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Abstract

Ideally, the ranking of sports teams should incorporate information (compre-
hensiveness) obtained from the outcome of a match, such as the strength of the
opponent and schedule. In addition, the ranking method should be fair and not
reward teams for poor performance or factors beyond their control, such as the
sequence of the matches. We state properties such that if followed, the ranking
methods will be fair and comprehensive. We evaluate five popular sports ranking
methods and whether or not they adhere to these properties. Further, we identify
a ranking method that under reasonably sufficient conditions will satisfy all of the
properties.

1 Introduction

It is often necessary to determine the importance of an alternative compared to others in
a group. The process of ordering a list of alternatives based on their relative strength is
referred to as ranking. In many cases, a ranking method develops this list by assigning
a rating for each alternative, and then ordering the alternatives in decreasing order of
rating. Others can be based on minimum violations [1], or linear ordering [6, 7]. Ranking
methods are used for a wide array of applications, including but not limited to sports
teams [2, 5, 12, 18, 19, 20, 25, 28, 30], web search engines [23, 26, 29], and recommender
systems [8, 24].

Pairwise comparison methods are a subset of ranking methods. These methods [15, 21]
are still being used in widespread applications today. In this paper, we focus on pairwise
comparison ranking methods with applications to sports. We refer to the alternatives
being ranked as teams, and the pairwise comparison data as matches or games.

∗vaziribx@jmu.edu
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A fair and accurate ranking is essential to properly determine the best team(s) in a
league, as many sports leagues determine participants for tournaments or playoffs based
on the ranking of its teams. There is considerable literature that examines different
ranking methods and measures their predictive power and performance [3, 4, 9, 27, 36].
However, it is difficult to rank the ranking methods, because each method has different
strengths and weaknesses. For example, many professional leagues (i.e., NFL, NBA,
and MLB) consider only the total number of wins and losses when ranking its teams,
which fails to take into account several factors such as the quality of a match victory,
the strength of schedule, etc. However, some ranking methods that take the quality of
a match opponent into account, fail to properly reward a team for winning a match. In
turn, different methods consider a different subset of the available information obtained
from a match result.

The objective of this study is to identify a set of properties that, when followed, result
in a fair and comprehensive ranking method. We consider that a ranking method is fair
when it only considers the factors that are directly in control of the teams. For example,
a team has direct control over the result of a match, but no control over the sequence of
matches. It would be unfair to penalize or reward a team based on the predetermined
sequence of matches. Currently the conventional way to rank teams is by only using
the match results. Therefore we define comprehensiveness as the ability to maximize
the inference drawn from the win loss data. Therefore injuries, suspensions and other
external factors do not count towards comprehensiveness of a ranking method and we do
not consider them for the scope of this study.

We point the reader to several articles that focus on analyzing ranking methods, often
discussed in the social choice literature. Particularly we want to note [11] and [17], they
study many ranking methods and compare their performance over various properties
and characterizations for preference aggregation. Other relevant articles in this domain
include [10, 22, 32] and [35].

We will study five popular pairwise comparison ranking methods with applications
primarily to sports, all of which were recently highlighted in Whos #1? The Science of
Rating and Ranking [27]: the traditional Win-Loss method, the Massey method [28], the
Colley method [12], the Markov method [18, 27], and the Elo method [16]. These methods
will be evaluated on their ability to satisfy the properties developed in this paper. Later
we introduce a recently proposed modification to the Markov method [36] and show that
under certain parametric conditions, this method will satisfy the properties.

These ranking methods are primarily useful to rank in tournament setups similar to
that of a round-robin tournament. For example, single-elimination style tournaments do
not need rankings, because the winner will be decided by the structure of the tournament.
The design of a tournament is, however, important to examine when electing which
ranking method to use, because different designs have varying characteristics [33].

The scope of this study is limited to tournament or league setups in which the teams
play an equal number of matches, but they do not necessarily need to play each team
in the league. In some cases, such as the English Premier League (EPL), it is a pure
round-robin in which each team in the league plays an equal number of matches against
each other team in the league. However, another example is the National Football League
(NFL), in which each team plays 16 total matches, but will not play every other team in
the league. The National Basketball Association (NBA) is a hybrid of the previous two
examples. Each team plays 82 matches, and each team will play every other team in the
league, but they will not be an equal number of matches with each opponent. However,
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all three of the above mentioned leagues setups are acceptable for our study. We do
not include Swiss-style tournaments in our scope due to its unique nature of having a
large number of players. We direct the reader to [13] for an overview of ranking for such
tournaments. We also note that there are many different tools in sports analytics that
can be used to improve the predictive power of a ranking method, many of which are
highlighted in recent literature [37].

The remainder of this paper is organized as follows: Section 2 outlines the five ranking
methods that we study, with a brief description of their strengths and weaknesses. Section
3 introduces the properties and the motivation behind them. Section 4 maps the five
ranking methods from Section 2 to the ranking properties in Section 3, and determines
which methods satisfy which properties. In Section 5, we conjecture that a recently
proposed modification to the Markov method can indeed satisfy all three properties. In
Section 6 we discuss our results and future research considerations.

2 Ranking Methods

We outline below five popular sports ranking methods and discuss their relative strengths
and weaknesses: 1) the Win-Loss method, 2) the Massey method, 3) the Colley method,
4) the Markov method, and 5) the Elo method. The Win-Loss, Colley, Markov and Elo
methods do not consider margin of victory, but the Massey method does. In Section 4,
we revisit these methods and evaluate their ability to satisfy the set of ranking properties
developed in Section 3.

There are many other ranking methods currently in use. The Glicko rating method
is used for ranking Chess and Go players, and it is an improvement over the Elo rating
system. Microsoft uses its TrueSkill ranking in order to determine match-ups for on-line
gaming. Both these methods determine the rating of a player as well as a confidence in
that rating, i.e. (µ, σ). Although both methods are powerful, there are several resulting
issues because it is hard to rank teams using two parameters. We could use conservative
estimates such as µ − kσ, but that will create a different rank order for different values
of k. Since we rank teams only based on performance of the current season, a starting
value of σ has to be assigned - and different values result in different ranks. While both
these methods are effective, they are based on the Elo method which is powerful enough
and deemed sufficient for this study. We also looked at other methods like Google’s
PageRank and the Bradley-Terry pairwise comparison. PageRank is a Markov-based
ranking method closely related to the Markov method that is considered here.

2.1 Win-Loss Method

The first method we examine is the traditional Win-Loss method, which is the most
commonly used method in professional sports. The method is very intuitive, and requires
no modeling to obtain its ratings. Simply sum up the total number of wins and losses
for all teams, and assign rating values for each team equal to the total number of wins
(draws are counted as half a win and thus count for 1

2
of a rating point). The advantage

of this ranking method is that it provides a clear and direct incentive to win each match.
Also, the result of external matches will not affect a specific teams rating value. The
disadvantage is that each win is treated the same, regardless of the strength of opponent
or the margin of victory. For example, two teams could end up with an equal number of
wins, but one team faced much stronger opponents.
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2.2 Massey Method

Kenneth Massey developed the Massey method in 1997 to rank college football teams
[28]. The concept in this ranking method is that the difference in the ratings of two teams
should equal the difference in the score of their competition. The fundamental equation
for the ranking method is written as follows:

Mr = p (1)

In Eq. (1), M is the Massey matrix, r is the unknown rating vector, and p is a vector
of cumulative point differentials. The Massey matrix is comprised of the diagonal element
Mii which is equal to the total number of games played by team i, and the element Mij

which is the negation of the number of games played between team i and j. Because the
linear system does not have a unique solution, one of the rows of the Massey matrix must
be replaced with all ones and the corresponding entry of the right-hand side vector with
a zero. The solution to this revised system of linear equations above will give the rating
vector.

The point differential vector does not take into account the scoring margins against
specific teams, only the cumulative sum for each individual team. In turn, a large cumula-
tive point differential can be obtained from defeating weaker opponents by large amounts,
which is not necessarily a strong indicator of team quality. The Massey method was used
by the NCAA Football Bowl Subdivision (FBS) in calculating the Bowl Championship
Series (BCS) rankings. The BCS rankings were used from 1998−2013 to determine the
two teams that would play for the National Championship, as well as several other major
bowl games.

2.3 Colley Method

The Colley method was developed in 2002 by Wesley Colley [12]. This method also solves
a system of linear equations, but has different definitions for its matrix and its right-hand
side vector. Let wi equal the number of wins for team i, li equal the number of losses for
team i, ti equal the total number of games played by team i, and nij equal the number
of times teams i and j play each other. The equation for the ranking method is written
as follows, with C as the Colley matrix, r as the unknown rating vector, and b as the
vector of cumulative wins and losses:

Cr = b (2)

Cij =

{
2 + ti i = j

−nij i 6= j
(3)

bi = 1 +
1

2
(wi − li) (4)

Solving the system of linear equations for the unknown rating vector r will provide
a ranking of the teams. A shortcoming of the Colley method is that the strength of an
individual opponent is not taken into consideration, only the total number of wins and
losses. In fact, the strengths and weaknesses of the Colley method are similar to those of
the Massey method, the only difference being that one accounts for total point differential
and the other the total win differential.

4



2.4 Markov Method

The Markov method [18, 27], is a pairwise comparison ranking method that uses Markov
chains to rank its teams. The main concept of the method is that each individual compe-
tition between two teams results in the losing team voting for the winning team. These
collection of votes populate a matrix that represents the head-to-head competitions be-
tween all the teams. Transforming the voting matrix into a stochastic matrix will ul-
timately provide the steady-state probability vector, which is equivalent to the rating
vector.

There are many ways to construct the final rating vector, which can be calculated from
a linear combination of several stochastic matrices. For example, one voting matrix could
contain information on just wins and losses, and another voting matrix could contain
information on score differentials. In this study, we will use the basic form of voting only
for wins and losses. We refer to this as the (0, 1) Markov method. (The losing team
receives a “0” vote from the winning team and the winning team receives “1” vote from
the losing team.)

The major advantage of the Markov method is that it takes the quality of the victory
into account, meaning a victory over a stronger opponent will be valued higher than a
victory over a weaker opponent, as will be shown later. A major drawback of the Markov
method is that it is sensitive to small changes in data, especially in its tail, and can
exhibit faulty behavior under these circumstances [9, 36]. In fact, in some extreme cases,
teams will have an incentive to lose a match to increase their rating.

2.5 Elo Method

Finally, we observe the Elo rating method [16], that was initially developed in 1960 to rate
chess players. Since then, the method has become popular outside of the chess world, and
other outlets have used the method to rank sports teams. Nate Silver’s FiveThirtyEight
blog [34] uses the method to rank teams in both the NFL and NBA. For the purpose of
this paper, we use the Elo method as it was originally designed.

After each player (or team) participates in a match, their rating is modified by the
following formula:

rnew = rold +K(S − µ) (5)

In Eq.(5), K is a constant determined by the nature of the competition and the sport.
The amount of change in your rating after a game depends on this K value. For leagues
like the MLB, where teams play a lot of matches, the K value will be small, and for
leagues like the NFL where teams play fewer games, K will be large. A higher K value
results in higher variability in rating changes, and a lower K value results in sluggish
behavior. We use values of K = 5 for MLB, K = 20 for NFL and K = 10 for NHL and
NBA. S is an indicator variable that reflects the outcome of the match (it takes the value
of 1 for a win and 0 for a loss), and µ ∈ (0, 1) is a logistic function of the difference in
the ratings of the two opponents, given by:

µ =
1

1 + 10(rb−ra)/400
(6)

The Elo method is strong because it gives a clear and direct incentive for a win, and
external matches do not directly impact a teams performance. It also takes into account
the quality of the opponent in the match. However, in its standard form, the Elo method
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calculates a rating after every match, and thus the sequence of matches for a team can
have a significant impact on their Elo rating.

3 Ranking Properties

In this section, we construct a set of properties that a fair and comprehensive ranking
method should follow. To be fair, a ranking method must provide the teams being ranked
with consistent objectives. The objective for each team is simple: win the match. In turn,
winning a match should always result in at least as good of a rating as before, and losing a
match should never result in an increased rating. To be comprehensive, a ranking method
must examine the information that can be obtained from each match, and adequately
assess and rank the teams based on that information.

There is debate as to whether or not the score differential of a match is a good
indicator of team performance. On one hand, Redmond [31] found that score differential
can often be a misleading characteristic in determining the strength of a team, and more
emphasis should be placed on gaining the victory. On the other hand, there are successful
ranking methods, such as the Massey method [28], that have been used and primarily
consider score differential. In the EPL, and many other international soccer leagues,
score differential is used as a tiebreaker when two teams have an equal rating. In leagues
such as the MLB, NFL, and NBA, score differential is not taken into account, and the
tiebreakers are usually determined by head-to-head match results. For our study, score
differential is optional information to use when ranking teams. It is advantageous to have
the capability to use score differential, but it is not a requirement based on the properties
we require.

3.1 Property I: Opponent Strength

Our first property is based on the idea that each match victory is not equivalent, and
that some victories contain more information than others. For example, it would be
misleading to give a similar award for beating the best team in the league as opposed to
beating the worst team in the league. Thus, a comprehensive ranking method must take
into account the quality of a victory when calculating the rating of a team.

In many ways, Property I can be thought of as the counterpoint to the Independence of
Irrelevant Matches (IIM) property mentioned in [17]. As indicated in [17], a pure round-
robin tournament may desire IIM and thus reduce the need for Property I. However, in
general applications where not every team plays each other, IIM is not desired, and thus
Property I adds information to the rating vector. There are other arguments in favor of
taking opponent strength into account as well, as indicated in [13].

Property I. The strength of an opponent from a specific match result should be a factor
in calculating the rating of a team.

As stated previously in Section 3, the score differential of a match can often be misleading
information when calculating team ratings. Thus, the extension for Property I is a “soft”
property, or otherwise an optional property.

Property Ia (Optional). The margin of victory over an opponent from a specific match
result should be a factor in calculating the rating of a team.

If point differential is used in calculating team ratings, it is strongly recommended that
there be a smoothing function to delineate the impact, similar to Keener’s approach [20].
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3.2 Property II: Incentive to Win

The next property aims to unify the objective for each competitive match, which is simply
to win the match. If a team has incentive to lose a match to increase its rating, that will
dilute the information obtained from that match. The information used by the ranking
method relies on the fact that in each individual match, both teams are trying to win.

Most ranking methods will satisfy this property. However, as we will see in Section 4,
some methods rely too heavily on the strength of opponents to calculate ratings, and this
can result in erratic cases where teams have incentive to lose a match. This property is
analogous to the Nonnegative Responsiveness to the Beating relation property (NNRB)
as seen in [17].

Property II. A team should always have a clear incentive to win a match to increase
its rating.

The converse of this property is not strictly true, but only partially true. Obtaining
a victory over a significantly inferior opponent may not improve the rating, but it should
not harm it. Also, losing to a strong opponent may not decrease your rating, but it
should not be preferred to winning.

Property II also indirectly implies that strong interdependence between teams’ ratings
can have a negative impact on the ranking vector. Chartier et al. [9] analyzed several
ranking methods and their sensitivity, and found a specific case in the NFL where a high
interdependence in ratings can lead to teams having an incentive to lose a match.

3.3 Property III: Sequence of Matches

Teams do not select the order of their match schedule. In some collegiate sports, like
NCAA football and basketball, teams can dictate their out of conference schedule, but
they have no control over their conference schedule. In major professional sports (NBA,
NFL, MLB, EPL), teams do not select the sequence of their matches.

In turn, it would be unfair to award or penalize teams differently based on the sequence
of their matches. So, if we were to reorder the matches of a season, the rating and ranking
vector should not change. In most ranking methods, this is the case, because the results
are tallied and tabulated in a static formula.

It is important to note that we are assuming that team strength is not variable during
a specific season. There are so many factors that can effect performance both positively or
negatively − including, but not limited to: injuries, player transfers or trades, coaching
changes, weather conditions. As mentioned previously in this article, we will not be
considering external factors when analyzing season results.

Property III. The specific sequence of matches should not influence the rating and
ranking of a team.

We now have a list of three properties that we declare all ranking methods should
satisfy to be both fair and comprehensive.

4 Ranking methods and properties

In this section, we analyze the five ranking methods from Section 2, and whether or not
they follow the properties developed in Section 3.
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4.1 Property I: Opponent Strength

Property I states that the strength of an opponent should have an impact on the team
rating following a specific match. If a team rating changes an equal amount regardless of
the opponent, then Property I is not satisfied.

The Win-Loss method, the Massey method, and the Colley method violate Property
I. For the Win-Loss method, a team can win or lose against the strongest or weakest
team in the league, and their rating will change by the same amount. For the Massey
method, wins and losses are not considered, only total score differential is considered. In
turn, a team can score many points against weak teams and have a higher rating than a
team that defeated strong teams by a smaller margin of points.

For the Colley method, only the total number of wins is considered, not the individual
match results. For example, consider a perfect season round robin tournament consisting
of five teams, in which the stronger team wins each match. The ranking is shown in Table
1.

Now, lets assume that team E had beaten team A, and recalculate the Colley ratings.
The ranking is shown in Table 2.

Table 1: Perfect season, Colley method
Team Rank Win-Loss Record Colley Rating

A 1 4− 0 0.786
B 2 3− 1 0.643
C 3 2− 2 0.5
D 4 1− 3 0.357
E 5 0− 4 0.214

As you can see, both teams A and B have an equal rating and ranking, but they
each had beaten different teams. The same point can be made for teams D and E, which
have the same rating and ranking but different quality of wins. If the Colley method
considered the quality of a victory into account, both teams A and B and teams D and
E would have different ratings and rankings.

Table 2: Perfect season with upset, Colley method
Team Rank Win-Loss Record Colley Rating

A 1 (tie) 3− 1 0.643
B 1 (tie) 3− 1 0.643
C 3 2− 2 0.5
D 4 (tie) 1− 3 0.357
E 4 (tie) 1− 3 0.357

The Elo method and the Markov method both adhere to Property I. For the Elo
method, it is clear that the quality of the opponent will affect the rating and beating a
stronger team will improve your rating more than beating a weaker team.

For the Markov method, as we showed in Section 2, the rating vector directly comes
from the transition probability matrix, which directly comes from the voting matrix. The
voting matrix consists of all head-to-head results between all of the teams, and obtaining
votes from a specific team will impact your rating based on the rating of that specific
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team. Mathematically, given the transition probability matrix P, the rating of team j can
be written as:

πj =
n∑

i=1

pijπi (7)

From Eq (7), it can be seen that wins over stronger teams will increase your rating
more than wins over weaker teams.

4.2 Property II: Incentive to Win

Property II states that teams should always have an incentive to win to improve their
rating. If a team rating increases more from losing a match, as opposed to having won
that match, then Property II is not satisfied.

The Win-Loss method, Massey method, Colley method, and Elo method all follow
Property II, and there is always a clear incentive for teams to win the next match to
improve their rating. It is not possible to improve your rating with a loss in any of these
four methods, and in most cases, the rating will decrease as a result of a loss.

The Markov method, on the other hand, can have cases where teams have an in-
centive to lose to improve their rating, thus violating Property II. There is a strong
inter-dependency in the team ratings when using the Markov method, and this can cause
erratic behavior in the rating vector. Lets look at two examples, one theoretical and
one case study, to illustrate this point. (For a complete example encompassing all of the
ranking methods, we direct the reader to [27].)

Again, consider a perfect season round robin tournament consisting of five teams, in
which the stronger team wins each match. The ranking is shown in Table 3.

Table 3: Perfect season, Markov method
Team Rank Win-Loss Record Markov Rating

A 1 4− 0 0.438
B 2 3− 1 0.219
C 3 2− 2 0.146
D 4 1− 3 0.109
E 5 0− 4 0.088

Next, we will add an upset in which team E instead had defeated team A. The ranking
can be seen in Table 4.

Table 4: Perfect season with upset, Markov method
Team Rank Win-Loss Record Markov Rating

A 1 (tie) 3− 1 0.29
E 1 (tie) 1− 3 0.29
B 3 3− 1 0.194
C 4 2− 2 0.129
D 5 1− 3 0.097

Notice that the worst team E is now rated and ranked equally with the best team A,
which shows how sensitive the Markov method can be to upsets. To see what is meant
by having an incentive to lose, lets add another upset. Imagine that the last match is

9



still to be played between team A and team D. If team A beats team D, we are left with
the ranking from Table 4. However, lets see what happens if team A intentionally loses
the match to team D.

Table 5: Perfect season with two upsets, Markov method
Team Rank Win-Loss Record Markov Rating

A 1 2− 2 0.293
B 2 3− 1 0.22
D 3 2− 2 0.195
C 4 (tie) 2− 2 0.146
E 4 (tie) 1− 3 0.146

From Table 5, not only did losing the match improve team A’s rating, but it put them
alone in first place. Both the rating and ranking for team A improved with losing that
match. Although this theoretical example proves our point, lets also take a look at a
real-world case study where this can take place. During the 2011 NFL season, the Green
Bay Packers (GB) were 15−1 and had the best record in the league. Their only loss was
to the Kansas City Chiefs (KC), who merely went 7−9, but had obtained an upset win
over GB. When used to rank the 2011 season, the Markov method ranks KC as the first
place team in the league. (Clearly, with a 7−9 record, it should not have been ranked as
the best team in the league.) GB, on the other hand, was ranked 3rd even though they
had the best record in the league. If GB had lost a second match, it would have changed
the rating vector completely. We select the match-up between GB and the Chicago Bears
(CHI) (two bitter rivals, which makes the potential of an upset more likely) as the test
match. If GB had decided to lose this match, we observe that not only does it improve
its rating, but it also improves its ranking to the first place team in the league. Table 6
shows an excerpt of both the actual 2011 NFL season Markov ratings, and the modified
season with the incentive to lose case.

Table 6: 2011 NFL season with modifications, Markov method
2011 Season 2011 Season, modified

Rank Team Record
Markov
Rating

Rank Team Record
Markov
Rating

1 KC 7− 9 7.24 1 GB 14− 2 6.04
2 BAL 12− 4 6.14 2 BAL 12− 4 5.93
3 GB 15− 1 5.61 3 CHI 9− 7 5.15
4 PIT 12− 4 4.72 4 KC 7− 9 5.11
5 SF 13− 3 4.6 5 SF 13− 3 4.63

It is clear that the incentive to lose a match to improve a rating exists in both theoret-
ical examples and case studies. By losing an additional match to CHI, GB significantly
improved their rating from 5.61 to 6.04 (∼ 8% increase) and also improved their ranking
from 3rd to 1st place. Again, the sensitivity of the Markov method is displayed by the
over inflated ratings for CHI and KC because of their upset victories over GB.
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4.3 Property III: Sequence of Matches

Property III states that the sequence of matches on a teams schedule should not have an
impact on their rating. At the end of the season, if a team rating changes based on the
order of matches, then Property III is violated.

The Win-Loss method, Massey method, Colley method, and Markov method all sat-
isfy Property III, and no team rating will change based on the sequence of matches. The
Win-Loss method purely sums up the total number of wins, which will not change based
on the order of matches. The Massey, Colley, and Markov methods all use matrices
and/or vectors as inputs, and these are the sums of wins or points scored over the course
of the season. Thus, the sequence of matches will not affect the entries of the matrices
or vectors.

The standard Elo method, however, does depend on the sequence of matches, and
thus violates Property III. We applied the Elo method to several NFL seasons and notice
that changing the order of matches changes the final rating of the teams. We considered
1) the actual order, 2) the reverse order, and 3) a random order. In fact, in examining
the NFL 2012 season, we notice that the order of matches would actually change which
teams were selected to the playoffs. (The NFL selects the four division champions, and
then the next two highest rated teams from each conference for the playoffs.)

Table 7 shows Elo ratings for the National Football Conference (NFC) in the NFL
2012 season with matches in the actual order. The teams in the gray shaded cells are the
teams that would be selected for the playoffs.

Table 7: Elo ratings for NFC in NFL 2012 season, actual order of matches
NFC East NFC North NFC South NFC West

WAS 1541 GB 1551 ATL 1572 SF 1558
NYG 1515 MIN 1540 CAR 1491 SEA 1555
DAL 1500 CHI 1528 NO 1490 STL 1496
PHI 1428 DET 1434 TB 1483 ARI 1446

Now, lets observe what happens if we simply reverse the order of matches when
calculating Elo rating values.

Table 8: Elo ratings for NFC in NFL 2012 season, reverse order of matches
NFC East NFC North NFC South NFC West

WAS 1525 GB 1548 ATL 1584 SF 1558
NYG 1520 CHI 1539 TB 1484 SEA 1545
DAL 1503 MIN 1529 CAR 1478 STL 1492
PHI 1442 DET 1441 NO 1478 ARI 1463

Of the 16 teams in the NFC, only San Francisco (SF) had the same rating based on a
different order of matches. In addition, many teams changed their rank in their division
as well. Most noticeably, in the NFC North, the Chicago Bears (CHI) and the Minnesota
Vikings (MIN) swapped rank. Because they were fighting for sixth and final Wild Card
spot in the playoffs, the order of matches actually affected which team would be selected
for the playoffs.

Figures 1 and 2 show the Elo rating for both CHI and MIN throughout the 2012
season based on the different order of matches.
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Figure 1: Rating of Minnesota Vikings during 2012 NFL season under different match
orders
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Figure 2: Rating of Chicago Bears during 2012 NFL season under different match orders

Clearly, the order of matches will affect the final team rating when using the Elo
method, thus Property III is violated. In summary, all five of the ranking methods
violated exactly one of the ranking axioms. Table 9 provides a summary of our findings.

5 A proposed method to satisfy all properties

In this section, we identify a recently developed method, by an author of this paper, in
Vaziri et al [36] that is an extension of the Markov method, but with a modified voting
scheme, referred to as the (1, α) method. Applied to the NFL seasons 2002 − 2011 and
under specific parametric conditions for α, we observe that this method adheres to all
three properties. We discuss a heuristic to choose α in Section 5.1.

Before we examine this method, it is important to discuss the possibility of tweaking
the other methods to satisfy the properties. For the Win-Loss, Massey, and Colley
methods, it is not possible to modify the method to take Property I into account. The
nature of the methods rely on aggregation of wins and losses (or score differential in
Masseys case), and having uniform reward for winning a match. This is consistent with
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Table 9: Summary of ranking methods and axioms
Method Property I Property II Property III

Win-Loss × X X
Massey × X X
Colley × X X
Markov X × X

Elo X X ×

the findings from Chartier et al. [9] when they showed that the Massey and Colley
methods had a uniformly spaced rating vector for a perfect season.

The (1, α) method uses a voting scheme that is a modification to the traditional (0, 1)
voting scheme of the Markov method. In the (1, α) method voting scheme, the winning
team will vote a value of 1 to the losing team, and the losing team will vote a value
of α > 1 to the winning team. Another way to view this voting scheme is that when
two teams play each other, they are always connected by two arcs. The weight of the
arcs is dependent on who wins the match. The winner will have a higher weight, or
more “flow” or “votes” coming in from the loser. The remainder of the method is the
same algorithm as the traditional Markov method. The parameter α is selected by the
user, and represents the confidence that the winning team is indeed the better team.
An advantage of the (1, α) method is that it significantly reduces the sensitivity of the
Markov method, as shown in [36], while maintaining the integrity of the rank order.

Since the (1, α) method is a modification of the Markov method, it will follow Prop-
erties I and III for the same reasons of the traditional method. However, since the (1, α)
method also reduces the sensitivity of the Markov method, upsets have a much smaller
impact than in the traditional scheme. Thus, in many cases, the (1, α) method will also
adhere to Property II and not provide incentive to lose.

The (1, α) method will not satisfy Property II for all values of α, because as α grows
very large, the method converges to the (0, 1) Markov method and will have the same
properties. However, for smaller values of α, we observe that the incentive to lose no
longer exists, and Property II will be satisfied.

We revisit the example from Section 4.2, in which we demonstrated the incentive to
lose for team A using the Markov method. This time we use the (1, α) method for α = 2,
and observe the behavior of the ranking. The ranking for the (1, α) method for a perfect
season round robin tournament of five teams is shown in Table 10. Again, we add an

Table 10: Perfect season, (1, α) method, α = 2
Team Rank Win-Loss Record (1, α) Rating

A 1 4− 0 0.244
B 2 3− 1 0.218
C 3 2− 2 0.196
D 4 1− 3 0.178
E 5 0− 4 0.163

upset in which team E instead had defeated team A. The ranking can be seen in Table
11.

Notice that the worst team E only improved its ranking by one spot, as opposed to in
the traditional scheme in which it became rated and ranked equally with the best team
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Table 11: Perfect season with upset, (1, α) method, α = 2
Team Rank Win-Loss Record (1, α) Rating

A 1 3− 1 0.227
B 2 3− 1 0.214
C 3 2− 2 0.193
E 4 1− 3 0.191
D 5 1− 3 0.175

A. Also, team E defeated a stronger team than team D defeated, which is shown by the
fact that it is rated and ranked ahead of team D. The reduced sensitivity to upsets and
the maintained integrity to opponent strength is well demonstrated here.

Finally, we add the third upset to see if the incentive to lose is available for team A,
by assuming that they intentionally lose the match to team D. From Table 12, losing the

Table 12: Perfect season with two upsets, (1, α) method, α = 2
Team Rank Win-Loss Record (1, α) Rating

B 1 3− 1 0.217
A 2 2− 2 0.211
D 3 2− 2 0.197
C 4 2− 2 0.196
E 5 1− 3 0.179

match decreased both team A’s rating and ranking. Also, notice that the ranking is more
intuitive than before, in that the rankings closely follow the number of wins and losses
for all teams, regardless of the number of upsets.

Next, as we did in Section 4.2, we observe the 2011 NFL season using the (1, α)
method, and whether or not there is incentive for GB to lose a match to improve its
rating and ranking. First, we show an excerpt of the season ranking based on different
values of α, as seen in Table 13.

Table 13: (1, α) method ratings for 2011 NFL season

α = 2 α = 10 α = 20 α = 100
Rank Team Rating Team Rating Team Rating Team Rating

1 GB 4.055 GB 5.594 GB 5.76 KC 6.656
2 NO 3.658 BAL 5.057 BAL 5.489 BAL 5.984
3 BAL 3.639 NO 4.387 KC 5.212 GB 5.698
4 SF 3.602 SF 4.378 SF 4.505 PIT 4.612
5 PIT 3.553 KC 4.342 PIT 4.345 SF 4.589

Note that as α grows large, the rating and ranking vector converges to that of the
traditional (0, 1) voting scheme of the Markov method. Next, we add the same upset as
we did in Section 4.2 (CHI beats GB in one match), and notice the effect it has on the
final season rankings to see if GB had incentive to lose an additional match.

For any value of α ≤ 5, there was no incentive to lose, and thus, Property II is
satisfied. However, once α ≥ 10, the incentive to lose exists. On analyzing data from
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Table 14: (1, α) method ratings for 2011 NFL season with modification

α = 2 α = 10 α = 20 α = 100
Rank Team Rating Team Rating Team Rating Team Rating

1 GB 3.953 GB 5.48 GB 5.771 GB 5.994
2 NO 3.66 BAL 5.011 BAL 5.4 BAL 5.808
3 BAL 3.637 NO 4.468 CHI 4.645 CHI 5.026
4 SF 3.6 SF 4.374 NO 4.52 KC 4.912
5 PIT 3.551 CHI 4.33 SF 4.507 SF 4.61

the NFL seasons from 2002 − 2011, we found that for α values less than 5, there is
never an incentive to lose a match! For values 10 or greater, there were instances where
losing a match was beneficial for a team. We visit the criteria for choosing α in the next
subsection. The table below shows the number of matches in the season when a team
had an incentive to lose for different values of α. One can also think of the values in this
table as the number of times Property II was violated. The last row shows the number
of matches where a team had an incentive to lose in the (0, 1) Markov method. It is
mentioned in Vaziri et al [36], that the rating vector obtained from the (1, α) method
should converge to the rating vector obtained from the (0,1) Markov method for large
values of α. The last two rows of Table 15 provide evidence of this convergence. Note that
there is an exception in 2007, when the New England Patriots had an undefeated season.
When using the (0,1) Markov method and having an undefeated team, the dangling node
adjustment must be performed (see [26]), which modifies the rating vector. Since the
same adjustment is not applied to the (1, α) method, the methods’ rating vectors do not
converge to equal values.

Table 15: Matches when the victor had incentive to lose - NFL Seasons 2002−2011
(1, α) NFL Seasons

Method ‘02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 2 0 0 0 1 0 2
20 1 0 1 8 0 0 0 4 1 7
100 1 2 5 13 4 3 5 9 2 11

1000000 2 2 5 14 6 3 5 16 2 14

(0,1) method 2 2 5 14 6 0 5 16 2 14

5.1 Choosing α

It is important to test and verify a value for α depending on the league size and the
number of matches played by each team. In the MLB or NBA, for example, different
values of α could satisfy Property II. Analysis, such as the one done in Table 15, is
required to find the relationship and/or threshold of α based on league parameters to
guarantee satisfaction of Property II. Further, we can determine α based on predictive
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power. For example, in the case for NFL an α value of 2 has the highest predictive power
when used to predict the outcome of the playoffs. There are other ways to choose α −
we can incorporate home and away advantages, score differentials, etc. The value of α
represents the confidence in victory, i.e. a higher value of α means that when team A
beats team B, the ranking method will have more confidence that team A is better than
team B. But α also affects the sensitivity of the ranking method. A higher value of α
corresponds to less control over the sensitivity to upsets. Therefore, it is important to
choose an alpha that strikes a balance between confidence and sensitivity. However, the
focus in this article is to only consider the mentioned properties − that is to make sure
that the value of α used is able to satisfy the requirements for a ranking method.

Table 16: Alpha vs Sensitivity and Confidence
Sensitivity Confidence in Victory

Large Alpha High High
Small Alpha Low Low

Since the (1, α) method is a parametric ranking method, we examine the conditions
under which the chosen value of α is able to satisfy our requirements. Mathematically
proving or obtaining limits on this parameter will be impossible unless stylized settings
are adopted for tournament results (every season or tournament is different and therefore
the Markov matrix will be different every time). This can limit us to wait until the end
of the season to use this ranking method.

However, we propose a trade-off. In order to find such a limit1, we examine the shortest
path between two nodes (teams) of a graph. Physically, the length of the shortest path
represents the least number of votes you have to give to another team to reach them.

For example, if Team A beats Team B, the shortest path from Team A to Team B
is 1 using the (1, α) method. The shortest path from Team B to Team A will have a
maximum value of α. However, Team B could reach Team A in a shorter distance if they
have beat Team C which in turn has beat Team A, thus bringing the distance between
B and A from α to 2. These shortest distances depend on the number of teams and the
number of matches played by each team in the season. In the NFL, 32 teams play only
16 matches each whereas in the NBA 30 teams play 82 matches each season. It is easier
to reach other teams in the NBA or NHL than it is in the NFL.

The link between this shortest distance and the violation of Property II is the value of
α. We observe that in the seasons 2002 − 2011 for the NFL, it can take up to 5 or 6 edges
to reach another team. But since the teams play so few matches, there are numerous
shortest distances of length equal to α. As this value of α grows higher than the 5 or
6, we start observing violations of Property II. If a team deliberately loses a match, all
of the shortest distances between teams are affected, thus making it possible to have a
positive impact on your rating! This behavior is natural to the Markov method, since it
calculates the rating vector by looking at all possible ways nodes can reach other nodes.
This corroborates our test results shown in Table 15 where we show that for α < 5, the
(1, α) ranking method will adhere to Property II. We do not observe this in the NBA and
NHL (seasons 2002 through 2011) essentially due to the fact that each team plays many
more matches than the NFL.

1We thank an anonymous referee for suggesting the link between the parameter α and the tournament
setting such as teams and number of matches played.
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The (1, α) method, for all values of α, needs to be characterized and tested against
many of the well known properties as seen in [11, 17] for preference aggregation −
and most importantly against the Nonnegative responsiveness to the beating relation
(NNRB). We rely on our empirical findings on the methods’ relationship with Property
II for the purpose of this article, but recognize the need for a formal proof which we will
address in future work.

In this section we aimed to and have successfully shown that the (1, α) method satisfies
all three properties under certain parametric conditions when applied to the NFL, and
thus can be a fair and comprehensive ranking method.

6 Conclusion

In summary, we have outlined a set of ranking properties that all fair and comprehensive
pairwise comparison ranking methods should follow. The opponent strength in a match
result should impact your rating, there should never be an incentive to lose a match to
improve your rating, and the order of matches should not influence the final rating vector.

In future work we propose to study a few other properties that sports ranking methods
should satisfy. One such property stated in many articles (see [11, 14, 17]) is the Inversion
property. This states that if all the results of the tournament are reversed, the ranking
should also be reversed. Whether or not it may be suitable for a round-robin tournament
setting is a matter of debate. However, it is easy to see that the Inversion property is not
compatible with Property I because it implies symmetric treatment between victories and
losses. Both the (0, 1) and the (1, α) methods will fail to satisfy the Inversion property
because of their inherent nature that accounts for opponent strength.

Another direction for future work is to show the relationship of our Property II with
the Nonnegative Responsiveness to the Beating Relation (NNRB) and the Positive re-
sponsiveness to the beating relation (PRB) as discussed in [17] and mathematically prove
how the Markov ranking methods discussed in this paper fare against these properties.

We reviewed five popular sports ranking methods and found that none of the five ad-
hered to all three of the properties, although all of them satisfied exactly two of the prop-
erties. The Win-Loss, Massey, and Colley methods did not take the opponent strength
into account when rewarding a team for a victory. The Markov method is extremely sen-
sitive, and thus has cases where a team has incentive to lose a match to improve its rating
and ranking. The Elo method provides different team ratings based on the sequence of
matches, which is oftentimes (and always, in major professional sports) not in the teams’
control. In future work we propose to study various other ranking methods such as max-
imum likelihood, fair bets, least square and generalized row sum to see how they can be
adapted to ranking sports tournaments and how they fare against the properties stated
in this paper.

Last, we conjectured that a newly proposed modification to the Markov method,
known as the (1, α) method, will satisfy all three properties under certain parametric
conditions. We showed both a generic and case study example where the (1, α) method
satisfied all three properties and removed the previous case of having incentive to lose.
We note that for large values of α, the method’s rating vector converges to the traditional
Markov method rating vector, and Property II will be violated. To avoid this, we also
provide guidelines on how α should be chosen.
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