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Introduction

Figure 0.1. The Julia set for z3 +λ/z3 + c when c = 0.583840.27022i
and λ = 0.0000001 [4].

The theory of iteration of rational maps is a relatively new area in mathematics,
which has enjoyed a bit of a renaissance the last three decades thanks to computer
images that reveal the beauty of the Mandelbrot set and various Julia sets. I first
stumbled upon images of some Julia sets and the Mandelbrot set while searching for
images of the Cantor set and the Sierpinski triangle. Certainly, like many, I was first
attracted to this area of mathematics because of the obvious complexity of these sets
that these images revealed. Though what ultimately hooked me in was the complex
analysis involved. I had never heard of pointwise convergence or considered the notion
of a sequence of functions before my study of iterating rational functions began. I
would have had too much fun in analysis with so many different types of epsilon
arguments to choose from. Indeed I am quite pleased with the mathematics behind
the theory of iteration of rational maps.

To this end, we seek out some basic results, where for the most part the theme
involves either a family of maps or the image of a set under a rational map.

Date: May 25, 2014.
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1. Preliminaries

In our work it is important to be able to handle expressions which we could not
make sense of if we restricted ourselves to just the complex plane with the standard
Euclidean metric. To this end, we introduce an abstract point known as the point at
infinity, which we denote by ∞, and adjoin it to the complex plane. The extended
complex plane is then the union

Ĉ = C ∪ {∞}.

In order to have a geometric model for Ĉ, we note that if we remove any single
point from the unit sphere in the Euclidean space R3, then the resulting space is
homeomorphic with the complex plane C. Let S2 be the unit sphere in R3 centered
around the origin,

S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1},

and let N = (0, 0, 1) denote the north pole of S2. We use stereographic projection
to homeomorphically map C onto S2 \ N . We then declare the point at infinity to
be the north pole, and obtain the desired model known as the Riemann sphere. The
metric we obtain from this process is known as the chordal metric, which we denote
by σ. The explicit formula for σ is

σ(z, w) =
2|z − w|√

(1 + |z|2)(1 + |w|2)
when z, w ∈ C;

in the case w is ∞ we take the limit, limw→∞ σ(z, w), and obtain

σ(z,∞) = lim
w→∞

σ(z, w) =
2√

1 + |z|2
.

We note that Ĉ is a compact space under the topology induced by the metric σ,
this is a key fact which we will often exploit.

Before we may give our definition of the Fatou and Julia sets of a rational map,
we introduce the notion of an equicontinuous family of functions.

Definition 1. Let F = {fα} be a family of maps from a metric space (X, d) to a
metric space (X ′, d′). The family F of functions is equicontinuous on a set S ⊆ X
if and only if, given x0 ∈ S, for any ε > 0 there is a δ > 0 such that for all x ∈ S
and f ∈ F, if d(xo, x) < δ, then d′(f(xo), f(x)) < ε.

Notable in this definition is that δ depends, in general, on both ε and x0 ∈ S, but
is chosen independent of the function f ∈ F. If δ may be chosen independent of the
point x0 ∈ S, then we say that the family F is uniformly equicontinuous on S. In the
case a family F of functions is equicontinuous on a compact set K, we may say that F
is uniformly equicontinuous onK. Obviously any finite family of continuous functions
is equicontinuous, but if the family is infinite then things become less apparent.

In our context, we are of course considering the family of iterates {Rn |n ∈ N }

of a rational map R from (Ĉ, σ) into itself. We may now give a definition of the Fatou
and Julia sets of a rational map R in terms of equicontinuity.
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Definition 2. Let R be a non-constant rational function. The Fatou set of R

is the maximal open subset of Ĉ on which the family of iterates {Rn |n ∈ N } is

equicontinuous, and the Julia set of R is the complement of the Fatou set in Ĉ.
We denote the Fatou and Julia sets of a rational map R by F (R) and J(R),

respectively.

Notice that the Julia set is compact, as it is defined to be the complement of an

open set in the compact space (Ĉ, σ). This is another key fact which at times we will
exploit.

Proposition 1.1. The Julia set of the map P (z) = z2 is the unit cirlce S1.

Proof. Suppose z0 /∈ S1. We will show that the family of iterates F = {P n |n ∈ N} is
equicontinuous at z0. Let ε > 0 be given. We consider the two possible cases.
Case 1. |z0| < 1, so z0 is in the unit disk. Let D̄ denote the closed disk with center

at z0 and radius 1−|z0|
2

, D̄ = D̄(z0,
1−|z0|

2
). Given z ∈ D̄ we have that |z| ≤ 1+|z0|

2
< 1,

and so |z| = 1
1+r

for some number r > 0. It clearly follows from Bernoulli’s Inequality

that 1
(1+r)2n

< 1
1+2nr

for all n ∈ N. By the Archimedean property, we may find N ∈ N

such that εN > 1/r. Hence we have

|P n(z)| =
1

(1 + r)2n
<

1

1 + 2nr
<

ε

2
for all n ≥ N.

So the sequence {P n} of iterates converges pointwise on D̄.
Now consider the set Un = {z ∈ C : |P n(z)| < ε

2
}. Because each P n is continuous,

we have that Un is open for all n ∈ N. Clearly if z ∈ UN , then z ∈ Un for all n ≥ N ,
and so the sets Un are nested,

U1 ⊆ U2 ⊆ · · · ⊆ Un ⊆ Un+1 ⊆ · · · .

From the pointwise convergence of the sequence {P n}, we know that for each z ∈ D̄
there is a positive integer N(z) ∈ N so that z ∈ UN(z). Hence the family {Un}

∞
n=1

covers D̄. By compactness, there is a positive integer N ∈ N so that the finite
subcollection {Un}

N
n=1 covers D̄, but since the sets are nested we have that UN ⊃ D̄.

Thus for all but a finite number of the iterates P n(z), we have that

|P n(z)− P n(z0)| ≤ |P n(z)|+ |P n(z0)| <
ε

2
+

ε

2
= ε for all z ∈ D̄.

Because each function in the set {P n |n = 1, 2, . . . , N−1} is continuous on C, we
know that for each of these P n there is a number δn > 0 so that |P n(z)−P n(z0)| < ε

whenever |z − z0| < δn. Setting δ = min{1−|z0|
2

, δ1, δ2, . . . , δN−1} we obtain

|P n(z)− P n(z0)| < ε whenever |z − z0| < δ for all n ∈ N.

Thus we have shown that F is equicontinuous on the unit disk.

Case 2. |z0| > 1. Note that the image of the set A = {z ∈ Ĉ : |z| > 1} under the
Möbius map M(z) = 1

z
is the punctured unit disk D \{0}. By the continuity of M(z)

on A, if K ⊂ A is compact then M(K) ⊂ D \ {0} is compact. From our work in
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Case 1, it now follows that the sequence {P n ◦M} of functions converges uniformly
to the constant function f(z) = 0 on every compact subset K ⊂ A. Notice

1

2
σ(P nM(z), 0) =

1√
|z|4n + 1

≤
1

|z2n|
= |P nM(z)| for all z ∈ A and n ∈ N.

So the sequence {P n ◦M} converges uniformly to the constant function f(z) = 0 on
compact subsets of A with respect to the chordal metric as well.

Because A is open, we may find r > 0 such that A contains the closed disk of
center z0 and radius r, we denote this disk by D̄(z0, r). Since M is an isometry of
the complex sphere, we have that σ(M(z),M(0)) = σ(z, 0). Since D̄(z0, r) ⊂ A is
compact, we see that for all ε > 0 there is N ∈ N so that

σ(P n(z),∞) = σ(MP nM(z),M(0)) < ε whenever n ≥ N for all z ∈ D̄(z0, r).

Thus the sequence {P n} converges uniformly to the constant function g(z) = ∞
on every compact set K ⊂ A. We will soon see that such convergence implies that F
is equicontinuous on every compact set K ⊂ A. Therefore, in a less elegant manner
than that of Case 1, we conclude that F is equicontinuous on A.

These cases show that z0 ∈ F (P ) (Definition 2). Therefore z0 /∈ J(P ), and so
J(P ) ⊆ S1.

Suppose z0 ∈ S1, so z0 = eiθ0 for some number θ0 ∈ (0, 2π]. We will show
that F is not equicontinuous at z0. Set ε̂ = 1/2 and let δ > 0 be given. Define
r̂ = max{1− δ/2, 1/2} and let ẑ = r̂eiθ0 . So |ẑ− z0| < δ and |ẑ| < 1. From our work
in case 1, we know that for this number ε̂ there exists a positive integer M ∈ N so
that |P n(ẑ)| < ε̂ for all n ≥ M . Hence we have

|P n(ẑ)− P n(z0)| ≥ ||P n(ẑ)| − |P n(z0)|| > 1/2 = ε̂ for all n ≥ M .

Therefore F is not equicontinuous at z0, and so J(P ) = S1. �

Theorem 1.2. For any non-constant rational map R, and any positive integer m,
F (Rm) = F (R) and J(Rm) = J(R).

Proof. Let S = Rm and let F0 = {Sn |n ≥ 0 }. Since F0 is a subfamily of the
family of iterates {Rn}, F0 is equicontinuous wherever {Rn} is equicontinuous, and
so F (R) ⊆ F (S).

To show F (S) ⊆ F (R), suppose that z0 ∈ F (S). Let k be any positive integer and

let ε > 0 be given. Since R is continuous on Ĉ, the composite Rk is also continuous

on Ĉ. Next for each z ∈ Ĉ, let Uz = {w ∈ Ĉ : σ(Rk(z), Rk(w)) < ε/2}. By the
continuity of Rk, we know that each set Uz is open. So the family {Uz}z∈Ĉ is an

open covering of Ĉ. Since Ĉ is compact, there is a number λ > 0 so that for every

w ∈ Ĉ the disk D(w, λ) is contained in one of the open sets of the family {Uz}z∈Ĉ
(Lebesgue’s Number Lemma). Thus for any v, w ∈ Ĉ satisfying σ(v, w) < λ, there is

a z ∈ Ĉ so that v, w ∈ Uz. We combine to see that for this given positive number ε

there is a number λ > 0 so that, for any v, w ∈ Ĉ,

σ(Rk(v), Rk(w)) ≤ σ(Rk(v), Rk(z)) + σ(Rk(z), Rk(w)) <
ε

2
+

ε

2
= ε
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whenever σ(v, w) < λ.
Since F0 is equicontinuous at z0, we know that for this positive number λ, there is

a number δ > 0 such that, for all n ∈ N, σ(Sn(z0), S
n(z)) < λ whenever σ(z0, z) < δ.

Hence for all n ∈ N we have that σ(RkSn(z0), R
kSn(z)) < ε whenever σ(z0, z) < δ.

This gives us that each family Fk = {Rk ◦ Sn |n ≥ 0 } is equicontinuous at z0, and
so too is the finite union

m−1⋃

n=0

Fn .

Since this union is the family {Rn |n ∈ N }, we have that z0 ∈ F (R) and so F (S) =
F (R). Notice that since the Julia set is defined as the complement of the Fatou set

in Ĉ, it follows that J(S) = J(R).
�

Before we develop our knowledge of the Julia and Fatou sets further, it is im-
portant that we introduce the notion of invariance.

Definition 3. Let f : X → X be a self-map and let A ⊆ X. We say that A under f
is:

(i) forward invariant if f(A) = A;
(ii) backward invariant if f−1(A) = A;
(iii) completely invariant if A is both forward and backward invariant.

Notice that for a non-constant rational map R, the Fundamental Theorem of

Algebra gives us that R : Ĉ → Ĉ is surjective. Now suppose A is backward invariant
under a non-constant rational map R. Then it follows from the definition of backward
invariant that R(R−1(A)) = R(A). By surjectivity, R(R−1(A)) = A, and so we
combine to conclude that A = R(A). Hence A is also forward invariant under R.

This shows that a set A ⊆ Ĉ is completely invariant under a rational map R if and
only if it is backward invariant.

We give the following theorem to formalize an important notion regarding the

division of Ĉ determined by a rational map R into the sets F (R) and J(R).

Theorem 1.3. For any rational map R the Fatou set F and the Julia set J are
completely invariant under R.

Proof. By surjectivity, it suffices to show that R−1(J) = J and R−1(F ) = F . Since

F = Ĉ \ J , it follows that R−1(F ) = R−1(Ĉ \ J) = Ĉ \ R−1(J), and vice versa.
Since the case where R is constant is trivial, we only consider the case where R is
non-constant. Hence by the open mapping, R is an open map.

Suppose z0 ∈ R−1(F ), or equivalently z0 /∈ R−1(J). Let w0 = R(z0), so w0 ∈ F .
Let ε > 0 be given. By definition of F , for this number ε there is a number δ > 0
such that σ(Rn(w), Rn(w0)) < ε whenever σ(w,w0) < δ for all n ∈ N. Because
R is continuous at z0, for this positive number δ there is a number ρ > 0 so that
σ(R(z), w0) < δ whenever σ(z, z0) < ρ. We combine to see that there is a number
ρ > 0 such that

σ(Rn+1(z), Rn+1(z0)) = σ(Rn(R(z)), Rn(w0)) < ε whenever σ(z, z0) < ρ for all n ∈ N.
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So the family {Rn+1 : n ∈ N} is equicontinuous at z0. Clearly we may add the
single continuous function R(z) to this family and the resulting family will still be
equicontinuous at z0. Thus z0 ∈ F , and hence we have that R−1(F ) ⊆ F and that
J ⊆ R−1(J).

Suppose z0 ∈ F , or equivalently z0 /∈ J . Let w0 = R(z0), and let ε > 0
be given. By definition of F , for this number ε there exists δ > 0 such that
σ(Rn+1(z), Rn+1(z0)) < ε whenever σ(z, z0) < δ for all n ∈ N. Let D denote the

open disk D = {z ∈ Ĉ : σ(z, z0) < δ}. Since R(D) is open and w0 ∈ R(D), we may

find ρ > 0 so that the open disk D(w0, ρ) = {w ∈ Ĉ : σ(w,w0) < ρ} is completely
contained in R(D). Notice that if w ∈ D(w0, ρ), then w = R(z) for some z ∈ D.
Thus we have that

σ(Rn(w), Rn(w0)) = σ(Rn+1(z), Rn+1(z0)) < ε whenever σ(w,w0) < ρ for all n ∈ N.

Hence w0 ∈ F , and so z0 ∈ R−1(F ). We conlude that R−1(F ) = F and R−1(J) = J ,
as required. �

Before we give our next result we must introduce the notion of valency. We
define the valency vR(z0) of a rational map R at z0 to be the number of solutions
to the equation R(z) = R(z0) at z0, counting multiplicity. To illustrate we consider
the simplest rational function of degree d, namely R(z) = zd. Since all d zeros of
R(z) are at 0, we have that vR(0) = d. Notice that for any non-constant rational

map R we have vR(z) ≥ 1 for all z ∈ Ĉ. What is less clear is the fact that there are

only finitely many z ∈ Ĉ for which vR(z) > 1, this is fundamental. The relationship

between the degree of a non-constant rational map R and the number of z ∈ Ĉ for
which vR(z) > 1 is expressed by the Riemann-Hurwitz relation:

∑
[vR(z)− 1] = 2deg(R)− 2.

We may now obtain a result which will be of great avail to us later.

Theorem 1.4. Let R be a rational map of degree at least two. If a finite nonempty
set E is completely invariant under R, then E has at most two elements.

Proof. Suppose E has k elements for some positive integer k. From the definition of
completely invariant, it follows that R restricted to E is a bijection. Since R must
act as a permutation on the k elements of E, there exists some positive integer j
so that Rj(e) = e for all e ∈ E. We claim that given e0 ∈ E, all solutions to the
equation Rj(z) = Rj(e0) are at e0. Since E is completely invariant under R and since
Rj restricted to E is the identity mapping, the claim follows. Now let d denote the
degree of Rj. Since all d solutions to the equation Rj(z) = Rj(e0) are at e0, we have
that vR(e0) = d. Applying the Riemann-Hurwitz relation to Rj, we obtain

∑

e∈E

[vRj(e)− 1] = k(d− 1) ≤ 2(d− 1).

Since d ≥ 2, we conclude that k ≤ 2. �
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2. Normal Families

In this section we shall introduce the notion of a normal family of functions. It
will become quite clear that an equicontinuous family is closely related to a normal
family.

Definition 4. Let F = {fα} be a family of maps from a metric space (X, d) to a
metric space (X ′, d′). The family F of functions is normal on a set S ⊆ X if and
only if every sequence {fn} of functions in F contains a subsequence {fnk

} which
converges uniformly on every compact subset of S.

We may now give the theorem that will establish the desired connection be-
tween normality and equicontinuity. In the statement of the theorem we say that the

functions f in the family F are functions from a subdomain D ⊂ C into Ĉ, that is

f : D → Ĉ. However, out of preference, for the first half of the proof we actually
assume that the functions f in F are maps into C. Hence we use only the standard
Euclidean metric on C to prove that normality implies equicontinuity.

Theorem 2.1 (Arzela-Ascoli Theorem). Let D be a subdomain of C. A family F of

continuous functions from D into (Ĉ, σ) is normal in D if and only if F is equicon-
tionuous on every compact set E ⊂ D.

Proof. Assume F is normal in D and suppose there is a compact set E ⊂ D on which
F is not equicontinuous. Since F fails to be equicontinuous on E there exists a number
ε0 > 0, two sequences of points {zn} and {wn} in E, and a sequence of functions {fn}
in F such that |zn−wn| < 1/n but |fn(zn)− fn(wn)| ≥ ε0 for all n ∈ N. Because F is
normal in D there exists a subsequence {fnk

} of {fn} which converges uniformly on
E. Since E is compact, by the Bolzano-Weierstrass Theorem there is a subsequence
{zp} of {znk

} that converges to an element z0 ∈ E. Notice that given ε > 0 we may
find N0 ∈ N such that |zp − wp| < ε/2 and |zp − z0| < ε/2 for all p ≥ N0. Since

|wp − z0| ≤ |wp − zp|+ |zp − z0|,

it follows that the corresponding subsequence {wp} of {wnk
} also converges to z0.

Since {fp} is a subsequence of {fnk
} it has the same limit f . By the uniform limit

theorem, the limit function f of {fp} is continuous on E, and hence it is uniformly
continuous on E. Set ε′ = ε0/4, then there is a number δ > 0 so that |f(z)−f(w)| < ε′

whenever |z − w| < δ for all z, w ∈ E. For this number δ there is N1 ∈ N such that
|zp − z0| < δ and |wp − z0| < δ for all p ≥ N1. Also, we may find N2 ∈ N such that
|fp(z)− f(z)| < ε′ for all p ≥ N2 and z ∈ E. Setting N = max{N1, N2} we obtain

|fp(zp)−fp(wp)| ≤ |fp(zp)−f(zp)|+|f(zp)−f(z0)|+|f(z0)−f(zp)|+|f(wp)−fp(wp)| < ε0

for all p ≥ N . This is a contradiction, and thus F is equicontinuous on E.
Now assume F is equicontinuous on every compact set E ⊂ D. Let E ⊂ D be a

compact subset ofD and let {fn} be a sequence in F. Let EQ = {x+iy ∈ E | x, y ∈ Q}
denote the subset of points in E with both real and imaginary parts rational. Since
EQ is countable, we may let {ζ1, ζ2, . . . , ζk, ζk+1, . . .} be an enumeration of EQ. From
the given sequence {fn} we are going to extract a subsequence which converges at all
points ζk ∈ EQ. We may find a subsequence that converges at a given point ζk since
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the values of the sequence {fn(ζk)} lie in Ĉ which is compact. For the point ζ1, we
label the subsequence as indicated and denote it by

{fn1j
(ζ1)} = {fn11

(ζ1), fn12
(ζ1), . . . , fn1j

(ζ1), . . .}.

Next consider {fn1j
(ζ2)}, this sequence of points in Ĉ has a convergent subsequence

which we denote by {fn2j
(ζ2)}. Continuing this process of constructing successive

subsequences gives rise to an array of functions,

fn11
fn12

· · · fn1j
· · ·

fn21
fn22

· · · fn2j
· · ·

...
...

...
...
...

...
...
...
...

fnk1
fnk2

· · · fnkj
· · ·

...
...

...
...
...

...
...
...
...

Since each row of functions in this array is containted in the preceding one, it follows
that the diagonal sequence {fnjj

} = {fn11
, fn22

, . . . , fnjj
, . . .} of functions is even-

tually a subsequence of each row. Combining this observation with the fact that
limj→∞ fnkj

(ζk) exists for all ζk ∈ EQ, gives us that {fnjj
} is a subsequence of {fn}

which converges at every point ζk. We simplify notation by setting fnjj
= gj.

Let ε > 0 be given. Since F is equicontinuous on the compact set E, we know
that there is a number δ > 0 such that σ(f(z), f(w)) < ε/3 whenever |z − w| < δ,
for all f ∈ F and z, w ∈ E. Since the family of open discs {D(z, δ

2
)}z∈E is a covering

of E, it admits a finite subcovering {D(zn,
δ
2
)}Nn=1. Since EQ is everywhere dense in

E, for each open disk D(zn,
δ
2
) of this finite cover there exists a point ζk(n) ∈ EQ

such that ζk(n) ∈ D(zn,
δ
2
). Since {gj(ζk(n))} is a convergent sequence, it is a Cauchy

sequence. So given one of these points ζk(n), we know that there exists a positive
integer Jk(n) ∈ N such that σ(gi(ζk(n)), gj(ζk(n))) < ε/3 whenever i, j ≥ Jk(n). We set
J = max{Jk(n)} to obtain

σ(gi(z), gj(z)) ≤ σ(gi(z), gi(ζk(n))) + σ(gi(ζk(n)), gj(ζk(n))) + σ(gj(ζk(n)), gj(z))

<
ε

3
+

ε

3
+

ε

3
= ε whenever i, j ≥ J for all z ∈ E.

Therefore {gj} is uniformly convergent on E, as it is uniformly Cauchy in the compact

and hence complete metric space Ĉ. �

We give two theorems on normality that will make our interest in the Arzela-
Ascoli Theorem apparent. These results are fundamental in the study of iteration of
rational maps. A full proof of the following theorem is contained in [1], p.60. The
proof is so substantial that it requires its own appendix, and so we omit the proof.

Theorem 2.2. Let F be a family of maps, each analytic on a common domain D ⊂ Ĉ.
If each function f in F omits the three values 0, 1, and ∞ in D, then the family F is
normal in D.

The proof of our next result dealing with normality shows how Theorem 2.2
produces a stronger variation of similar theme. However, before we may give the next
result on normality, we will need the following lemma.
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Lemma 2.3. Let m be a given positive number. Then the family G of Möbius trans-
formations g which satisfy

σ(g(0), g(1)) ≥ m, σ(g(1), g(∞)) ≥ m, σ(g(∞), g(0)) ≥ m,

also satisfies the uniform Lipschitz condition

σ(g(z), g(w)) ≤ (π/m3)σ(z, w) for all g ∈ G and z, w ∈ Ĉ.

Again we unfortunately do not provide proof of the above result, but note that
a proof is contained in [1], p.34. Now that we have liberally taken the previous two
results, we may state and give proof of the following theorem.

Theorem 2.4 (Montel’s Theorem). Let F be a family of maps, each analytic on a

common domain D ⊂ Ĉ. If for each f ∈ F there exist three values af , bf , cf ∈ C∞

such that:

(i) there exist m > 0 so that min{σ(af , bf ), σ(cf , bf ), σ(cf , af )} ≥ m; and
(ii) f omits the three values af , bf , and cf in D.

Then the family F is normal in D.

Proof. We assume that for each f ∈ F there exist three values af , bf , cf ∈ C∞ so that
(i) and (ii) are satisfied. Now for each f in F, define the Möbius transformation gf
by

gf (0) = af , gf (1) = bf , gf (∞) = cf .

By the preceeding lemma, (ii) implies that the family G = {gf : f ∈ F} satisfies the

uniform Lipschitz condition on Ĉ,

σ(gf (z), gf (w)) ≤ (π/m3)σ(z, w).

For each f ∈ F define hf = g−1
f ◦ f . So each analytic function in the family

H = {hf : f ∈ F} omits the three values 0, 1, and ∞ in D. By Theorem 2.2, the
family H is normal in D, and hence equicontinuous there.

Now let ε > 0 be given, and let z0 ∈ D be an arbitrary point of D. We know
that for the positive number m3

π
ε there is δ > 0 such that

σ(hf (z), hf (z0)) <
m3

π
ε whenever σ(z, z0) < δ for all hf ∈ H.

We combine to conclude that

σ(f(z), f(z0)) = σ(gf ◦ hf (z), gf ◦ hf (z0)) ≤
π

m3
σ(hf (z), hf (z0)) < ε

whenever σ(z, z0) < δ for all f ∈ F. �

3. Properties of the Julia Set

In this section we develop several properties of the Julia set of a rational map.
The proofs of these results will exploit Theorem 2.4, highlighting its importance to
our study.

However, we must begin with a rather out of place theorem.



10 MATTHEW PELTO

Theorem 3.1. If a sequence {Rn} of rational functions converges uniformly on the
entire complex sphere to a function R, then R is rational and for all sufficiently large
integers n, deg(Rn) = deg(R).

Proof. Suppose the sequence {Rn} of rational functions converges uniformly on the
entire complex sphere to the function R(z). It can be shown using Cauchy’s integral
formula that the uniform limit of analytic functions is analytic. Hence R is analytic
on the entire complex sphere, and so it is rational.

Next we prove the other half of the statement. Without loss of generality, we
assume that R(∞) 6= 0, since otherwise we could consider the sequence {1/Rn}. Since
the case where R(z) is constant is trivial, we only consider the case where R(z) is non-
constant. With these assumptions, R(z) has distinct zeros, say z1, . . . , zj and these
all lie in C. Suppose R(z) has a zero of order M at z0. We know there exists r > 0
so that z0 is the only zero of R(z) in the disk of radius r and center at z0, D(z0, r).
Applying Rouche’s theorem, we know that there exists ρ > 0 so that for all sufficiently

large integers n, Rn(z) has M zeros in the disk D(z0, ρ) = {z ∈ Ĉ : σ(z, z0) < ρ}.
We set D0 = D(z0, r) ∩D(z0, ρ), and consruct a Dj for each of the zeros zj of R(z).

Now let K =
[⋃

Dj

]c
be the complement of the union of the Dj in Ĉ. Since K is

compact, R(z) is bounded away from zero on K. Hence for n large, Rn is bounded
away from zero on K as well. This shows that for all sufficiently large integers n, Rn

and R have the same number of zeros. �

Again this result did not fit well in any section of the paper, but we include it
here as it is needed to show a fundamental fact about the Julia set of a rational map
of degree at least two.

For simplicity we give our definition of an exceptional point in terms of its back-
ward orbit. So we state

The backward orbit of z ∈ Ĉ is denoted by O−(z) and defined by

O−(z) : = {w ∈ Ĉ : ∃n ≥ 0, Rn(w) = z}

=
⋃

n≥0

R−n({z}).

Definition 5. A point z ∈ Ĉ is said to be exceptional for the rational map R when
O−(z) is finite, and we denote the set of such points by E(R).

Notice that the terminology suits such points, as a rational map of degree at least
two can have at most two exceptional points, by Theorem 1.4. Another important
fact that we would like to make clear is that E(R) is completely invariant under R.

With E(R) defined we may now state

Lemma 3.2. Let R be rational map. If deg(R) ≥ 2, then E(R) ⊂ F (R).

We omit the proof of this result, but there is an argument given on p.66 of [1].

Theorem 3.3. Let R be a non-constant rational map. If deg(R) ≥ 2, then J(R) is
infinite.
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Proof. We first show that J(R) is nonempty. Assume J(R) is empty, we shall reach a
contradiction. Since J(R) is empty, the family {Rn} is normal on the entire complex
sphere. So there exists a subsequence which we denote by {Rk(n)} that converges

uniformly on Ĉ. By the preceeding theorem, it follows that eventually the iterates in
this subsequence have the same degree. Hence there exist two integers i, j with i > j
and deg(Ri) = deg(Rj). However, deg(Rn) = [deg(R)]n and this would imply that R
is constant or has degree one. This is a contradiction, and hence J(R) 6= ∅.

Now let z0 ∈ J(R). We know that J(R) is completely invariant, so if J(R) is
finite then z0 is exceptional. This cannot be the case, as the exceptional points of R
lie in F (R). Therefore J(R) is infinite. �

Theorem 3.4. Let R be a rational map of degree at least two, and let U be any
non-empty open set such that U ∩ J(R) 6= ∅. Then:

(i)
⋃∞

n=0 R
n(U) ⊃ Ĉ \ E(R); and

(ii) For all sufficiently large integers n, Rn(U) ⊃ J(R).

Proof. Set U =
⋃∞

n=0 R
n(U) and let K = Ĉ \ U. Assume that K contains three

distinct points. So each iterate Rn does not take on three distinct values in U . By
Theorem 2.4, the family {Rn} is then normal in U , and so U ⊆ F (R). Since this is

a contradiction, we have that U contains every point of Ĉ with the exception of at
most two points.

Now consider a point z in the complement of E(R). Since z is not exceptional
its backward orbit O−(z) is infinite, by definition. From our preceding remark it then
follows that U ∩ O−(z) 6= ∅. Hence there exists a positive integer n and a point w
so that Rn(w) = z. For this same point w there also exists a positive integer m such
that Rm(u) = w for some u ∈ U . We combine to obtain that Rn+m(u) = z, and so
z ∈ U. Therefore

∞⋃

n=0

Rn(U) ⊃ Ĉ \ E(R).

Next let U1, U2, and U3 be three pairwise disjoint nonempty open subsets of U ,
each of which meets J(R). We show that for each k = 1, 2, 3 there are two positive
integers q and n such that

Rn(Uk) ⊇ Uq.

Supposing to the contrary, we assume that there is some k so that Rn(Uk) fails to
contain any Uq for q = 1, 2, 3 and all n ∈ N. By Theorem 2.4, {Rn} is then normal
in Uk, and so Uk ⊆ F (R). This is a contradiction.

So given k ∈ {1, 2, 3} there exist a pair of integers which we denote by (n(k), q(k))
so that Rn(k)(Uk) ⊇ Uq(k). Clearly for some k ∈ {1, 2, 3} one of the following must
hold true

Rn(k)+n(j)+n(i)(Uk) ⊇ Uk, R
n(k)+n(j)(Uk) ⊇ Uk, or Rn(k)(Uk) ⊇ Uk.

So for some positive integer L and some k ∈ {1, 2, 3} we have RL(Uk) ⊇ Uk.
We set S = RL. Notice the above gives us that the sets in the family {Sm(Uk)}

∞
m=0

are nested

Uk ⊆ S(Uk) ⊆ S2(Uk) ⊆ · · · ⊆ Sm(Uk) ⊆ Sm+1(Uk) ⊆ · · · .
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Now we apply (i) to obtain that the family {Sm(Uk)}
∞
m=0 is a covering of J . By

compactness, a finite subcollection {Sm(Uk)}
M
m=0 covers J , and so SM(Uk) ⊃ J . We

set N = M · L and combine to conclude that there is a positive integer N so that

J ⊂ RN(Uk) ⊆ RN(U).

By Theorem 1.3,
J = R(J) ⊂ RN+1(U),

and so induction gives us that J ⊂ Rn(U) for all n ≥ N . �

Theorem 3.5. Let R be a non-constant rational map. If deg(R) ≥ 2, then J(R) is

perfect and either the interior of J(R) is empty or J(R) = Ĉ.

Proof. We shall consider the two possible cases.

Case 1. J 6= Ĉ. Let J ′ be the derived set,

J ′ = {z ∈ Ĉ : ∀r > 0, D(z, r) ∩ J \ {z} 6= ∅}.

Since J is closed, we already have that J ′ ⊆ J . We first show that J ′ is an infinite,
closed, completely invariant subset of J , and given this, we will then be able to show
that J ⊆ J ′. Let r > 0 be given. We know that the infinite collection of discs of
radius r about each point z of J is a covering of J ,

⋃

z∈J

D(z, r) ⊃ J.

By compactness, there is a finite subcollection {D(zn, r)}
N
n=0 which covers J . This

shows that J ′ is nonempty, as one of the D(zn, r) contains infinitely many points of
J .

Suppose z0 /∈ R−1(J ′). Let w0 = R(z0), so w0 /∈ J ′. By definition, there is ρ > 0
so that D(w0, ρ)∩J \ {w0} = ∅. For this positive number ρ there exists δ > 0 so that
σ(R(z), w0) < ρ whenever σ(z, z0) < δ. Let D denote the set

D = {z ∈ Ĉ : σ(z, z0) < δ}.

So we have that R(D) ⊆ D(w0, ρ), and hence R(D) ∩ J \ {w0} = ∅. Now since R
has finite degree, we know that R−1({w0}) will have finitely many distinct elements.
Since the case where R−1({w0}) = {z0} is trivial, we assume that the preimage of
{w0} contains elements distinct from z0, say ζ1, . . . , ζd. For ζd ∈ R−1({w0}) \ {z0},
let σ(z0, ζd) = rd. Set r = min{δ, r1

2
, . . . , rd

2
}. Since r > 0 and D(z0, r)∩J \ {z0} = ∅,

we have that z0 /∈ J ′, by definition of the derived set. Therefore J ′ ⊆ R−1(J ′).
Next suppose z0 ∈ R−1(J ′). Let w0 = R(z0), so w0 ∈ J ′. Let r > 0 be

given, and let D = {z ∈ Ĉ : σ(z, z0) < r}. Since R is an open map we know that
R(D) is an open neighborhood of w0. By definition of the derived set, we know that
R(D) ∩ J \ {w0} 6= ∅. So let ω ∈ R(D) ∩ J \ {w0}. We know there is ζ in D so that
ω = R(ζ). Cleary ζ 6= z0 and ζ ∈ J , as J is completely invariant. This shows that
z0 ∈ J ′, and thus J ′ = R−1(J ′). By surjectivity, we conclude that J ′ is completely
invariant.

Since J ′ is a closed, completely invariant subset of Ĉ, we know that J ′ is infinite.
Indeed if not, then J ′ would contain an exceptional point. This could not be true,
since J is closed and hence contains all of its limit points.
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LetG be the complement of J ′ in Ĉ. We know thatG is nonempty, as J ′ ⊆ J 6= Ĉ.
Also since J ′ is completely invariant, so is its complement G. We now choose three
distinct points af , bf , and cf to be three given points in J ′. By Theorem 2.4, the
family of iterates {Rn} is normal in G, and so G ⊆ F . It follows that J ⊆ J ′, and
hence J = J ′.
Case 2. We assume J has nonempty interior. Let z0 be an interior point of J .
So there is some open neighborhood U of z0 completely contained in J . We now
apply Theorem 3.4 to the open set U to get that for all sufficienty large integers n,
Rn(U) ⊃ J . Let N ∈ N be such that RN(U) ⊃ J. Since U ⊂ J and since J is
completely invariant, it follows that Rn(U) ⊂ J for all n ∈ N. Thus RN(U) = J ,
and so RN(U) is compact. However, RN(U) is open, as U is open. Since the only

nonempty subset of Ĉ that is open and compact is Ĉ itself, it follows that RN(U) = Ĉ.

By transitivity, J = Ĉ. �

In 1918 a French mathematician named Samuel Lattés discovered the rational
function

R(z) =
(z2 + 1)2

4z(z2 − 1)
,

this is the first known example of a rational function for which the Julia set is the
entire complex sphere.
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