〕Open access • Journal Article • DOI:10.2478/UMCSMATH-2014-0004

Properties of the determinant of a rectangular matrix — Source link \square

Anna Makarewicz, Piotr Pikuta, Dominik Szalkowski
Published on: 01 Jun 2014 - Annales Umcs, Mathematica (Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej)
Topics: Minor (linear algebra), Square matrix, Matrix (mathematics) and Laplace expansion

Related papers:

- The Determinant of a Triangular-Block Matrix
- A Method to Compute the Determinant of a 5×5 Matrix
- Matrices and determinoids
- Method of generating matrix factors for a finite-dimensional linear transform
- Method of generating a sequence of matrix factors for a transformation matrix

ANNA MAKAREWICZ, PIOTR PIKUTA and DOMINIK SZAŁKOWSKI

Properties of the determinant of a rectangular matrix

Abstract

In this paper we present new identities for the Radić's determinant of a rectangular matrix. The results include representations of the determinant of a rectangular matrix as a sum of determinants of square matrices and description how the determinant is affected by operations on columns such as interchanging columns, reversing columns or decomposing a single column.

1. Introduction. In [2] Radić introduced the following definition of the determinant of a rectangular matrix.

Definition 1.1. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $m \times n$ matrix with n columns A_{1}, \ldots, A_{n} and $m \leq n$. The determinant of A is defined as

$$
\begin{equation*}
|A|=\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right| \tag{1}
\end{equation*}
$$

where $r=1+2+\ldots+m$.
The determinant of a square matrix and the determinant (1) of a $m \times n$ matrix, where $m \leq n$, have several common standard properties, including the following (see [2]):
(1) If a row of A is identical to some other row or is a linear combination of other rows then $|A|=0$.

Key words and phrases. Determinant of rectangular matrix, Radić's determinant.
(2) If a row of A is multiplied by a number k, then the determinant of the resulting matrix is equal to $k|A|$.
(3) Interchanging two rows of A results in changing the sign of the determinant.
(4) The determinant $|A|$ can be calculated using the Laplace expansion.

The properties of the determinant (1) were investigated by Radić $[3,4,5]$ and also by Radić and Sušanj [6]. In the papers cited, the results concerning $2 \times n$ matrices were applied in planar geometry.

Another approach was presented by Amiri, Fathy and Bayat in [1], where the authors proved determinant identities such as Dodgson Condensation Formula and Trahan Formula for rectangular matrices, as well as CauchyBinet Formula for non-square products of two matrices.

In this paper we present new identities for determinants of rectangular matrices. The results include representation of the determinant of a rectangular matrix as a sum of determinants of square matrices and description how the determinant is affected by operations on columns such as interchanging two columns, reversing columns or decomposing a single column.

2. Properties of the determinant.

2.1. Representation of the determinant of a rectangular matrix as a sum of determinants of square matrices. For $2 \times n$ matrices, where $n \geq 2$, Radić [3] proved the following theorem.

Theorem 2.1. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $2 \times n$ matrix with $n \geq 2$. Then

$$
\begin{aligned}
|A|= & \left|A_{1}, A_{2}-A_{3}+A_{4}-\ldots+(-1)^{n} A_{n}\right| \\
& +\left|A_{2}, A_{3}-A_{4}+\ldots+(-1)^{n-1} A_{n}\right| \\
& +\ldots \\
& +\left|A_{n-1}, A_{n}\right|
\end{aligned}
$$

This theorem gives a representation of the determinant of a $2 \times n$ matrix, where $n \geq 2$, as a sum of determinants of square matrices other than the representation (1). We generalize this result to $m \times n$ matrices in the following way.

Theorem 2.2. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $m \times n$ matrix, where m is a number of rows and n is a number of columns, $m \leq n$. Then we have

$$
\begin{aligned}
|A|=\sum_{1 \leq j_{1}<\ldots<j_{m-1}<n} & (-1)^{r+j_{1}+j_{2}+\ldots+j_{m-1}} \\
& \times\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m-1}}, \sum_{k=j_{m-1}+1}^{n}(-1)^{k} A_{k}\right|
\end{aligned}
$$

Proof. Applying (1), we have

$$
\begin{aligned}
& |A|=\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right| \\
& =\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{m-1}<n} \sum_{k=j_{m-1}+1}^{n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m-1}+k} \\
& \\
& \times\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m-1}}, A_{k}\right| \\
& =\sum_{1 \leq j_{1}<\ldots<j_{m-1}<n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m-1}} \\
& \quad \times\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m-1}}, \sum_{k=j_{m-1}+1}^{n}(-1)^{k} A_{k}\right| .
\end{aligned}
$$

Using the same method, one can easily prove the following two theorems.
Theorem 2.3. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $m \times n$ matrix, $m \leq n$. Then we have

$$
|A|=\sum_{1<j_{2}<\ldots<j_{m} \leq n}(-1)^{r+j_{2}+j_{3}+\ldots+j_{m}}\left|\sum_{k=1}^{j_{2}-1}(-1)^{k} A_{k}, A_{j_{2}}, \ldots, A_{j_{m}}\right|
$$

where $r=1+2+\ldots+m$.
Theorem 2.4. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $m \times n$ matrix, $m \leq n$. Then for each $p \in\{2,3, \ldots, m-1\}$ we have

$$
\begin{aligned}
|A|= & \sum_{\substack{1 \leq j_{1}<\ldots<j_{p-1} \\
j_{p+1}<\ldots<j_{m} \leq n \\
j_{p+1}-j_{p-1}>1}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{p-1}+j_{p+1}+\ldots+j_{m}} \\
& \times\left|A_{j_{1}}, \ldots, A_{j_{p-1}}, \sum_{k=j_{p-1}+1}^{j_{p+1}-1}(-1)^{k} A_{k}, A_{j_{p+1}}, \ldots, A_{j_{m}}\right|,
\end{aligned}
$$

where $r=1+2+\ldots+m$.
Example 1. Let $\left[A_{1}, A_{2}, A_{3}, A_{4}\right.$] be a 3×4 matrix. Then

$$
\begin{aligned}
\left|A_{1}, A_{2}, A_{3}, A_{4}\right| & =\left|A_{1}, A_{2}, A_{3}-A_{4}\right|+\left|A_{1}, A_{3}, A_{4}\right|-\left|A_{2}, A_{3}, A_{4}\right| \\
& =\left|A_{1}, A_{2}, A_{3}\right|-\left|A_{1}, A_{2}, A_{4}\right|+\left|A_{1}-A_{2}, A_{3}, A_{4}\right| \\
& =\left|A_{1}, A_{2}, A_{3}\right|-\left|A_{1}, A_{2}-A_{3}, A_{4}\right|-\left|A_{2}, A_{3}, A_{4}\right|
\end{aligned}
$$

2.2. Decomposing a column. If a column K in a square matrix A is a sum of two columns (eg. $K=K_{1}+K_{2}$), then the determinant $|A|$ is a sum of two determinants of matrices obtained from A by replacing K by K_{1} and K_{2} respectively.

For rectangular matrices we have a similar property.

Theorem 2.5. Let $A=\left[A_{1}, A_{2}, \ldots, A_{k}, \ldots, A_{n}\right]$ be a $m \times n$ matrix, $m \leq n$, and $A_{k}=B_{k}+C_{k}$ for some $k \in\{1,2, \ldots, n\}$. Then

$$
\begin{aligned}
|A|= & \left|A_{1}, A_{2}, \ldots, A_{k-1}, B_{k}, A_{k+1}, \ldots, A_{n}\right| \\
& +\left|A_{1}, A_{2}, \ldots, A_{k-1}, C_{k}, A_{k+1}, \ldots, A_{n}\right| \\
& +\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \notin\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}+1}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right|
\end{aligned}
$$

where $r=1+2+\ldots+m$.
Proof. After applying (1)

$$
|A|=\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right|
$$

we separate the sum of determinants into two sums: the first one consisting of the determinants of matrices which contain the column $A_{k}=B_{k}+C_{k}$ and the second one consisting of other determinants.

$$
\begin{aligned}
|A|= & \sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \in\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, \ldots, A_{k}, \ldots, A_{j_{m}}\right| \\
& +\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \notin\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right| \\
= & \sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \in\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, \ldots, B_{k}, \ldots, A_{j_{m}}\right| \\
& +\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \in\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, \ldots, C_{k}, \ldots, A_{j_{m}}\right| \\
& +\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \notin\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right| .
\end{aligned}
$$

Now the third sum is added and subtracted so that it can be included into both the first and the second sum:

$$
\begin{aligned}
&|A|=\left|A_{1}, A_{2}, \ldots, A_{k-1}, B_{k}, A_{k+1}, \ldots, A_{n}\right| \\
&+\left|A_{1}, A_{2}, \ldots, A_{k-1}, C_{k}, A_{k+1}, \ldots, A_{n}\right| \\
&-\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \notin\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right| \\
&
\end{aligned}
$$

$$
\begin{aligned}
= & \left|A_{1}, A_{2}, \ldots, A_{k-1}, B_{k}, A_{k+1}, \ldots, A_{n}\right| \\
& +\left|A_{1}, A_{2}, \ldots, A_{k-1}, C_{k}, A_{k+1}, \ldots, A_{n}\right| \\
& +\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
k \notin\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}+1}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right|
\end{aligned}
$$

Example 2. Let $\left[A_{1}, A_{2}, A_{3}\right]$ be a 2×3 matrix and $A_{1}=B_{1}+C_{1}$. Then according to Theorem 2.5 we have

$$
\begin{aligned}
\left|B_{1}+C_{1}, A_{2}, A_{3}\right|= & \left|B_{1}, A_{2}, A_{3}\right|+\left|C_{1}, A_{2}, A_{3}\right| \\
& +\sum_{\substack{1 \leq j_{1}<j_{2} \leq 3 \\
1 \notin\left\{j_{1}, j_{2}\right\}}}(-1)^{(1+2)+j_{1}+j_{2}+1}\left|A_{j_{1}}, A_{j_{2}}\right| \\
= & \left|B_{1}, A_{2}, A_{3}\right|+\left|C_{1}, A_{2}, A_{3}\right|+(-1)^{3+2+3+1}\left|A_{2}, A_{3}\right| \\
= & \left|B_{1}, A_{2}, A_{3}\right|+\left|C_{1}, A_{2}, A_{3}\right|-\left|A_{2}, A_{3}\right| .
\end{aligned}
$$

2.3. Interchanging columns. Interchanging columns in a square matrix results in changing the sign of the determinant. Rectangular matrices in which the number of columns is equal to the number of rows increased by one have the same property.

Theorem 2.6. Let $A=\left[A_{1}, A_{2}, \ldots, A_{m}, A_{m+1}\right]$ be a $m \times(m+1)$ matrix. Then for each $i, j \in\{1,2, \ldots, m+1\}$ such that $i<j$, we have

$$
|A|=-\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{j}, A_{i+1}, \ldots, A_{j-1}, A_{i}, A_{j+1}, \ldots, A_{m}, A_{m+1}\right|
$$

Proof. Let $r=1+2+\ldots+m$. Fix $i, j \in\{1,2, \ldots, m+1\}$ such that $i<j$. From all the determinants in the right-hand side of

$$
|A|=\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right|
$$

we distinguish determinants of two matrices which contain either A_{i} or A_{j} but not both of them. Thus we have

$$
\begin{aligned}
&|A|=(-1)^{\left[r+\frac{(m+1)(m+2)}{2}-i\right]} \\
& \times\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{j-1}, A_{j}, A_{j+1}, \ldots, A_{m+1}\right| \\
&+(-1)^{\left[r+\frac{(m+1)(m+2)}{2}-j\right]} \\
& \times\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{i}, A_{i+1}, \ldots, A_{j-1}, A_{j+1}, \ldots, A_{m+1}\right| \\
&+ \sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
i, j \in\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, \ldots, A_{i}, \ldots, A_{j}, \ldots A_{j_{m}}\right|
\end{aligned}
$$

Notice that exactly $j-i-1$ inversions are needed to move the column A_{j} to the position between A_{i-1} and A_{i+1} in the first summand. Similarly, in the second summand, also $j-i-1$ inversions are needed to move the column A_{i} to the position between A_{j-1} and A_{j+1}.

In other summands we can simply interchange columns A_{i} and A_{j} with the sign change. Thus we have

$$
\begin{aligned}
|A|= & (-1)^{\left[r+\frac{(m+1)(m+2)}{2}-i+(j-i+1)\right]} \\
& \times\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{j}, A_{i+1}, \ldots, A_{j-1}, A_{j+1}, \ldots, A_{m+1}\right| \\
+ & (-1)^{\left[r+\frac{(m+1)(m+2)}{2}-j+(j-i+1)\right]} \\
& \times\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{j-1}, A_{i}, A_{j+1}, \ldots, A_{m+1}\right| \\
- & \sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
i, j \in\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, \ldots, A_{j}, \ldots, A_{i}, \ldots A_{j_{m}}\right| \\
=- & (-1)^{\left[r+\frac{(m+1)(m+2)}{2}-j\right]} \\
& \times\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{j}, A_{i+1}, \ldots, A_{j-1}, A_{j+1}, \ldots, A_{m+1}\right| \\
& -(-1)^{\left[r+\frac{(m+1)(m+2)}{2}-i\right]} \\
& \times\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{j-1}, A_{i}, A_{j+1}, \ldots, A_{m+1}\right| \\
& -\quad \sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|A_{j_{1}}, \ldots, A_{j}, \ldots, A_{i}, \ldots A_{j_{m}}\right| \\
= & -\left|A_{1}, A_{2}, \ldots, A_{i-1}, A_{j}, A_{i+1}, \ldots, A_{j-1}, A_{i}, A_{j+1}, \ldots, A_{m}, A_{m+1}\right| .
\end{aligned}
$$

Consider a $m \times n$ matrix A with m rows and n columns, $m \leq n$. Let A^{\prime} be a matrix obtained from A by interchanging two columns. Theorem 2.6 tells us that $|A|+\left|A^{\prime}\right|=0$ when $n-m=1$. However, in general, if $n-m>1$ the sum $|A|+\left|A^{\prime}\right|$ is not zero.

For a $m \times n$ matrix $M=\left[M_{1}, M_{2}, \ldots, M_{n}\right]$ and each $i, j \in\{1,2, \ldots, m\}$, such that $i<j$, denote

$$
S_{1}(M, i, j)=\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\ i, j \notin\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|M_{j_{1}}, M_{j_{2}}, \ldots, M_{j_{m}}\right|
$$

$$
S_{2}(M, i, j)=\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\ i, j \in\left\{j_{1}, \ldots, j_{m}\right\}}}(-1)^{r+j_{1}+j_{2}+\ldots+j_{m}}\left|M_{j_{1}}, M_{j_{2}}, \ldots, M_{j_{m}}\right|,
$$

where $r=1+2+\ldots+m$ and $\operatorname{card}(X)$ stands for the cardinality of X.
Theorem 2.7. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $m \times n$ matrix with m rows and n columns, $m \leq n$. For $i, j \in\{1,2, \ldots, n\}$ such that $i \neq j$ denote by $A_{A_{i} \leftrightarrow A_{j}}$ the matrix obtained from A by interchanging columns A_{i} and A_{j}. Then

$$
\begin{aligned}
|A|+\left|A_{A_{i} \leftrightarrow A_{j}}\right| & =2 S_{1}(A, i, j)+2 S_{4}(A, i, j) \\
& =2 S_{1}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)+2 S_{4}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)
\end{aligned}
$$

Proof. Fix $i, j \in\{1,2, \ldots, m\}$ such that $i<j$. (If $i>j$ we can proceed analogously). We have

$$
|A|=S_{1}(A, i, j)+S_{2}(A, i, j)+S_{3}(A, i, j)+S_{4}(A, i, j)
$$

It is easy to verify that

$$
\begin{aligned}
& S_{1}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)=S_{1}(A, i, j) \\
& S_{2}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)=-S_{2}(A, i, j)
\end{aligned}
$$

Notice that each of the matrices in $S_{3}(A, i, j)+S_{4}(A, i, j)$ needs exactly $(j-i-\operatorname{card}(J))$ column inversions to move the column A_{i} to the position where A_{j} would be, and also $(j-i-\operatorname{card}(J))$ inversions are needed to move the column A_{j} to the position where A_{i} would be.

Therefore,

$$
\begin{aligned}
& S_{3}(A, i, j)=\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+\left(\sum_{k=1}^{m} j_{k}+j\right)-j+(j-i-\operatorname{card}(J))} \\
& J=\{i, \ldots, j\} \backslash\left\{j_{1}, \ldots, j_{m}\right\} \\
& \operatorname{card}(J) \equiv 1(\bmod 2) \quad \times\left|A_{j_{1}}, \ldots, A_{j_{p}}, A_{i}, A_{j_{q}}, \ldots, A_{j_{m}}\right| \\
& +\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
i \notin J, j \in J}}(-1)^{r+\left(\sum_{k=1}^{m} j_{k}+i\right)-i+(j-i-\operatorname{card}(J))} \\
& J=\{i, \ldots, j\} \backslash\left\{j_{1}, \ldots, j_{m}\right\} \\
& \operatorname{card}(J) \equiv 1(\bmod 2) \quad \times\left|A_{j_{1}}, \ldots, A_{j_{u}}, A_{j}, A_{j_{v}}, \ldots, A_{j_{m}}\right| \\
& =-\sum_{\substack{1 \leq j_{1}<\ldots<j_{m} \leq n \\
i \in J, j \notin J}}(-1)^{r+\left(\sum_{k=1}^{m} j_{k}+j\right)-i} \\
& J=\{i, \ldots, j\} \backslash\left\{j_{1}, \ldots, j_{m}\right\} \\
& \operatorname{card}(J) \equiv 1(\bmod 2) \quad \times\left|A_{j_{1}}, \ldots, A_{j_{p}}, A_{i}, A_{j_{q}}, \ldots, A_{j_{m}}\right| \\
& -\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+\left(\sum_{k=1}^{m} j_{k}+i\right)-j} \\
& J=\{i, \ldots, j\} \backslash\left\{j_{1}, \ldots, j_{m}\right\} \\
& \operatorname{card}(J) \equiv 1(\bmod 2) \\
& \times\left|A_{j_{1}}, \ldots, A_{j_{u}}, A_{j}, A_{j_{v}}, \ldots, A_{j_{m}}\right| \\
& =-S_{3}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right),
\end{aligned}
$$

where $r=1+2+\ldots+m$ and $j_{p}<j<j_{q}, j_{u}<i<j_{v}$ for some p, q, u, v.
Similarly, we have

$$
S_{4}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)=S_{4}(A, i, j)
$$

and finally,

$$
\begin{aligned}
|A|+\left|A_{A_{i} \leftrightarrow A_{j}}\right|= & S_{1}(A, i, j)+S_{2}(A, i, j)+S_{3}(A, i, j)+S_{4}(A, i, j) \\
& +S_{1}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)+S_{2}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right) \\
& +S_{3}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right)+S_{4}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right) \\
= & 2 S_{1}(A, i, j)+2 S_{4}(A, i, j) .
\end{aligned}
$$

Corollary 2.8. Let A be a $m \times n$ matrix, $m \leq n$. If $i, j \in\{1,2, \ldots, n\}$ satisfy $|i-j|=1$, then

$$
|A|+\left|A_{A_{i} \leftrightarrow A_{j}}\right|=2 S_{1}(A, i, j)=2 S_{1}\left(A_{A_{i} \leftrightarrow A_{j}}, i, j\right) .
$$

Example 3. Below we present a few identities obtained from Theorem 2.6, Theorem 2.7 and Corollary 2.8.
(a) Let $\left[A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right]$ be a 4×5 matrix. Then

$$
\left|A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right|=-\left|A_{5}, A_{2}, A_{3}, A_{4}, A_{1}\right|=\left|A_{5}, A_{4}, A_{3}, A_{2}, A_{1}\right|
$$

(b) Let $\left[A_{1}, A_{2}, A_{3}, A_{4}\right]$ be a 2×4 matrix. Then

$$
\begin{aligned}
\left|A_{1}, A_{2}, A_{3}, A_{4}\right|+\left|A_{2}, A_{1}, A_{3}, A_{4}\right|= & 2\left|A_{3}, A_{4}\right| \\
\left|A_{1}, A_{2}, A_{3}, A_{4}\right|+\left|A_{1}, A_{4}, A_{3}, A_{2}\right|= & 2\left(\left|A_{1}, A_{2}\right|-\left|A_{1}, A_{3}\right|+\left|A_{1}, A_{4}\right|\right) \\
\left|A_{1}, A_{2}, A_{3}, A_{4}\right|+\left|A_{4}, A_{2}, A_{3}, A_{1}\right|= & 2\left(\left|A_{1}, A_{2}\right|-\left|A_{1}, A_{3}\right|+\left|A_{2}, A_{3}\right|\right. \\
& \left.-\left|A_{2}, A_{4}\right|+\left|A_{3}, A_{4}\right|\right)
\end{aligned}
$$

2.4. Reversing columns. Reversing columns in a $n \times n$ square matrix results in changing the sign of its determinant if and only if n is congruent to 2 or $3(\bmod 4)$. Surprisingly, the determinant of a rectangular matrix also either changes or does not change the sign after column reversing, depending on the number of rows and the number of columns of the matrix.

Theorem 2.9. Let $\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ be a $m \times n$ matrix, $m \leq n$. Then we have

$$
\begin{aligned}
& \left|A_{n}, A_{n-1}, \ldots, A_{2}, A_{1}\right|=\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| \cdot(-1)^{\frac{m}{2}(2 n+m+1)} \\
& \quad= \begin{cases}\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| & \text { if } m \equiv 0(\bmod 4), \\
\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| \cdot(-1)^{n+1} & \text { if } m \equiv 1(\bmod 4), \\
\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| \cdot(-1) & \text { if } m \equiv 2(\bmod 4), \\
\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| \cdot(-1)^{n} & \text { if } m \equiv 3(\bmod 4)\end{cases}
\end{aligned}
$$

Proof. Let $r=1+2+\ldots+m=\frac{m(m+1)}{2}$ and $B_{k}=A_{n+1-k}, k \in\{1,2, \ldots, n\}$. Since exactly $(m-1)+(m-2)+\ldots+1=\frac{(m-1) m}{2}$ inversions of (adjacent) columns are needed to reverse the columns of a $m \times m$ matrix, we have

$$
\begin{aligned}
&\left|B_{1}, B_{2}, \ldots, B_{n}\right|= \sum_{1 \leq i_{1}<\ldots<i_{m} \leq n}(-1)^{r+i_{1}+i_{2}+\ldots+i_{m}}\left|B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{m}}\right| \\
&= \sum_{1 \leq i_{1}<\ldots<i_{m} \leq n}(-1)^{r+i_{1}+i_{2}+\ldots+i_{m}+\frac{(m-1) m}{2}} \\
& \quad \times\left|B_{i_{m}}, B_{i_{m-1}}, \ldots, B_{i_{1}}\right| \\
&= \sum_{1 \leq i_{1}<\ldots<i_{m} \leq n}(-1)^{r+i_{1}+i_{2}+\ldots+i_{m}+\frac{(m-1) m}{2}} \\
& \quad \times \mid A_{n+1-i_{m}}, A_{n+1-i_{m-1}}, \ldots, A_{n+1-i_{1} \mid}
\end{aligned}
$$

Applying the following change of variables: $j_{k}=n+1-i_{m-k+1}$ for each $k \in\{1,2, \ldots, m\}$, we get

$$
\begin{aligned}
\mid A_{n}, & A_{n-1}, \ldots, A_{2}, A_{1}\left|=\left|B_{1}, B_{2}, \ldots, B_{n}\right|\right. \\
& =\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n}(-1)^{r+m(n+1)-\left(j_{1}+j_{2}+\ldots+j_{m}\right)+\frac{(m-1) m}{2}}\left|A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{m}}\right| \\
& =\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| \cdot(-1)^{m(n+1)+\frac{(m-1) m}{2}} \\
& =\left|A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right| \cdot(-1)^{\frac{m}{2}(2 n+m+1)} .
\end{aligned}
$$

Finally, we state that

$$
(-1)^{\frac{m}{2}(2 n+m+1)}= \begin{cases}1 & \text { if } m \equiv 0(\bmod 4) \\ (-1)^{n+1} & \text { if } m \equiv 1(\bmod 4) \\ (-1) & \text { if } m \equiv 2(\bmod 4) \\ (-1)^{n} & \text { if } m \equiv 3(\bmod 4)\end{cases}
$$

which is easy to verify.
Example 4. Let

$$
\left[A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}\right]
$$

be a 5×9 matrix. Then

$$
\left|A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}\right|=\left|A_{9}, A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}\right|
$$

References

[1] Amiri, M., Fathy, M., Bayat, M., Generalization of some determinantal identities for non-square matrices based on Radic's definition, TWMS J. Pure Appl. Math. 1, no. 2 (2010), 163-175.
[2] Radić, M., A definition of determinant of rectangular matrix, Glas. Mat. Ser. III 1(21) (1966), 17-22.
[3] Radić, M., About a determinant of rectangular $2 \times n$ matrix and its geometric interpretation, Beiträge Algebra Geom. 46, no. 2 (2005), 321-349.
[4] Radić, M., Areas of certain polygons in connection with determinants of rectangular matrices, Beiträge Algebra Geom. 49, no. 1 (2008), 71-96.
[5] Radić, M., Certain equalities and inequalities concerning polygons in \mathbb{R}^{2}, Beiträge Algebra Geom. 50, no. 1 (2009), 235-248.
[6] Radić, M., Sušanj, R., Geometrical meaning of one generalization of the determinant of a square matrix, Glas. Mat. Ser. III 29(49), no. 2 (1994), 217-233.

Anna Makarewicz
Lublin University of Technology
Department of Applied Mathematics
ul. Nadbystrzycka 38 D
20-618 Lublin
Poland
e-mail: anna_makarewicz@o2.pl
Piotr Pikuta
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: ppikuta@poczta.umcs.lublin.pl
Dominik Szałkowski
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: dominik.szalkowski@umcs.lublin.pl

Received February 21, 2013

