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Properties of the Dirac-Weyl operator with a strongly 
singular gauge potentiala) 

Asao Arai 
Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 24 August 1992; accepted for publication 26 October 1992) 

Considered is a quantum system of a charged particle moving in the plane R2 
under the influence of a perpendicular magnetic field concentrated on some 
fixed isolated points in R2. Such a magnetic field is represented as a finite linear 
combination of the two-dimensional Dirac delta distributions and their 
derivatives, so that the gauge potential of the magnetic field also may be 
strongly singular at those isolated points. Properties of the Dirac-Weyl operator 
with such a singular gauge potential are investigated. It is seen that some of 
them depend on whether the magnetic flux is locally quantized or not. 
Particular attention is paid to the zero-energy state. For each of the self-adjoint 
realizations of the Dirac-Weyl operator, the number of the zero-energy states is 
computed. It is shown that, in the present case, a theorem of Aharonov and 
Casher [Phys. Rev. A 19, 2461 (1979)], which relates the total magnetic flux to 
the number of zero-energy states, does not hold. It is also proven that the 
spectrum of every self-adjoint extension of the minimal Dirac-Weyl operator is 
equal to R. 

1. INTRODUCTION 

In a previous paper,’ the author considered, from an operator-theoretical point of view, a 
quantum system of a charged particle with charge qeR\{O} moving in the plane R2 under the 
influence of a perpendicular magnetic field, where the gauge potential of the magnetic field is 
allowed to be strongly singular at some fixed isolated points a,,ER2, Y= l,...,n. A basic result in 
Ref. 1 is that the momentum operators of the system commute in the strong sense if and only 
if the magnetic flux is locally quantized, i.e., the magnetic flux of every rectangle not inter- 
secting a, (Y= 1 ,...,n) is an integer multiple of 2n-/q. This result was applied to show that there 
is a class of non-Schrsdinger representations of the canonical commutation relations associated 
with the physical situation in which the magnetic flux is not locally quantized, which corre- 
sponds to the occurence of the Aharonov-Bohm effect (cf. also Ref. 2). It was also shown in 
Ref. 1 that, if the magnetic flux is locally quantized, then the magnetic field must be concen- 
trated on the points a, Y= 1 ,...,n, and hence it is represented as a finite linear combination of 
the two-dimensional Dirac distributions and their derivatives (but the converse is not true). 

In connection with these results, it is interesting to ask how other properties of the quan- 
tum system depend on whether the magnetic flux is locally quantized or not. This is a moti- 
vation of the present work. Thus, in this article, restricting ourselves to the case where the 
magnetic field is concentrated on some isolated points, we investigate properties of the quantum 
system. 

Another motivation of this work comes from an interesting paper by Aharonov and 
Casher,3 who showed that the Dirac-Weyl operator with a regular gauge potential (or equiv- 
alently the corresponding Pauli Hamiltonian) has exactly N zero-energy states with N being 
the largest integer strictly less than (q/2a) x (the total magnetic flux) > 0 (cf. also Refs. 4, 5, 
and references therein). Our question is: Does this result also hold for the quantum system 
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916 Asao Arai: Dirac-Weyl operator 

with such a singular magnetic field as described above? We shall give in this article a negative 
answer to this question, deriving new formulas on the number of the zero-energy states. 

The outline of the present article is as follows. In Sec. II, we describe the quantum system 
we are going to study and present preliminary results, which include some of the results 
obtained in Ref. 1. We are primarily interested in properties of the Dirac-Weyl operator 
associated with the quantum system, but, for a comparison, we also consider the Schrodinger 
Hamiltonian defined via a quadratic form. We show that the Schrodinger Hamiltonian has no 
zero-energy states (Theorem 2.5). In Sec. III we discuss some of the operator theoretical 
aspects of the Dirac-Weyl operator Q with a “natural” domain. It is proven that, if the 
magnetic flux is locally quantized, then Q is self-adjoint and its square is equal to the Schro- 
dinger Hamiltonian (Theorem 3.1). In the case where the magnetic flux is not locally quan- 
tized, we show by an explicit construction that there exist at least two self-adjoint extensions of 
Q. Section IV is concerned with zero-energy states. We first show that, if the magnetic flux is 
locally quantized, then Q has no zero-energy states (Theorem 4.2). Hence the Aharonov- 
Casher theorem does not hold for the Dirac-Weyl Hamiltonian Q. To examine other possibil- 
ties that the quantum system under consideration has zero-energy states, we consider the 
minimal version Qmin of Q with domain D( Qmin) = Cg” (R2\{al,...,a,}). It is shown that Qmin, 
the closure of Qmin, has no zero-energy states (Lemma 4.3). We construct two self-adjoint 
extensions Q$h, j= 1,2, of Qmin+ Identifying explicitly their kernel, we prove that, under certain 
conditions, they have degenerate zero-energy states determined by the magnetic flux at each 
point a, and the number of the zero-energy states increases, tending to infinity, as n+ 00 
(Theorem 4.7 and Proposition 4.9). This may be a remarkable phenomenon. We also discuss 
the relevance of these results to the index theory as well as supersymmetry. In the last section, 
we identify the spectrum of the Dirac-Weyl operators introduced in the previous sections. We 
show that the spectrum of every self-adjoint extension of Qmin is equal to R (Theorem 5.1). 
Thus the spectrum of the Dirac-Weyl operators that are self-adjoint extensions of Qmin does 
not depend on whether the magnetic flux is locally quantized or not. 

II. PRELIMINARY RESULTS 

We consider a quantum system of a charged particle with charge qeR\{O} moving in the 
plane R2 under the influence of a perpendicular magnetic field B concentrated on some fixed 
isolated points av= (a,,,,av2)ER2, Y= 1 ,...,n. Such a field B is given by a real distribution of the 
form 

B(r)= i c C(,@q6(r-a,), r= (x,y)eR2, 
v= 1 o<a+p<m 

(2.1) 

with a non-negative integer m and real constants d$, where D, and D,, denote the distribu- 
tional partial differential operators in x and y, respectively, and S(r) is the Dirac delta distri- 
bution on R2 (e.g., Ref. 6, Chap. II, Sec. 4.5). A gauge potential A(r) of the magnetic field B 
is defined to be an R*-valued function A= (A1,A2) on the domain 

M=R2\{al,...,an} (2.2) 

such that 

B=DJ2--,,A, (2.3) 

in the sense of distributions on R2. 
We denote by A the two-dimensional Laplacian 

A=D;+D;. (2.4) 
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Using the well-known formula 

917 

A log(r-a,,[ =2~6(r--By), 

we see that the distribution 

4(r)= i c z Dz$logIr-aV/ 
v= 1 O<a+B<m 

(2.5) 

satisfies 

A+(r) = B(r). 

This allows us to take as a gauge potential of the magnetic field 

(2.6) 

Explicitly we have 

A=(44=(--,WU). (2.7) 

(2.8) 

(2.9) 

Note that Aj (j=1,2) can have strong singularity at each point r=ay, v=l,...,n, with order 
more than one. 

Definition (2.7) implies also that A is divergence-free on M. It follows that 

i(z) =A2(x,y)+iAl(x,y), z=x-kiy, 

must be a holomorphic function on the domain 

D,u=CC\a,l~,l, 

where a,,= a,] + ia,. In fact, we can show that 

(2.10) 

(2.11) 

6;) 
A”(Z)=& f, kEo (z-a )k+i* -=DM, 

Y 

with 

dky) = ( - 1) %! i d~~-,ikwn. 
a=0 

(2.12) 

(2.13) 

We use a system of units where the light speed c and the Planck constant #i are equal to 1. 
Let 

p,=-iD,, p2=-iD,, (2.14) 

in L2(R2). The momentum operator P= ( P,,P2) with the gauge potential A is defined by 

Pj=Pj-qAjt j= 192, (2.15) 
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in L*(R*> with domain D(P$ = D(p$ nD(Ai). Let 

MI =CWkR* IY#~z, v= 42,...,nl, 

M2={(~,y)~R21x#~,,,, v=l,..., n}. 

The following theorem is a special case of Theorem 3.2 in Ref. 1. 
Theorem 2.1: Each Pj (i= 1,2) is essentially self-adjoint on Corn (Mj). 
We denote the closure of Pj by Fj 
By Eqs. (2.1) and (2.3), we have 

D&(r) -D/i(x) =0, r*. (2.16) 

Hence 

[P1,P2]=0 on C,“(M). (2.17) 

This suggests that ii, and 4 may have a chance to commute in a proper sense. We say that two 
self-adjoint operators S and T STRONGLY COMMUTE if their spectral projections commute 
(Ref. 7, Sec. VIII 5). It is shown that S and T strongly commute if and only iffor all a,beR 

eiaSeib T = eibi”eiaS. 

To state a result on the strong commutativity of i”, and 4, we recall a concept concerning 
the magnetic flux.’ Let a&R and C(x,y;a,b) be the rectangular closed curve: (x,~) 
-+ (x+a,y)-+(x+a,y+b) -+(x,y+b)+ (xy) in M and D(x,y;a,b) be its interior domain. 
Then the magnetic flux passing through D(x,y;a,b) is given by 

@a,bkY) = 
s 

A(r’) l dr’. 
C(wwb) 

For each a&R, the function @,b is defined on the set B&’ (R\{a,,,a,l-a}~=l}) 
X (R\ {~,,~,a,,~ - b}“,= t}) . Let Z be the set of integers. We say that THE MAGNETIC FLUX 
Is LOCALLY QUANTIZED if @a,$ is a 2rrZ/q-valued function for all a,bcR. Using Eqs. 
(2.10) and (2.12), we can easily show that 

with 

(2.19) 

(2.20) 

In particular, the total magnetic flux + is given by 

cp= i yv. (2.21) 
x-1 

Thus it follows that the the magnetic flux is locally quantized if and only if y,, is an integer 
multiple of 2rr/q for all v= 1 ,...,n. Note that the quantization of the total magnetic flux (i.e., the 
case where @ is an integer multiple of 2r/q, the “global” quantization of the magnetic flux) 
does not imply the local quantization of the magnetic flux. 
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The Lebesgue measure of the set R*\ Do,b is zero. Hence @,b defines a unique self-adjoint 
multiplication operator in L*(R*). We denote it by the same symbol Qa,,. The following 
theorem has been proven in Ref. 1. 

Theorem 2.2: For all a,beR, 

&$ibh = exp ( - iqQa,b) &PQ&, (2.22) 

In particular, F’l and p2 strongly commute if and only if the magnetic flux is locally quantized. 
Remark 2.3: Physically, (exp( iap,)exp( ibF2)W)( r) and (exp( ibp.)exp( iaF,) W) 

(r)(a&R,r= (x,~)ER*,Y,EL*(R*)) mean the parallel transport, along the curves (x,y) 
-) (x,y+b) -* (x+a,y+b), and (x,y) -+ (x+a,y) -+ (x+a,y+b), respectively, of the wave func- 
tion Y under the influence of the gauge potential A. Formula (2.22) shows that the function 
-qQa,$ gives the phase shift between these two parallel transports. Hence Theorem 2.2 tells us 
that, in the present idealized system, the Aharonov-Bohm effect occurs if and only if the 
magnetic j?ux is not locally quantized. 

For later use, we prove the following fact. 
Lemma 2.4: ker Fj= CO), j= 1,2. 
Prooj Let 

$I(x,Y)=- i 2 $ Dz@arctan(s), (XtYmf1, 
v= 1 O<a+p3?l 

&(x,y) = i C 2 Dzqarctanrz), (X,Y)dM,. 
v= 1 O<a+/3<m 

Then we have 

Al=DA on Ml, 

A*= D,,$* on M, . 

Hence 

Pj= &*@p-‘q$j on Corn ( Mj) . (2.23) 

Let j= 1,2, be fixed and faker FY Then, since Corn (Mj) is a core for p4 (Theorem 2.1)) there 
exists a sequence { f ,},“= 1 in Corn (Mj) such that f ,,+ f, Pjf ,,+O in L (R*) as n + CO. By Eq. 
(2.23) we have 

PF 
-iq*. 

Jf,,-0, 

which, together with the closedness Of Pj, implies that e-‘q$jf E D(pj) and 

pie 
-‘djf = 0. 

It is well-known that kerpj= CO}. Hence exp( -iq$j) f CO, so that f =O. Thus the desired 
result follows. n 

If the charged particle is nonrelativistic with mass m,>O, then the Hamiltonian of the 
quantum system under consideration may be given as the Schrbdinger Hamiltonian H(A) 
defined as the self-adjoint operator associated with the non-negative, closed, quadratic form 
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so that 

and 

s(f 47) = 
(~lf&T) + c&f&, 

2m0 
, f,i@(&U-WhA 

D(H(A)“*)= D(ir,) I-I D(is,) 

(2.24) 

(H(A)“*f,H(A)“*g)=s(f,g), f,sD(WA)“*). (2.25) 

(For a representation theorem for closed semibounded quadratic forms, see, e.g., Ref. 7, Sec. 
VIII 6.) As a corollary of Lemma 2.4, we have the following. 

Theorem 2.5: The Hamiltonian H(A) has no zero-energy states 

ker H(A) ={O}. (2.26) 

Prooj By Eq. (2.25), we can show that 

hence Lemma 2.4 gives Eq. (2.26). 

III. THE DIRAC-WEYL OPERATOR 

n 

In what follows, the domain D(S+ T) of the sum S+ T of two linear operators S and T 

from a Hilbert space to another is always taken to be D(S) n D( T) unless otherwise stated. 
Let ai, j= 1,2,3, be the Pauli matrices 

ul=(Y ($ u*=(g J u3=(:, O1). 

The Dirac-Weyl operator is given by 

Q=a,P,+cQ', (3.1) 

acting in L*( R*;C*), which describes a Hamiltonian for a quantum system of a spin-l/2 
massless Dirac particle with charge q under the influence of the gauge potential A. In this 
section, we discuss the problem of the self-adjoint realization of Q. In the present case, this 
problem is not so trivial, because the gauge potential A(r) can be strongly singular at r=a, 
v=l ,...,n. We remark that, as for Dirac operators with singular potentials in three dimensions, 
there have been a number of studies, see, e.g., Refs. 8, 9, and references therein. The singu- 
larities treated in these studies, however, are the Coulomb-type. In our case, as is seen from 
Eqs. (2.8) and (2.9), the singularity of the gauge potential can be much more singular than 
that. 

The first of our results is the following. 
Theorem 3.1: Suppose that the magnetic flux is locally quantized. Then Q is self-adjoint and 

@ is given by 

QQy+P;. (3.2) 

Moreover, there exists a unitary operator U such that 

UQU-1=(sgn~2)(~;+~Fj:)1’2a3, (3.3) 
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where sgn x= 1 if x>O and sgn x= - 1 if x < 0. 
To prove this theorem, we recall some definitions and facts in the theory of anticommuting 

self-adjoint operators. IO-‘* We say that two self-adjoint operators S and T in a Hilbert space 

STRONGLY ANTICOMMUTE if for all aeR, exp(iaS) leaves D(T) invariant and 

eiasTf = Teeiasf, fED( T). 

It is shown that the definition is symmetric in S and T. Definitions equivalent to this form can 
be found in Refs. 10-12. The following is a basic result on strongly anticommuting self-adjoint 
operators. 

Lemma 3.2 (Rex IO): Let S and T be strongly anticommuting self-adjoint operators in a 
Hilbert space. Then S+ T is self-adjoint and 

(S+ T)*=S*+ T*. 

For our purpose, we need the following lemma. 
Lemma 3.3: Let S, and S2 be strongly commuting self-adjoint operators in a Hilbert space 

&4 Then Sl o o1 and S2 Q c2 are strongly anticommuting self-adjoint operators in the Hilbert 
space Z 8 C*. 

Proo$ Since oit j= 1,2, are Hermitian matrices, it follows from a general theory of tensor 
products of self-adjoint operators (e.g., Ref. 7, Sec. VIII 10) that Tj=Sjeai, j=1,2, are 
self-adjoint in 8s C*. Let Ej be the spectral measure of S, Then, for all Bore1 sets G in R, 
El(G) and E2( G) commute. Hence 

is dense in Z, where R(S) denotes the range of the operator S, and forms a set of entire 
analytic vectors for both S, and S,. Let f&J & C* (algebraic tensor product). Then 

T?‘f=($%I)f, 

T:“+‘f=(Si”+‘Bal)f, n>O, 

where I denotes identity. Hence, for all tcR, 

eitTlf=[(cos tS,) sI+i(sin tS,) eal]f. 

Using the fact that 01c2= -c20i, we have 

(Ieo2)eirT~f=[(costS1)el-i(sintS1)eal](lsa2)f. (3.4) 

The operators cos tS, and sin tS, leave g invariant. Hence the left-hand side of Eq. (3.4) is in 
D(S2 8 I). Applying S, @ I to both sides of Eq. (3.4) and using the strong commutativity of Sr 
and S2, we obtain 

T2eitT1 f = e--itT, T.J. 

By a simple limiting argument using the fact that 9 & C* is a core of T2, we conclude that T, 
and T, strongly anticommute. n 

Remark 3.4: We can also prove the converse of the above lemma: Let SI and S, be 
self-adjoint operators in a Hilbert space such that S, C+ (T] and S’, CZI a, strongly anticommute. 
Then SI and .S, strongly commute. For the proof of this fact, see Ref. 13. 
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Lemma 3.5: Let Si and Sz be as in Lemma 3.3. Then S, c~+oi+S~ eo2 is self-adjoint in 
Z@C2 and 

ProoJ This follows from Lemmas 3.3, 3.2, and the fact that (Sje Oj)2=S: o I. w 

We still need a lemma. 
Lemma 3.6 (ReJ: 14, Theorem 4.4): Let S and T be strongly anticommuting self-adjoint 

operators in a Hilbert space A?‘. Suppose that T is injective. Let T = LJ, 1 T 1 be the polar 
decomposition of T. Then there exists a unitary operator V on X such that 

Remark 3. Z Lemma 3.6 is an abstract and nonperturbative version of the so-called Foldy- 
Wouthuysen-Tani transformation of the usual Dir_c oper_tor (e.g., Ref. 15, Chap. 4). 

Proof of Theorem 3.1: Under the assumption, P, and P2 strongly commute (Theorem 2.2). 
Hence we can apply Lemma 3.5 with Sj=i’i to obtain the first half of the theorem. 

To prove the second half, let 

Then W is unitary and Wa, W-’ = CT,. Hence 

WQW-‘=a,&+aJi2. 

It is easy to see_ that the polar decomposition of CT~F~ is given by 03p2= a3( sgn 4) 1 F2 II By 
Lemma 2.4, 03P2 is injective. Hence we can apply Lemma 3.6 with S=olPl and T=a3P2 to 
obtain Eq. (3.3). H 

It is natural to ask what if the magnetic flux is not locally quantized. Unfortunately we 
have not been able to give a definite answer to this question. In the present article, we content 
ourselves with showing that, if Q is not essentially self-adjoint, then Q has at least two different 
self-adjoint extensions (see also Sec. IV B). To this end, we first note that Q is written 

(3.5) 

with 

Q,=F,+ip2. (3.6) 

Theorem 3.1 implies that Q* is closed if the magnetic flux is locally quantized. In the case 
where the magnetic flux is not locally quantized, this is not obvious, but it is easily shown that 
Q* is closable. We denote their closure by Q* and define 

and 

(3.7) 

(3.8) 
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Proposition 3.8: Each Qj (j= 1,2) is a self-adjoint extension of Q. Moreover, u3 leaves 
O(Qj) invariant and 

Prooj The self-adjointness of Qj is easily proven (note that Q*, = (8, ) *). It follows from 
Eq. (3.6) that 

Q-c@+, Q+W!L 

which imply that each Qi is an extension of Q. The second half of the proposition is easily 
checked. n 

Remark 3.9: If the magnetic flux is locally quantized, then, by Theorem 3.1, Q= Qi, j= 1,2. 
Remark 3.10: The idea of the above construction of self-adjoint extensions of Q has also 

been used in Ref. 16 (c,f. also Ref. 17). 
Remark 3.11; Let Q be any self-adjoint extension ?f Q such that u,~+&~=O on D(h) 

and define H= @. Then the quadruple { L2(R2;C2),Q,H,u3} is a model of supersymmetric 
quantum mechanics (SSQM) .18-21*5 In this context, & and H are called the supercharge and the 
supersymmetric Hamiltonian, respectively. Hence, from this point of view too, it is interesting 
to analyze properties of Q. 

IV. ZERO-ENERGY STATE 

A. The case where the magnetic flux is locally quantized 

Lemma 4.1: If the magnetic flux is locally quantized, then 

H(A) =e”. (4.1) 

Proofi Under this assumption, Eq. (3.2) implies that @CH(A). But both of these oper- 
ators are self-adjoint. Hence Eq. (4.1) follows. w 

Theorem 4.2: If the magnetic flux is locally quantized, then ker Q={O}, i.e., Q has no 
zero-energy states. 

Proofi By Eq. (4.1), we have ker H(A) = ker Q, which, together with Theorem 2.5, gives 
the desired result. a 

Theorem 4.2 shows that the Aharonov-Casher theorem in Ref. 3 does not hold on zero- 
energy states of the Dirac-Weyl operator Q if the magnetic flux is locally quantized. We also 
remark that the case where the magnetic flux is locally quantized corresponds to the nonoc- 
currence of the Aharonov-Bohm effect (see Remark 2.3). 

B. The case where the magnetic flux is not necessarily locally quantized 

We first consider the minimal version of the Dirac-Weyl operator Q 

which is symmetric and hence closable. We denote its closure by Qmin+ 
Lemma 4.3: 

(4.2) 

ker (Zmin = CO}. 

Prooj Let Yeker coin. Then there exists a sequence ~,,~C’~ (M) such that Y,+Y and 
Q~inYn-*O in L2(R2) as n- co. Let II* II d enote the norm of L2(R2;C2). By Eq. (2.17) and the 
fact ulu2= -u2ul, we have 
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Hence PjY, -0, j= 1,2, as n-+ 03, which imply that lu~D(p,)nD(F~) and FjY=O, j= 1,2. 

Hence, by Lemma 2.4, Y =O. w 

Although Lemma 4.3 shows that rZmin has no zero-energy states, self-adjoint extensions of 
Qmi, may have zero-energy states. In fact this is true, as is shown below. 

Let 

Q *, min=Q* 1 COm(W* (4.3) 

Note that 

Q +,min= -2ig-iqA(z)*, Q-,,,= -2ia+iqi(z), 

on C;(M), where d=a/az and a=&‘% We have 

Gnin= 0 ( 
0 S-. min 

-t, mill ) 0. * 

Lemma 4.3 implies that 

ker Q b, min=C”l* (4.4) 

In the same way as in the proof of Proposition 3.8, we can show that the operators 

0 Q*,,min 
+,min 0 

and 

G-, min 

o 

(4.5) 

(4.6) 

are self-adjoint extensions of Qmin. 
We want to determine the zero-energy states of Qzl, j= 1,2. In order to do that, it is 

convenient to consider generalized zero-energy states of Q. Let 9’ (M) be the space of distri- 
butions on M. We say that Y = (Y +,Y _ ) is a GENERALIZED ZERO-ENERGY STATE of 
Q if Y*eg’(M) satisfying 

(Y,(Qu)*)=O, u= 
( ) 
ET EC,” (M;@), (4.7) 

where ( * , * ) denotes the canonical bilinear form on a’(M;C2) x Cc (M;C2). We denote by 
ye(Q) the space of all the generalized zero-energy states of Q. Let 

H&V) ={e-q#f 1 f is holomorphic on DM}, (4.8) 

H”(M) = {eq4g lg is antiholomorphic on DM}. (4.9) 

Lemma 4.4: 
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yo(e,=(Y=(;~)I Y+a#(M),Y-d4(M) . 
I 

Prooj The idea of the proof of this lemma is similar to that of the Aharonov-Casher 
thcorem.3 For the sake of completeness, we give the proof. Let y be the set on the right-hand 
side of Rq. (4.10) and Y = (Y +,Y -)~y. Then there exist a holomorphic function f and an 
antiholomorphic function g on DM such that Y + = evq$f and Y _ = eq4g on M. Using Eqs. 
(3.6) and (2.7), we have 

Q+=-2ie-qQae@, on Cm(M), (4.11) 

QW=-2ieQ4de-q#, on P(M). (4.12) 

Using these formulas, we can show that Eq. (4.7) holds. Hence YeYe( Q). Thus Ye(Q) 1 y. 
TO prove the converse inclusion relation, let Y = (Y +,Y - )&‘e( Q), so that Eq. (4.7) 

holds. Noting that exp( -q+) is a one-to-one mapping from C’$ (M) onto itself, we have 

(eq+Y +,&i) =0 

for all u&,‘$’ (M) . In particular, taking u = au with UEC; (M) arbitrary, we obtain 

(eq4Y+,Av) =O. 

Hence, by the elliptic regularity of the Laplacian A, Y + is in C” (M). Similarly we have 
Y-EP (M) . Thus we obtain 

Q,y,=O 

as partial differential equations in M. It follows from Eqs. (4.11) and (4.12) that 

aeq$Y+=O, de-Q4Y-=0 on M, 

which imply that Y +&l+(M) and Y -EHb(M). Hence YES. Thus Ye(Q) C V. n 

Remark 4.5: Lemma 4.4 shows that Q has infinitely many generalized zero-energy states, 
a phenomenon which we have already encountered in the case where B and A are “regular.“3 
Moreover, such a phenomenon also occurs in some of other Dirac operators appearing in 
supersymmetric quantum mechanics’6*22*23 (in Ref. 23, the existence of infinitely many nor- 
malizable zero-energy states of a Dirac operator is shown). 

Let Z, be the set of non-negative integers. We introduce 

k,)EZ+xZ”Ip+ i: k,< *g-l, ,, 2r k >hEv-l , 
v=l 

and set 

N, (n;q) =#W, , 

the number of the elements of W,. We have 

IV-(n;q)=N+(n;-q). 

Let 

(4.14) 

(4.15) 

J. Math. Phys., Vol. 34, No. 3, March 1993 



926 Asao Arai: Dirac-Weyl operator 

F(r)=-& vgl kzl k(zT; )k, Y 
and, for (p,,k, ,..., k&Z+ XZn, define 

fg+.kl,...,kn(r) = (4.16) 

n 

%-A, 
,...,k,(r)= I-J ~z-av~~YJ2”(~-~v)k~ P-(T)e-iq’mFO, 

x-1 ) 
(4.17) 

with PA a polynomial of order pa such that P, (a,)#O, P- (Z,,>#O, v= l,...,n. 
Lemma 4.6: (i) The function oF,,k ,,“,, k 

n 
satisfies the partial differential equation 

Q=t*;*,k ,,..., k,(r)=0 on hf. (4.18) 

(ii) The function a* p,,k,A, is in L2(R2) if and only if (p*,k, ,..., k&W,. 

Pro03 (i) By Eqs. (2.7), (2.10), and (2.12), we can show that 4 can be written 

n Yv 
+(r)=ReJ’(z)+ vzl 2;;logIr-aa,I. (4.19) 

Using this equation, Eqs. (4.11) and (4.12), we see that Eq. (4.18) holds. 
(ii) We have 

1 fiT+,k,,...,kn(r) 1 -const 1 rl -(@‘2a)+p++2if=lk~ 

as Irl+co and 

1 ‘;+,kl,...,k,(r) 1 - const 1 r-a, I- (~&!a) +kv 

as r-+8,,. Hence the desired assertion about fiT+,k, ,,, 9 A, follows. Similarly we can prove the 

assertion about fl;-,k ,,,,, &,. n 
We now come to the main result in this section. 
Theorem 4.7: 
(i) We have 

kerQ,!$= R- [ ( p,k;,,,.,k.) / (p,k,,...,WWJ. 

ker Q,$i= ( ( Q$““‘kn) / (p,kl,...,k,)EW+ ), 

where ker Q,,, cl.) = (0) if W- ~0, and ker QfiA = (0) if W, =0. In particular, 

dim ker QiL=N-(n;q), 

(4.20) 

(4.21) 

(4.22) 

(4.23) dim ker Q$!, = N, (n;q). 
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(ii) If (a) n= 1 or (b) n)2 and the magnetic flux is locally quantized, then 

ker Q,!,$= {0}, j= 1,2. 

Proofi (i) By Eq. (4.4), we have 

(4.24) 

ker Q(!) = mm 
I( )I 

i 

Hence, by Lemma 4.6, the sets on the right-hand sides of Eqs. (4.20) and (4.21) are included 
in ker Qgi and ker QgA, respectively. 

To prove the converse inclusion relations, let 

Y=(Y+,Y-kker e*_,,in@kere*+,,;,- 

Note that 

ker @, min @ ker e*+, minx ker e*min= L2(R2;C2) nYc(Q). 

Hence Y&‘c( Q) and Y *eL2(R2). Therefore, by Lemma 4.4, there exist a holomorphic 
function f and an antiholomorphic function g on DM such that 

Y,=e-q+f, Y-=eq+g. 

Taking Eq. (4.19) into account together with the condition Y +EL~(R~), we see that f must 
be of the form 

f(z) =eqFcZ)h(z) 

with a meromorphic function h on CU{ co} with possible poles at ~=a,,, Y= l,...,n. Thus Y + 
has to take the form 

‘+ =a;k,....,kn’ 

with some (p,k,,..., k,)eZ+ X Zn and a polynomial P, of degree p such that P, (a,) #O, 
v=l ,,.., n. By Lemma 4.6(ii), (p,kl ,..., k,) must be in W,. Similarly we can show that Y _ must 
be of the form 

y- =‘npTk ,,.,,, k,, 

with some (p,kl,..., k,)eW-. Thus (0,Y - ) and (Y +,0) are in the set on the right-hand sides of 
Fqs. (4.20) and (4.21), respectively. 

We write (p,k,,..., k,) = (p,k). Then {atj,.,]&i are linearly independent if and only if 

(P~kj)#(pi,ki), i#j,i,j=l,..., 1. Thus ENS. (4.22) and (4.23) follow. 
(ii) If n=l, then it is easy to see that W,=0. Hence N,(l;q)=O. Thus Rq. (4.24) 

follows. Suppose that n)2 and the magnetic flux is locally quantized, so that Z,,=qyv/2&, 
v=l ,..., n. Let (p,k, ,..., k,)EW+. Then 
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k,>l,,, v= l,...,n, 

P+ i: k,< 2 L-l, 
l-1 v=l 

which implies that p < - i. Hence W, =0. Similarly we can show that W- =0. Thus Eq. 
(4.24) follows. n 

As a corollary of Theorem 4.7 (i), we have the following. 
Corollary 4.8: Let n>2 and suppose that N, (n;q) + N- (n;q) > 1. Then Qmin is not essen- 

tially self-adjoint. 
Proofi If Qmin were essentially self-adjoint, then Qmin = pd. By Lemma 4.3, we have 

ker Q,i”={O}. On the other hand, under the present assumption, Theorem 4.7(i) gives 
ker e*,,#{O}. Thus we are led to a contradiction. n 

Finally, we show that, under some conditions, N, (n;q) ) 1. For a positive number x, we 
denote by [x] (resp. {x}) the largest integer less than or equal to x (resp. the largest integer less 
than x). 

Proposition 4.9: Let n>2 and 

EJq)=$- 2 , I 1 v= l,...,n. 

Then the following holds. 
(i) Suppose that 

n 
c %(4) > 1. 

Then 

N+(n;q)S( $ %(q)]a 
In particular, if 

v~,EY(4)+w as n+co, 

then 

(ii) Let 

and suppose that 

N+(n;q)+co as n-+co. 

m+(w) = #Cdl,..421 1 e,(q) >O} 

m+(w) > l+ i Qq). 
V=l 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Then 

J. Math. Phys., Vol. 34, No. 3, March 1993 



Asao Arai: Dirac-Weyl operator 

N- (n;q)>m+ (n;q) - 1 - i 1 i, E,(q) u 

In particular, if 

“+(wz)--l-- zlE,(q)+m as n-+oo, 

then 

Prooj (i) Let 

N-(n;q)+oo as n-co. (4.31) 

If pEz+ satisfies 

p< i E,(q)-1, 
v=l 

then (p,ll ,..., IJEW,. Hence 

N+(n;q)># psZ+IO<p< C G(q)--l = vzl Jq) s 
I ,:, II”4 

Thus Eq. (4.27) follows. Formula (4.28) is a direct consequence of Eq. (4.27). 
(ii) Let 

k,= I 
-ZG if E,(q)=0 

-IV--l; if E,(q)>O. 

If @+ satisfies 

P<m+(w)--l- i, 6(q), 

then (p,k, ,..., k,)EW-. Hence 

N-(n;q))# pEZ+IOc;p<m+(n;q)-l- i E,(q) =m+(n;q)-l- i ’ (4) 
I v=l I I v=l v 1. 

Thus we obtain Eq. (4.30). Formula (4.3 1) follows from Eq. (4.30). w 
Remark 4.10: By Eq. (4.15)) part (i) also gives an estimate for N- (n;q). If Eqs. (4.26) 

and (4.29) hold, then N, (n;q) > 1. Formula (4.28) physically means that, under the condition 
given there, the number of zero-energy states of Qg& increases, tending to infinity, as the 
number of the points at which the magnetic field passes through increases. This is an interesting 
phenomenon to be noted. A similar consideration applies to the zero-energy states of Q,!$,. 

Remark 4.11: Let 

Hi= ( Q(i))2 
mm - 
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Then, as already mentioned in Remark 3.11, each Mj = {L2(R2;C2),Q~~,Hp,> is a model of 
SSQM. In SSQM, supersymmetry is said to be broken if the supersymmetric Hamiltonian has 
no zero-energy states. 1s-21 Theorem 4.7 and Proposition 4.9 imply the following: (i) If n = 1 or 
the magnetic flux is locally quantized, then the supersymmetry of the model Mj is broken. (ii) 
If n>2 and Eq. (4.26) (resp. with q replaced by -q) is satisfied (hence the magnetic flux is not 
locally quantized), then the supersymmetry of the model M, (resp. i%12) is not broken. These 
are interesting phenomena. 

Remark 4.12: The operator Hi is a self-adjoint extension of Hmin 
= eZmin = (P f +P i) 1 C’g (M) . Under the assumption of Corollary 4.8, Hmin is not essentially 
self-adjoint. For, if it were essentially self-adjoint, then j!&,=&i,=Hj Hence ker Qmin 
= ker Q(i) But, ker Qmi,={O} (Lemma 4.3) and ker Qk&#O. Thus we are led to a contra- mm- 
diction. 

C. Connection with index theory 

The results in Theorem 4.7 can be rephrased in terms of the index theory. We recall some 
definitions in the index theory (e.g., Ref. 24 Chap. IV, Sec. 5). Let T be a densely defined 
closed linear operator from a Hilbert space to another. The index ind( T) of T is defined by 

ind ( T) = dim ker T-dim ker T*, 

provided that at least one of dim ker T and dim ker T* is finite. If both (resp. at least one) of 
ker T and ker T* are (resp. is) finite-dimensional and R(T) is closed, then T is said to be 
(resp. semi-) Fredholm. It is known that, if T is semi-Fredholm, then ind( T) is invariant 
under compact perturbations relative to T, which is called the stability or the topological 
invariance of the index. 

Theorem 4.7 is translated into the following. 
Theorem 4.13: For all n> 1, 

ind(Q +,min)=-N-(n;q)9 (4.32) 

ind(Q- ,,in)=-N+(n;q). (4.33) 

Remark 4.14: Index formulas (4.32) and (4.33), which are determined by the magnetic 
flux at eachpoint a,,, v= l,..., n, not by the total magnetic flux only, are essentially different from 
those of Q* with “regular” gauge potentials (see Refs. 3-5 ). 

From the point of view of the topological invariance of the index, it is interesting to 
examine whether Q*, min are Fredholm or not. We shall do it in the next section. Unfortu- 
nately, the result is negative. 

V. SPECTRAL PROPERTY 

In this section we investigate the spectral property of self-adjoint extensions of Qmin. As the 
following theorem shows, their spectrum is independent of whether the magnetic flux is locally 
quantized or not. 

Theorem 5.1: Every self-adjoint extension Q of Qti, satisfies 

a( 6) =R. 

In particular, 

(5.1) 

(5.2) 
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This theorem is a special case of a more general one. To state it, we recall a definition. A 
measurable function V on Rd (d> 1) is said to be almost locally in L2 ( Rd) if for each E > 0 and 
each bounded set 0 in Rd, there is a closed set F Cfi such that the Lebesgue measure of F is 
smaller than E and VEL~ (Cl\F) . It is shown that, if V is almost locally in L2( R2), then 
Corn (Rd> fl D( V) is dense in L2(Rd) (Ref. 25, Chap. 4, Sec. 6). 

Let Bj j= 1,2, be real-valued measurable functions on R2 which are almost locally in 
L2 ( R2). Then it is easy to see that the Dirac-Weyl operator 

with D( 0) =C;(R2;C2) nD( B,) flD(B,) is symmetric in L2(R2;C2). 
Theorem 5.2: Let Bi be as above. Suppose that there are sequences {cn}~=i CR* and 

(t,~t,>O,n>l} with f, +CO as n-+co such that 

I 01, Ir-%l<h 1 BJr) j2dr< 00, 

; s,+cn,<tn ’ Bi(r )12dr+0 as n-+cQ, j=1,2. 

Then every self-adjoint extension 5 of B satisfies 

a( $)=R. (5.3) 

We prove this theorem by extending the method given in Ref. 25, Chap. 4, Sec. 6. (Note 
that P is a matrix whose entries are linear operators. Hence results in the cited literature are 
not immediately applicable.) To do that, we need a lemma. 

Lemma 5.3: Let keR2 and 

--#I-ik2)/)kj 

1 

Then U(k) is unitary and 

U(k)*(olkl+azkz)U(k)= (k’aj. 

The proof of this lemma is straightforward. Hence it is omitted. 
Let 

v,=UW :, , 0 
Then 

and, by Lemma 5.3, we have 

(5.4) 

Proof of Theorem 5.2: Let keR* and p&$’ ( R2) such that p(r) =0 for ) r I> 1 and 
Jlp(r)12dr=l. Define 
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Then one can easily show that p&c (R2) f~ D( Bj), j= 1,2, with 

and 

‘Ml = 1 

II (Pj-ki)Pnll -+O(n-+ co 1, j= 1,~. 

Moreover, setting K = sup &2 1 p(r) 1, we have 

, <t 1 Bi(r) 1 2dr. 
n n 

Hence, we obtain 

IIBjpnII +O(n -co), j=1,2, 

which, together with Eq. (5.5), imply that 

Let 

(5.5) 

(5.6) 

Vl(*)=pnv* . n 

Then Y~“4’; (R2;C2) fl D( BJ, j= 1,2, with 

pPyjl*q= 1. 

Using Eq. (5.4), we have 

ll(‘r Ikl )$*‘ll= jiI ojV*(Pj-Bj-kjIPn 
I 

G ji, II(Pj-B~-kj)Pnlle 

Hence, by Eq. (5.6), we obtain 

‘I( br ‘k’ )‘$*)I’+0 (n-+ 03 1, 

which imply that * I k I E(T( @ ). Since kER2 is arbitrary, Eq. (5.3) follows. n 
Remark 5.4: The method of the proof of Theorem 5.2 also works in the case of Dirac 

operators in d-dimensions of the form 

D= 2 y+‘ -i-&-&,(x) , 
y=l 

x=(x1 ,...,x&Rd, 
P 

where {y},“=, is a set of the gamma matrices satisfying Q~“+Y”~J‘=~S!~,, and A(x) 

=(~l(x),*-,&(x)) ’ IS a gauge potential. Under the d-dimensional version of the assumption of 
Theorem 5.2, we can show that the spectrum of every self-adjoint extension of the operator 
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is equal to R. 
Proof of Theorem 5.1: We need only to show that Bi=(j satisfies the assumption of 

Theorem 5.2. It is easy to see that Aj is almost locally in L (R ). Let 

a= max laVl 
v= l,...,n 

and c,eR2 and tm > 0 be such that t, -+ 00 as m --t 03 and 

(cm1 =t,+m+4a+l. 

We set 

K,={rcR21 jr-c,] 6tJ. 

Then, for every r&,,,, we have 

lr-a,I>Icm-a,\ - Ir-cml>lcml --a-t,=m-t3a+l, 

hence, for all m, 

By Eq. (5.7), we have for all r&m 

Irl>lr-avl - Ia,l>m+2a+l. 

Moreover, for all ra,,,, 

I4 b-4 f lavlGl+ Q 4 
lr--8,l’ Ir-4 m+3a+1<3’ 

Hence 

1 

‘r-a,’ <i+’ ram’ 

Using this inequality and Eq. (2.12), we have 

with an integer I) 1 and a constant C> 0. Hence 

(5.7) 

Thus the desired result follows. 
Theorem 5.1 implies the following. 
Theorem 5.5: The operators o,, min are not semi-Fredholm (hence not Fredholm) . 
This theorem is proven by employing the following lemma. 
Lemma 5.6: Let T be a densely defined closed linear operator from a Hilbert space A? 

another one SY2 such that R(T) and R( T*) are closed. Let 

n 

‘, to 
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which is self-adjoint in 2, @X2. Then 

info( IQrI)\{O}>O. (5.8) 

Proof By the present assumption and a general theorem (e.g., Ref. 24, Chap. IV, Sec. 5, 
Theorem 5.2), there is a constant c > 0 such that 

IlTfll>4lfll, fdker T)’ nD(T), 

IIT*gllacllsll, gdker I”*)* nD(T*). 

Let $= (f,g)E(ker &-)’ nD(Qr>. Then, using the fact that 

ker Qr = ker T CB ker T*, 

we have fe(ker T)’ nD(T) and gc(ker T*)’ nD(T*). Hence 

IIQr~l12= IIT*gl12+ IlTf l12~~l’~l12+~2’lf’12=~211~“2~ (5.9) 

Since Qr is self-adjoint and $ is an arbitrary elememt in (ker Qr)’ fl D( Qr), Eq. (5.9) implies 
Eq. (5.8) [note that, for any self-adjoint operator A, we have D(A) =D( IA I ), ker A 
=ker IA’]. n 

Proof of Theorem 5.5: Suppose that Q,, min were semi-Fredholm. Then R (o,, min) is 
closed. Hence R ( Q*, , min) is also closed (e.g., Ref. 24, Chap. IV, Sec. 5, Theorem 5.13). 
Therefore, by Lemma 5.6, inf a( 1 Q,($ I ) \{O} > 0. But this contradicts Eq. (5.2). Thus Q,, min 
is not semi-Fredholm. Similarly we can show that Q-, min is not semi-Fredholm. n 

Remark 5.7: By Theorem 5.5, ind (Q *, min) may be unstable even under relatively compact 
perturbations. It would be desirable to find an example of such perturbations. 
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