Lu = −(r(x)u′)′ + q(x)u, (3.14)

whose coefficient r(x) is discontinuous at some point x0 of the interval G. We assume that

r(x) ∈ C2(a, x0] ∩ C
2[x0, b), inf

x∈G
r(x) > 0,

and q(x) is an arbitrary complex-valued function continuous on G.
We define root functions uk(x;λ) of operator (3.14) as solutions of Eq. (1.10) regular on each of the

intervals (a, x0) and (x0, b) and satisfying the following “gluing” condition at the point x0:{
uk(x0 − 0;λ) = uk(x0 + 0;λ),
r(x0 − 0)u′k(x0 − 0;λ) = r(x0 + 0)u′k(x0 + 0;λ) + βuk(x0 + 0;λ),

(3.15)

where β ∈ C is arbitrary.
Let the set of eigenvalues Λ and the system U of root functions defined in such a way satisfy two

conditions in Ap from Subsection 1.8 for a certain p > 1, which allows us to enumerate the root functions

in nondecreasing order of |
√
λ|, λ ∈ Λ, and in each chain, in increasing order of the orders of associated

functions.
It is natural to ask: to what does the biorthogonal series of such a system U of discontinuous root

functions converge at the point of discontinuity x0? An answer to this question can be given by comparing
a partial sum σn(x, f) of the biorthogonal series (1.52) with the modified partial sum

S̃|
√
λn|

(x, f) = π−1
x+δ∫
x−δ

sin |
√
λn|(y − x)

y − x
f(y) dy (3.16)

of the trigonometric Fourier series (δ < min{b− x0, x0 − a}) at the point x0.
For this purpose, we consider the function t = t(x) =

∫ x
x0
[r(τ)]−1/2 dτ and its inverse x = x(t). We

set ρ(t) = x(t) − x0 and γ(x) = [r(x)/r(x0 ± 0)]−1/4, where the plus sign is chosen for x > x0, and for
x < x0, the minus sign is chosen.

Using the function f ∈ Lp(G) expanded into series, we construct the new function

f̃(x) =


2
√
r(x0 + ρ(x− x0))√

r(x+ 0) +
√
r(x− 0)

γ(x0 + ρ(x− x0))f(x0 + ρ(x− x0)) if |x− x0| < δ,

0 if |x− x0| ≥ δ.

(3.17)

Theorem 3.4 ([12]). In addition to conditions Ap, let the uniform estimate (1.55) of the product of norms
hold. Then

lim
n→∞

|σn(x0, f)− S̃|
√
λn|

(x0, f̃)| = 0. (3.18)

Remark. Such an “equiconvergence” (3.18) was studied in [45] for the self-adjoint case.

The well-known fact on the convergence of the trigonometric Fourier series at a point of discontinuity
of the function being expanded to the half-sum of its right and left limit values at the point x0 implies that
the biorthogonal expansion σn(x, f) converges to the weighted mean, which is equal to [

√
r(x0 + 0)f(x0+

0) +
√
r(x0 − 0)f(x0 − 0)]/(

√
r(x0 + 0) +

√
r(x0 − 0)).
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Chapter 2

ELLIPTIC DIFFERENTIAL OPERATORS

4. Second-Order Elliptic Differential Operators and Their Root Functions

4.1. Statement of the problem. The main object of the study in this chapter is the general second-
order elliptic operator

Lu =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

N∑
j=1

bj(x)
∂u

∂xj
+ c(x)u, (4.1)

which is considered on an arbitrary domain Ω of the space RN of dimension N ≥ 2.
We assume that the coefficients aij(x) are real-valued functions satisfying the uniform ellipticity

condition in Ω, i.e., for all x = (x1, . . . , xN ) ∈ Ω and all real numbers ξ1, . . . , ξN , the following relations
hold:

aij(x) = aji(x), i, j = 1,N,

N∑
i,j=1

aij(x)ξiξj ≥ α

N∑
i=1

ξ2i ≡ α‖ξ‖2 (4.2)

with a certain positive constant α.36 Other coefficients in (4.1) can be complex-valued functions on Ω.
First, the following minimal assumptions are made on the smoothness of the coefficients of the operator L :

aij(x),
∂aij(x)

∂xi
, bj(x), c(x) ∈ C(Ω). (4.3)

An important particular case of operator (4.4) is the higher-dimensional Schrödinger operator

Lu = ∆u− q(x)u (4.4)

with complex-valued potential q(x) and also the simplest second-order elliptic operator, the Laplace
operator, i.e., operator (4.4) with q(x) ≡ 0.

Along with operator (4.1), we consider its formal adjoint operator

L ∗v =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂v

∂xj

)
−

N∑
j=1

∂

∂xj

[
bj(x)v

]
+ c(x)v, (4.5)

which under the condition

∂bj(x)

∂xj
∈ C(Ω) (4.6)

belongs to the same class of elliptic operators as the operator introduced above.
Since the operators L and L ∗ are distinct in general, on any appropriate domain we deal with the

non-self-adjoint case. However, even for the Laplace operator, we can pose the boundary conditions in
such a way that the corresponding problem is not self-adjoint.37

In this connection, along with eigenfunctions, we need to consider associated functions, and, as
in the one-dimensional case, to cover all possible particular statements of problems for operator (4.1),
we introduce the concept of a root (i.e., eigen- and associated) function of the operator L with the
only requirement that it be a regular solution of the corresponding differential equation with a spectral
parameter.

36The uniform ellipticity condition can hold not on the whole domain Ω but on any compact set K in this domain; in this
case, the constant α in inequality (4.2) can depend on the compact set considered.
37For example, the oblique derivative problem for the Laplace operator in the disk [73] and also various nonlocal boundary-

value problems (see, e.g., [149]) are such problems.
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An eigenfunction u0(x;λ) of operator (4.1) is any function of class C2(Ω) not identically equal to
zero such that in Ω, it satisfies the equation

Lu0(x;λ) + λu0(x;λ) = 0 (4.7)

for a certain λ ∈ C and belongs to the class L2(Ω). The number λ in (4.7) is called an eigenvalue of the
operator L . An associated function ul(x;λ) of order l ≥ 1 corresponding to this eigenvalue λ and this
eigenfunction u0(x;λ) is any function of class C2(Ω) such that in Ω, it satisfies the equation

Lul(x;λ) + λul(x;λ) = ul−1(x;λ) (4.8)

and belongs to the class L2(Ω) (here, ul−1(x;λ) is either an eigenfunction if l = 1 or an associated function
of order l− 1 if l ≥ 2). The sequence of functions u0(x;λ), u1(x;λ), . . . , un(x;λ) is called a chain of root
functions.

For simplicity, we consider only those systems U of root functions of operator (4.1) which consist of
chains of root functions corresponding to eigenvalues from a certain countable set Λ ⊂ C: {ul(x;λ) | l =
0,m(λ), λ ∈ C}.

It should be noted that not for all problems related to the elliptic operator can the system U be
divided into chains of root functions. For example, such a system is naturally formed by root functions
of the Laplace operator in the square [0, 1] × [0, 1] with the boundary conditions38 u(0, x2) = u(x1, 0) = 0,

∂u

∂x1
(0, x2) =

∂u

∂x1
(1, x2),

∂u

∂x2
(x1, 0) =

∂u

∂x2
(x1, 1), 0 ≤ x1, x2 ≤ 1,

which are a “product” of nonlocal Samarskii–Ionkin problems with respect to each variable (see [131] for
more details).

A specific feature of spectral problems for elliptic operators is a more complicated (as compared
with the one-dimensional case) structure of the set of eigenvalues Λ. Even in the self-adjoint case, any
sequence of real numbers can be a part of the set of eigenvalues of the Laplace operator [55, pp. 29–36].
As for the non-self-adjoint case, for any sequence of real numbers, for the Laplace operator in the square,
we can find boundary conditions such that all numbers of this sequence are eigenvalues, and infinitely
many eigenfunctions and infinitely many associated functions of the first order correspond to each such
eigenvalue [59]. In this case, the system of all root functions of such a problem forms a Riesz basis in L2
over the square. Thus, the characterization of the behavior of the “counting” function

n(r) =
∑

λ∈Λ: |λ|≤r

1 (4.9)

of the set of eigenvalues Λ simultaneously for all boundary-value problems connected with elliptic operators
(4.1) is not possible.

Along with this, as follows from the example in [108], owing to the choice of the potential in the
periodic boundary-value problem for the Schrödinger operator (4.4), we can attain the property that the
orders l of associated functions in the system U increase when |λ| increases. Therefore, the maximum
order of associated functions in chains is not uniformly bounded in general39 (in contrast to Theorems 1.9
and 2.14 of the one-dimensional case).

The mentioned specific feature of spectral problems for operator (4.1) on the space of dimension
greater than two stresses the complexity of studying biorthogonal expansions arising here simultaneously
in the whole range of possible variants and explains in many respects the lesser obtained results as
compared with the one-dimensional case.

38That is, as a product of root functions of the one-dimensional problem (1.2).
39Other such examples are discussed in [133,134].
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4.2. Mean-value formula. One of the main tools in studying spectral properties of elliptic operator
(4.1) considered here is the so-called mean-value formula for root functions.

In the case of the Laplace operator, the mean-value formula for eigenfunctions relates its mean value
on any sphere in Ω with the value of the eigenfunction at the center of this sphere.

Let x be an arbitrary point of the domain Ω ⊂ RN , and let the number r be less than or equal to
dist(x, ∂Ω). Denote by θ = (θ1, . . . , θN−1) angular hyperspherical coordinates, by dθ an area element in
these coordinates, and by

∫
θ F (x+ rθ) dθ the integral taken over all angular coordinates on the surface of

the N -dimensional sphere of radius r centered at the point x.
We set ν = (N − 2)/2 and denote by µ = µ(λ) the square root of the eigenvalue λ whose real part is

nonnegative. Then the mean-value formula for the eigenfunction of the Laplace operator has the form∫
θ

u0(x+ rθ;λ) dθ = (2π)N/2(µr)−νJν(µr)u0(x;λ). (4.10)

For self-adjoint expansions of elliptic operators, the methodology elaborated on the basis of this
formula [55] allows one to obtain very fine results on the convergence of the corresponding spectral
expansions which are final in various classes of differentiable functions.

For an associated function of order l ≥ 1, the mean-value formula connects its mean value on the
sphere with the values of this function and all root functions of the corresponding chain of order less than
l at the center of the sphere [66].

Here, we present the mean-value formula for root functions of the Schrödinger operator (4.4) obtained
by A. S. Makin [132].

Let n ∈ N, and let Yn(θ) be any hyperspherical function of order n. We set

Wn(r, ρ;λ) =
π

2

(ρ
r

)ν
ρ [Nν+n(µr)Jν+n(µρ)−Nν+n(µρ)Jν+n(µr)] , (4.11)

where Jν+n(z) and Nν+n(z) are the cylindrical Bessel and Neumann functions of order ν + n.

Theorem 4.1. Let the potential q(x) in (4.4) belong to the class Cn(Ω), n = 0, 1, 2, . . . , and let N ≥ 2.
Then for any eigenvalue λ 	= 0, the following relation holds:

α−1n

∫
θ

ul(x+ θr;λ)Yn(θ) dθ

=
l∑

k=0

(−1)k

k!

∂k

∂λk

[
Jν+n(

√
λr)rn

(
√
λr)ν+n

] ∫
θ

∂nul−k(x, θ;λ)

∂rn
Yn(θ) dθ

+
l∑

k=0

r∫
0

(−1)k

k!

∂kWn(r, ρ;λ)

∂λk

α−1n ∫
θ

q(x+ θρ)ul−k(x+ θρ;λ)Yn(θ) dθ

 dρ, (4.12)

where αn = (n!)−1Γ(ν + n+ 1)2ν+n and the notation ∂nul−k(x, θ;λ)/∂r
n means the value of ∂nul−k(x+

θr;λ)/∂rn for r = 0.

Following the approach suggested by E. I. Moiseev [146], the mean-value formula can also be written
for the general elliptic operator (4.1) if the coefficients aij(x) are sufficiently smooth40 and bj(x) ≡ 0,

j = 1,N .

4.3. Estimates of root functions. As in the one-dimensional case, the principal role in obtaining the
results on the properties of biorthogonal expansions is played by various estimates of root functions, and,
in particular, the anti-a priori bound that connects the norm of an arbitrary root function with the norm
of the root functions of order that is one less belonging to the same chain.

40The coefficients aij(x) belong to the class C5(Ω).
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For the first time, the anti-a priori bound of root functions of an elliptic operator was obtained for
the Schrödinger operator (4.4) with a bounded potential on Ω [65], and then it was generalized to an
arbitrary second-order elliptic operator with coefficients satisfying the smoothness conditions (4.3) and
(4.6) [47].

Theorem 4.2. Let the eigenfunctions satisfy the Carleman condition

| Im
√
λ| ≤ C0. (4.13)

Then for any l ∈ N and any two compact sets K and K ′ of the domain Ω the first of which lies strictly
inside the second, K ⊂ intK ′, there exists a constant Cl = Cl(K,K

′) > 0 such that the following estimate
holds41:

‖ul−1(·;λ)‖2,K ≤ Cl

(
1 + |
√
λ|
)
‖ul(·;λ)‖2,K′ . (4.14)

The anti-a priori bound (4.14) is sharp with respect to the order in the sense that the exponent of
power for the eigenvalue λ on the right-hand side cannot be decreased (as a corresponding example, one
can consider the boundary-value problem for the Laplace operator in the N -dimensional cube [0, 1]N with
the condition u|x1=0 = 0, ux1 |x1=0 = ux1|x1=1, and u = 0 on the other faces of the cube [65]).

We note that the Carleman condition (4.3) in Theorem 4.2 can be omitted [79]. Also, we can make
more clear the character of the dependence of the constant Cl on the order l of the associated function.42

The final result in this direction was obtained in [136].43

Theorem 4.3. Let operator (4.1) be uniformly elliptic on each compact set of the domain Ω, and let the
smoothness conditions (4.3) hold. Then for any two compact sets K and K ′ of the domain Ω such that
K ⊂ intK ′, there exists a constant C = C(K,K ′) > 0 such that for all l ∈ N and all λ ∈ C, the following
estimate holds:

‖ul−1(·;λ)‖2,K ≤ C
(
l2 + lRe

√
λ
)
‖ul(·;λ)‖2,K′ . (4.15)

Remark. If the eigenvalue λ lies in the domain | arg
√
λ| ≥ α > 0, then the sum l2 + lRe

√
λ on the

right-hand side of (4.15) can be replaced by l2, and, moreover, the resulting estimate is also sharp [136].

As a consequence of the anti-a priori bounds of root functions, we have the estimates of their deriva-
tives in the metric of L2.

Let α = (α1, . . . , αN ) be a multi-index, and let Dα denote the partial derivative ∂|α|/∂xα11 . . . ∂xαNN
of order |α| =

∑N
i=1 αi.

Theorem 4.4 ([139]). Let operator (4.1) be uniformly elliptic on each compact set of the domain Ω, and
let all its coefficients be infinitely differentiable in Ω. Then for any two compact sets K and K ′ of the
domain Ω such that K ⊂ intK ′ and for any multi-index α, there exists a constant C = C(K,K ′, α) > 0
such that for all l = 0, 1, 2, . . . and all λ ∈ C, we have the (sharp with respect to λ and l) estimate

‖Dαul(·;λ)‖2,K ≤ C
(
l +Re

√
λ+ 1

)|α|
‖ul(·;λ)‖2,K′ . (4.16)

For eigenvalues lying outside the Carleman parabola (4.13), the behavior of root functions can be
made more clear.

Theorem 4.5 ([136]). Let K ′ be an arbitrary compact set of the domain Ω. Then there exist constants
M > 0 and δ > 0 such that for any compact set K ⊂ intK ′ and any λ and l satisfying the inequality

| Im
√
λ| ≥Ml/dist(K,∂K ′),

41The constant Cl is independent of λ and depends only on the compact sets K and K′.
42In [47,65,79], this dependence was exponential.
43Also, an example showing the sharpness of the estimate with respect to λ and l was constructed.
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we have the estimate

‖ul(·;λ)‖2,K ≤ C exp
[
−δ

∣∣∣Im√λ∣∣∣ dist(K,∂K ′)] ‖ul(·;λ)‖2,K′ , (4.17)

where C = C(K,K ′) > 0 depends only on the compact sets K and K ′ considered.

Remark. For the eigenfunctions (l = 0), the value δ is explicitly found:

δ =

 max
‖ξ‖=1,x∈K′

N∑
i,j=1

ai,j(x)ξiξj

−1/2
and cannot be increased [127].

Along with the anti-a priori bound, another important estimate is the estimate of the maximum of
the module for the root function through its L2 norm. For the first time, this estimate for the general
second-order elliptic operator was obtained in [67].

Theorem 4.6. Let the coefficients of the uniformly elliptic operator (4.1) satisfy conditions (4.3), and
let aij ∈ C5(Ω). Moreover, let the Carleman condition (4.13) hold. Then for any l = 0, 1, 2, . . . and any
compact sets K and K ′ of the domain Ω such that K ⊂ intK ′, there exists a constant C = C(K,K ′) > 0
such that the following estimate holds:

‖ul(·;λ)‖∞,K ≤ C
(
1 + |λ|(N−1)/4

)
‖ul(·;λ)‖2,K′ . (4.18)

This estimate is sharp with respect to λ; this is justified by the example of the first boundary-value
problem for the Laplace operator in the N -dimensional ball. The orthonormal eigenfunctions of this

problem at the center of the ball are equal to cnλ
(N−1)/4
n , where lim

n→∞
|cn| depends only on N and the

radius of the ball.
If condition (4.13) does not hold, then the constant C(K,K ′) in (4.18) can be replaced by

C̃(K,K ′) exp[−β| Im
√
λ|] with a certain β > 0 [80].

The final estimate, which is sharp with respect to λ and the order l, for the maximum of the module
of the root function of the Schrödinger operator (4.4) was proved in [135].

Theorem 4.7. Let the potential q(x) in (4.4) be continuous on Ω. Then for any compact sets K and K ′

of the domain Ω such that K ⊂ intK ′, there exists a constant C = C(K,K ′) > 0 such that for all l ∈ N
and λ ∈ C, the following estimate holds:

‖ul(·;λ)‖∞,K ≤ C
√
l
(
l(N−1)/2 + (Re

√
λ)(N−1)/2

)
‖ul(·;λ)‖2,K′ . (4.19)

5. Convergence of Spectral Expansions

We assume that the set Λ of eigenvalues of operator (4.1) has no finite accumulation points, and
with each eigenvalue one associates finitely many root functions. We enumerate all eigenvalues from Λ in
nondecreasing order with account for their multiplicity. Therefore, Λ = {λk}

∞
k=1 and |λi| ≤ |λj| for i < j.

As a result of such renumbering of the set Λ, each root function of the system U obtains its own
number: U = {uk(x)}

∞
k=1. We denote by lk the order of the associated function uk(x); let lk = 0 if uk(x)

is an eigenfunction.
Taking into account (4.7) and (4.8), we see that root functions uk(x) satisfy the relations

Luk + λkuk = θkuk−1, (5.1)

where θk = 0 if uk(x) is an eigenfunction and θk = 1 if uk(x) is an associated function; moreover, in this
case, λk−1 = λk.

Let the system U be closed and minimal in a certain space Lp(Ω), p ≥ 1. Then for it, there exists a
unique biorthogonally dual system V = {vk(x)}

∞
k=1 of functions of the space Lp/(p−1)(Ω). In a number of
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cases, we assume that the system V consists of root functions of operator (4.5) formally adjoint to L and
the following relations, which are analogous to (5.1), hold:

L ∗vk + λkvk = θk+1vk+1. (5.2)

Let us compose a partial sum of the biorthogonal expansion of an arbitrary function f ∈ Lp(Ω) in
the system U:

σλ(x, f) =
∑
|λk|<λ

(f, vk)uk(x), (5.3)

and let us study the problem on the convergence of this sum to the function being expanded.

5.1. Uniform convergence. In [50], a method for proving the absolute and uniform convergence in
the metric of L2 of the biorthogonal expansion in the system U of root functions of operator (4.1) was
proposed by using only estimates of these functions in the L2 norm and in the uniform metric, which are
presented above in Subsection 4.3.

Theorem 5.1. Let the coefficients of operator (4.1) uniformly elliptic in Ω be infinitely differentiable,
and let U = {uk(x)}

∞
k=1 be the complete and minimal system of its root functions in L2(Ω) such that the

system biorthogonally dual to it consists of root functions of the operator L ∗ and relations (5.2) hold.
Moreover, let the following conditions hold:

(1) the Carleman condition (4.13) holds;
(2) the orders lk of root functions are uniformly bounded:

44

sup
k∈N

lk <∞, (5.4)

(3) the “counting” function (4.9) satisfies the estimate45

n(r) = O(rN/2), (5.5)

(4) for each compact set K ⊂ Ω, there exists a constant C = C(K) > 0 such that for all k ∈ N, the
following estimate holds46:

‖uk‖2 ‖vk‖2,K ≤ C(K), (5.6)

(5) the function f(x) has a compact support in Ω and belongs to the Sobolev class W 2s
2 (Ω).

Then the partial sums σλ(x, f) of the biorthogonal expansion of the function f(x) converge to it
in the metric L2(Ω) for s > N/2 and they converge absolutely and uniformly on any compact set for
s > (3N − 1)/4.

The proof of this property is based not on application of the mean-value formula to root functions
but on the fact that a function f(x) from the class W 2s

2 (Ω) admits the s-fold application of the operator
L to itself.

Let us consider the functions v
[s]
k (x) equal to vk(x) if vk(x) is an eigenfunction of the operator L ∗

and to

vk(x) +
l∑

j=1

(λk)
−jCj

s+j−1vk+j(x)

if vk(x) are associated functions of the operator L ∗ of order l ≥ 1. It follows from relation (5.2) that

L ∗v
[s+1]
k = −λkv

[s]
k , s = 0, 1, 2, . . . , (5.7)

44Moreover, the multiplicity of eigenvalues can be not bounded.
45Such an estimate holds for a wide class of boundary-value problems related to operator (4.1). We will see from what will

be done below that in this theorem, one can also consider functions n(r) satisfying a more general estimate n(r) = O(rβ),
β > 0.
46We can also consider the case where instead of C(K), one has C(K)(1 + |λ|)γ , γ > 0, in the right-hand side of (5.6).
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where v
[0]
k (x) = vk(x). Relation (5.7) implies that for any function f(x) satisfying the conditions of the

theorem, the relation (f, (L ∗)sv
[s]
k ) = (−λk)

s(f, vk) holds, and, therefore,

(f, vk) = (−λk)
−s(L sf, v

[s]
k ). (5.8)

To justify the convergence of the biorthogonal series to f(x) in the metric L2(Ω), it suffices to prove
the boundedness of partial sums of the series

∑
k ‖(f, vk)uk(x)‖2, since, by the completeness of the system

U in L2(Ω), only the function f(x) itself can be the limit of the biorthogonal series converging in L2(Ω).
By the compactness of the support K ≡ supp f in G, we have |(f, vk)| ≤ ‖f‖2 ‖vk‖2,K ; taking into

account (5.5) and (5.6), we obtain from this that∑
|λk|≤1

‖(f, vk)uk(x)‖2 ≤ ‖f‖2 · C(K)
∑
|λk|≤1

1 = O(1)‖f‖2. (5.9)

Further, relation (5.8) implies the inequality∑
|λk|>1

‖(f, vk)uk(x)‖2 ≤
∑
|λk|>1

|λk|
−s‖L sf‖2 ‖v

[s]
k ‖2,K ‖uk‖2.

By the anti-a priori bound (4.14) and condition (5.4), for any compact set K ′ ⊂ Ω: K ⊂ intK ′, the

estimate ‖v
[s]
k ‖2,K = O(1)‖vk‖2,K′ holds. Thus, it follows from estimate (5.6) that to ensure the required

boundedness of the partial sums, it suffices to ensure the convergence of the series
∑
|λk|>1

|λk|
−s, which

holds for s > N/2 by (5.5).
To study the absolute and uniform convergence of the biorthogonal expansion, as above, it suffices

to prove the convergence of the series
∑

k

(
|(f, vk)|· supx∈K |uk(x)|

)
for any compact set K ⊂ Ω. But this

reduces to the previous arguments via the application of estimate (4.18). Theorem 5.1 is proved.
We note that on the basis of estimates (4.15) and (4.17), in [136] A. S. Makin has succeeded in proving

the result of Theorem 5.1 on the convergence of the biorthogonal expansion in L2(Ω) under more general
assumptions: without Carleman condition (4.13) and with the condition lk = o(|λk|

1/2), k →∞, which is
more general than (5.4).

With account for the refined estimate (4.19) of maxima of modules of root functions for the
Schrödinger operator, the following result was proved in [139].

Theorem 5.2. Let U = {uk(x)}
∞
k=1 be a complete and maximal system of root functions of the

Schrödinger operator (4.4) in L2(Ω) whose biorthogonally dual system consists of root functions of the
corresponding formally adjoint operator L ∗, and let relations (5.2) hold. Moreover, let the following
conditions hold:

(1) the orders lk of root functions satisfy the estimate

lk = O(|λk|
1/2−ε + 1), k →∞, (5.10)

where 0 < ε ≤ 1/2;
(2) the “counting” function n(r) satisfies estimate (5.5);
(3) for each compact set K ⊂ Ω, estimate (5.6) holds;
(4) the potential q(x) of operator (4.4) belongs to the class C [(3N/2)−ε]−1(Ω);

(5) the function f(x) has a compact support in Ω and belongs to the Sobolev class W
[(3N/2)−ε]+1
2 (Ω).

Then the partial sums σλ(x, f) of the biorthogonal expansion of the function f(x) converge absolutely
and monotonically to it on any compact set K ⊂ Ω.

In [144], the convergence of the biorthogonal expansion in the system of root functions of the
Schrödinger operator (4.4) with a discontinuous potential was studied. For a centrally symmetric po-
tential, the following singularity was admitted47: q(x) = |x− x0|−1q0(|x − x0|), where the function q0(t)

47We note that these conditions ensure that the potential belongs to the class L2 on any compact set in Ω.
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is continuous for t > 0 and satisfies the estimate |q0(t)| ≤ Cεt
ε−1; here, ε > 1/2 for N = 3 and ε > 0

for N > 3 (the case N = 2 was not considered). It was proved that the conditions of Theorem 5.1
guarantee the convergence of σλ(x0, f) for such an operator at the point of discontinuity of the potential
for f ∈W 2s

2 (Ω), s > N/2, which becomes absolute for s > (3N + 1)/4.
As the comparison with the self-adjoint case [55, Chap. 4] shows, the conditions for the uniform

convergence of biorthogonal expansions obtained in Theorems 5.1 and 5.2 are far from being final even for
the Laplace operator in the classes of functions being expanded. Therefore, in terms of Sobolev–Liouville
classes Lsp(Ω), the following inequalities are final conditions for the uniform convergence:

s ≥ (N − 1)/2, sp > N, p ≥ 1. (5.11)

On the basis of the mean-value formula for the Schrödinger operator and the Laplace operator, a
number of results were obtained; in these results, the smoothness requirements on the function f(x) are
reduced (as compared with those in Theorems 5.1 and 5.2). We present one of them.

Theorem 5.3 ([131]). Let U = {uk(x)}
∞
k=1 be a closed and minimal system of root functions of the

Schrödinger operator (4.4) on Lp(Ω), p ≥ 1, whose biorthogonally dual system consists of root functions
of the corresponding formally adjoint operator L ∗, and let relations (5.2) hold. Moreover, let the following
conditions hold:

(1) the Carleman condition (4.13) holds;
(2) the orders lk of root functions are uniformly bounded;
(3) for each compact set K ⊂ Ω, the following estimate uniform in t ≥ 0 and x ∈ K holds48:

∑
t≤|
√
λk|≤t+1

‖vk‖p/(p−1)
∑
0≤l≤lk
uk−l∼uk

|uk−l(x)|

1 + |
√
λk|l
≤ C(K)(tN−1 + 1), (5.12)

(4) the potential q(x) of operator (4.4) belongs to the class CN (Ω);
(5) the function f(x) has a compact support in the domain Ω and belongs to the class WN−1

p (Ω),
where p > N/(N − 1).

Then σλ(x, f) converges to f(x) uniformly on any compact set of the domain Ω.

5.2. Riesz means of spectral expansions. As was already mentioned in the one-dimensional case,
Riesz means of expansions in root functions of essentially non-self-adjoint problems should be defined in
a specific way. For the first time, the correct definition of Riesz means was suggested by Ya.M. Salimov
for biorthogonal expansions in root functions of the Laplace operator in [156–158]. It has the form49

σαλ (x, f) =
∑
|λk|<λ

(f, vk)
∑

0≤l<α+1
uk−l∼uk

(−1)l

l!

∂l

∂λlk

(
1−

λk
λ

)α

uk−l(x). (5.13)

We explain the natural character of such a definition for a natural α. Let us perform the differentiation
in (5.13) and take into account that by (5.1), the expression (∆ + λk)

luk(x) is equal to zero if uk(x) is
an eigenfunction and is equal to uk−l(x) if uk(x) is an associated function of order not exceeding l. Then

48It was Ya.M. Salimov who introduced such a condition on root functions of the Laplace operator in [156] for the first
time; he used this condition in the theorem on the uniform convergence of the corresponding spectral expansion in [158].
49We will use a more compact form of writing them, which was suggested in [131].
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the inner sum in (5.13) becomes∑
0≤l<α+1
uk−l∼uk

Γ(α+ 1)

l! Γ(α+ 1− l)

(
1−

λk
λ

)α−l uk−l(x)

λl

=
∑

0≤l<α+1
uk−l∼uk

Γ(α+ 1)

l! Γ(α + 1− l)

(
1−

λk
λ

)α−l (∆+ λk
λ

)l

uk(x) =

(
1 +

∆

λ

)α

uk(x).

We write the Riesz means (5.13) using the spectral function

θ(x, y;λ) =
∑
|λk|<λ

uk(x)vk(y).

If θα(x, y;λ) denotes the Riesz means of this spectral function, then σαλ (x, f) =
∫
Ω θ

α(x, y;λ)f(y) dy; we
obtain from this that

θα(x, y;λ) =
∑
|λk|<λ

vk(y)

(
1 +

∆

λ

)α

uk(x) =

(
1 +

∆x

λ

)α

θ(x, y;λ),

which is in correspondence with the classical definition of Riesz means.
Using definition (5.13) of Riesz means, Ya.M. Salimov proved the following result.
Let us introduce the modified partial sum of Riesz means of order α of the expansion of a function

f(x) into the N -fold Fourier integral by the relation

Sαλ (x, f) =
2αΓ(α+ 1)

(2π)N/2
(
√
λ)(N/2)−α

∫
RN

|x− y|−α−(N/2)Jα+(N/2)
(√

λ|x− y|
)
f(y) dy.

Theorem 5.4 ([156,157]). Let U = {uk(x)}
∞
k=1 be a closed and minimal system of root functions of the

Laplace operator in Lp(Ω), p ≥ 1,50 and let conditions (1)–(3) of Theorem 5.3 hold.
Then for any function f ∈ Lp(Ω), the spectral expansion in the system U and the expansion of the

same function f(x) into the N-fold trigonometric Fourier series are equisummable by using the Riesz
method of order α > N − 1 on any compact set K ⊂ Ω, and, moreover, the following estimate holds:

sup
x∈K
|σαλ (x, f)− Sαλ (x, f)| = O(1)λN−1−α‖f‖p. (5.14)

Using the refined estimates (4.15) and (4.19) of root functions of the Schrödinger operator,
A. S. Makin established the base conditions for Riesz means in L2 on any compact set in Ω.

Theorem 5.5 ([133]). Let U = {uk(x)}
∞
k=1 be a complete and minimal system of root functions of the

Schrödinger operator (4.4) with an infinitely differential potential q(x) in L2(Ω). Moreover, let the fol-
lowing conditions hold:

(1) the Carleman condition (4.13) holds;
(2) the orders lk of root functions satisfy estimate (5.10) with a certain ε ∈ (0, 1/2];
(3) for each compact set K ⊂ Ω, there exists a constant C = C(K) > 0 such that for all t ≥ 0, the

following estimate holds51: ∑
t≤|
√
λk|≤t+1

‖uk‖2,K ‖vk‖2 ≤ C(K)(tN−1 + 1). (5.15)

50In this case, it is not required that the biorthogonal system V satisfy any differential equation.
51Estimate (5.15) holds, for example, in the case where the “counting” function (4.9) satisfies estimate (5.5) and the

product of norms ‖uk‖2,K ‖vk‖2 is bounded uniformly in k.
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Then for any α satisfying the conditions α > α0 and [α] ≥ α0, where α0 = (N − 2ε)/(2ε), and for
any compact set K ⊂ Ω, the following relation holds:

lim
λ→∞

‖σαλ (x, f)− f(x)‖2,K = 0. (5.16)

Remark. We note that in the self-adjoint case, Riesz means of order α greater than the critical value
(N − 1)/2 converge to the function being expanded uniformly on any compact set (in Theorem 5.5, for
ε = 1/2, i.e., when the orders of root functions are uniformly bounded, the order α0 = N − 1).

5.3. Abel–Poisson means of spectral expansions. Let us define the modified Abel–Poisson means
of order 1/2 of the spectral expansion in root functions of operator (4.1). We set

Hk(x, t) =
∑
l≥1

uk−l∼uk

1

l!

l∑
j=1

(l + j − 2)! tl−j+1

(j − 1)! (l − j)! (2
√
λk)l+j−1

uk−l(x)

if uk(x) is an associated function and Hk(x, t) = 0 if uk(x) is an eigenfunction.
The modified Abel–Poisson means of order 1/2 are the series

At(x, f) =
∞∑
k=1

exp(−
√
λkt)(f, vk)[uk(x) +Hk(x, t)]. (5.17)

Theorem 5.6 ([128]). Let U = {uk(x)}
∞
k=1 be a complete and minimal system of root functions of oper-

ator (4.1) in L2(Ω). Moreover, let the following conditions hold:
(1) the orders lk of root functions in U are bounded by one and the same constant M > 0;
(2) the “counting function” n(r) satisfies estimate (5.5);
(3) for each compact set K ⊂ Ω, there exists a constant C = C(K) > 0 such that the following

inequality holds uniformly in k ∈ N:

‖uk‖2,K ‖vk‖2 ≤ C(K)(1 + |λk|)
α (5.18)

with the constant α ≥ 0 independent of the compact set K;
(4) the coefficients aij(x), bj(x), and c(x) of operator (4.1) belong to the class C

β(Ω), where β =
2[(N/2) +M + α− 1] + 4.

Then for any function f ∈ L2(Ω) and any compact set K ⊂ Ω, the following relation holds:

lim
t→0+0

‖At(x, f)− f(x)‖2,K = 0. (5.19)

Relation (5.19) shows that the modified Abel–Poisson means (5.17) of order 1/2 have the basis
property in L2 for any compact set in Ω.

5.4. Some results for other operators. In [82], the following general elliptic operator of order 2m is
considered:

Lu =
∑

|α|=m,|β|=m

Dα
(
Aαβ(x)D

βu
)
+

∑
|γ|≤2m−1

Aγ(x)D
γu, x ∈ Ω ⊂ RN , (5.20)

whose coefficients are infinitely differentiable, satisfy the uniform ellipticity condition on each compact set
in Ω, i.e., the coefficients Aαβ(x) are real, Aαβ(x) = Aβα(x), and for all x ∈ K and any ξ = (ξ1, . . . , ξN ),
the inequality

(−1)m+1
∑

|α|=m,|β|=m

Aαβ(x)ξ
αξβ ≥ C0‖ξ‖

2m

holds with a certain positive constant C0 depending on the compact set K; here, for the multi-index
γ = (γ1, . . . , γN ), we accept the notation ξγ = ξγ11 ξ

γ2
2 . . . ξγNN .

3541



For root functions of operator (5.20) understood in the generalized sense, the following anti-a priori
bound was proved:

‖ul−1(·;λ)‖2,K ≤ C(K,K ′)
(
1 + |Reλ|(2m−1)/(2m)

)
‖ul(·;λ)‖2,K′ , l ≥ 1, (5.21)

where K and K ′ are compact sets of the domain Ω satisfying the condition K ⊂ intK ′. As a consequence
of estimate (5.21), the estimate of derivatives of root functions was also proved.

In [129], the anti-a priori bound was proved for root functions of a hypoelliptic operator with constant
coefficients.

In a number of papers [77, 78, 81], the anti-a priori bound of root functions was proved and certain
problems of convergence of spectral expansions corresponding to non-self-adjoint parabolic operators were
considered.
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