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Katugampola [e-print arXiv:1410.6535] recently introduced a limit based fractional
derivative, Dα (referred to in this work as the Katugampola fractional derivative)
that maintains many of the familiar properties of standard derivatives such as the
product, quotient, and chain rules. Typically, fractional derivatives are handled us-
ing an integral representation and, as such, are non-local in character. The cur-
rent work starts with a key property of the Katugampola fractional derivative,
Dα[y] = t1−α dy

dt
, and the associated differential operator, Dα = t1−αD1. These oper-

ators, their inverses, commutators, anti-commutators, and several important differen-
tial equations are studied. The anti-commutator serves as a basis for the development
of a self-adjoint operator which could potentially be useful in quantum mechanics.
A Hamiltonian is constructed from this operator and applied to the particle in a box
model. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922018]

I. INTRODUCTION

The concept of a fractional derivative, Dα ≡ dα

dta
, where α is not an integer has been discussed

for a long time.1–4 Evidently, Leibniz wondered about the case when α = 1
2 shortly after the ad-

vent of calculus itself.1,3,4 Over history, fractional calculus, and in particular fractional differential
equations, has been applied in a variety of fields.3–8 For several recent surveys of these applications,
see Refs. 3, 4, and 6. Additionally, a fractional version of calculus of variations is receiving much
attention.9–13 Until very recently,1,13,14 fractional derivatives have been cast as fractional integrals.2,5

This class of fractional derivatives is unsatisfying in some respects. First, the integral definition
introduces non-local effects.1 Also, many of the properties familiar to the standard (α an integer)
derivative like the product, quotient, and chain rules do not always hold.1 In 2014, Khalil et al.
introduced a limit based definition analogous to that for standard derivatives.14 This was quickly
generalized by Katugampola,1 whose definition forms the basis for this work and is referred to
here as the Katugampola fractional derivative. (Dα will henceforth be referring to the Katugam-
pola fractional derivative.) This definition has a number of useful properties which are reviewed
below.

A key property of the Katugampola fractional derivative is Dα[ f (t)] = t1−α df (t)
dt

for differen-
tiable functions, f . (Note: operators of a very similar form, tαD1, have been applied in combi-
natorial theory.15) Using this as a starting point, a variety of properties are explored in this work
from a (fractional) differential operator perspective. Several important differential equations are
investigated along with commutator and anti-commutator properties. A new self-adjoint operator
is defined and its properties are explored. This operator is suggested as potentially being of value
in quantum mechanics. A plausible self-adjoint Hamiltonian is constructed which differs from that
traditionally used in the Laskin formulation of fractional quantum mechanics.17–20 The fractional
particle in a box problem is used as a concrete example.
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II. THE KATUGAMPOLA DERIVATIVE

Throughout this work, we are considering the Katugampola derivative formulation of fractional
calculus and specifically the operator, Dα, defined as

Dα[ f (t)] = lim
ϵ→0

f (teϵt−α) − f (t)
ϵ

, t > 0, (1)

Dα[ f (0)] = lim
t→0+

Dα[ f (t)],
where 0 < α ≤ 1 and t ≥ 0. This definition yields the following results (from Theorem 2.3 of
Katugampola1):

• Dα[a f + bg] = aDα[ f ] + bDα[g] (linearity).
• Dα[ f g] = f Dα[g] + gDα[ f ] (product rule).
• Dα[ f (g)] = df

dg
Dα[g] (chain rule).

• Dα[ f ] = t1−α f ′, where f ′ = df
dt

.

For a discussion of the chain rule for these types of derivatives, see Refs. 1, 13, and 14.

A. The Dα operator

The last of the bulleted items is the starting point for studying the properties of the Dα operator,

Dα[y] = t1−αy ′. (2)

So, in operator form,

Dα = t1−αD1. (3)

Currently 0 < α ≤ 1. If that range is extended, then1

Dα[y] = Dα−1D1[y], (4)

for 1 < α ≤ 2.
One can use Eq. (2) to construct a number of important derivatives.1 The exponential function

is listed specifically here since it will be used in developing the momentum operators for quantum
mechanics,

Dα[ect] = ct1−αect . (5)

Note the special case of

Dα[e tα

α ] = 1
α

t1−ααtα−1e
tα

α = e
tα

α , (6)

that is, e
tα

α is an eigenfunction of Dα with an eigenvalue of 1.
One can also consider the iterated operator DβDα. Note that DβDα , Dγ for γ = α + β. We

see this by repeated differentiation of a function, y,

Dβ [Dα[y]] = t1−β �t1−αy ′′ + (1 − α) t−αy ′
�

(7)

= t2−(α+β)y ′′ + (1 − α) t1−(α+β)y ′

= t2−γy ′′ + (1 − α) t1−γy ′.

In comparison, this does not equal

Dγ[y] = t1−γy ′ 0 < γ ≤ 1
= t2−γy ′′ 1 < γ ≤ 2. (8)

The sum α + β = γ will appear often. If 0 < α, β ≤ 1, then 0 < γ ≤ 2.
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B. The anti-derivative operator, Iα

One can define the inverse of the Dα operator as a fractional integral,

(Dα)−1 ≡ D−α ≡ Iα =
 t

dx
(·)

x1−α , (9)

where the (·) symbol is serving as place holder for the function to be operated upon. One verifies

Iα [Dα[y]] =
 t

dx
x1−αy ′

x1−α =

 t

dx y ′ = y (10)

(where one takes y to vanish at the lower limit) and

Dα [Iα[y]] = Dα

 t

dx
y

x1−α


(11)

= t1−α
( t

dx
y

x1−α

) ′
= t1−α y

t1−α = y.

One can consider a mixed case

Dβ [Iα[y]] = Dβ

 t

dx
y

x1−α


= t1−β

( t

dx
y

x1−α

) ′
= t1−β y

t1−α = tδ y, (12)

where δ = α − β. Note when β = α, this equals y as expected from Eq. (11).
We can also consider

Iα
�
Dβ[y]� =

 t

dx
x1−β y ′

x1−α =

 t

xα−β y ′dx (13)

=

 t

xδ y ′dx.

Using the same assumption as for Eq. (10), integration by parts gives

Iα
�
Dβ[y]� = tδ y − δ

 t

xδ−1ydx (14)

= tδ y − δ
 t y

x1−δ dx.

If δ ≥ 0 (i.e., α ≥ β), then

Iα
�
Dβ[y]� = tδ y − δIδ[y]. (15)

Note,

lim
β→α

Iα
�
Dβ[y]� = Iα [Dα[y]] = t0y − 0I0[y] = y. (16)

C. The identity and the D1 operators

With the inverse operations, one has a natural way to incorporate the identity operator E via

IαDα = DαIα = E, (17)

for functions, y , that are taken to vanish at the lower limit of the integral operator defined in Eq. (9).
One now has the set {E,Dα, Iα} for 0 < α ≤ 1 which can be extended using Eq. (4). Consider now
the limit α → 1. One sees that

lim
α→1

Dα = D1 =
d
dt

(18)
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and

lim
α→1

Iα = I1 =

 t

(·)dx. (19)

The standard derivative and integral are recovered. In general, at the other extreme, there is a
discontinuity. When α → 0,

lim
α→0

Dα = D0 , E. (20)

We can see this explicitly by

D0[y] = t1−0y ′ = t y ′ , y, (21)

except for the special case of y = t. Also,

lim
α→0

Iα = I0 , E (22)

seen explicitly as  t

dx
y

x1−0 =

 t y

x
dx , y, (23)

except for the special case of y = t. So the operators Dα and Iα are not continuously connected to
the identity via the parameter α. They are continuously connected to the integer order derivatives
and integrals.

D. Parity

It is interesting to suspend, for the moment, the requirement that t ≥ 0 in Eq. (2) and consider
the parity (i.e., t → −t) of Dα by applying the operator P̂ and using Eq. (3),

P̂Dα = P̂
�
t1−αD1� = (−t)1−α �−D1� (24)

= (−1)2−αt1−αD1 = (−1)2−αDα

=
�
eiπ

�2−α
Dα = e−αiπDα.

This may be a way to operationalize an extension to negative values of t. Considering limits, this re-
covers P̂D1 = −1D1 as α → 1. If the range of α is extended up to 2, then it also recovers P̂D2 = D2

for α → 2. The half-odd-integers are interesting,

P̂D
1
2 = −iD

1
2 (25)

and

P̂D
3
2 = iD

3
2 . (26)

E. Differential equations

Several important fractional differential equations can be considered (0 < α, β ≤ 1 throughout
this section),

Dα[y] + λy = 0, (27)

y = Ae
−λtα
α , (28)

and

Dβ [Dα[y]] = 0, (29)
t2−(α+β)y ′′ + (1 − α) t1−(α+β)y ′ = 0,

y = A
tα

α
+ B. (30)

A curious feature of this solution is that it is independent from β. This can be shown (but not done
here) by a substitution, v = y ′, and noting the cancellation of the (α + β) term in the exponent of t.
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Finally,

Dβ [Dα[y]] + λy = 0, (31)
t2−(α+β)y ′′ + (1 − α) t1−(α+β)y ′ + λy = 0,

y1 = Aγ−
α
γ λ

α
2γ (tγ) α

2γ Γ

(
β

γ

)
J− α

γ
*
,

2
√
λtγ

γ
+
-
, (32)

y2 = B
�
γ2�− α

γ λ
α
2γ (tγ) α

2γ Γ

(
γ + α

γ

)
Jα
γ
*
,

2
√
λtγ

γ
+
-
, (33)

where γ = α + β,Γ is the gamma function, and J is Bessel’s function. The solution was obtained
using M.

III. COMMUTATOR PROPERTIES

The previous two differential equations arose from sequential operation of two fractional differ-
ential operators. The operators do not commute and, further, DαDβ , Dα+β. Although this deviates
from the behavior of standard (α an integer) derivatives, non-commutativity offers a richness that is
interesting to explore. Consider, first, the commutator properties. Repeating from Eq. (29),

Dβ [Dα[y]] = Dβ[t1−αy ′] (34)
= t2−(α+β)y ′′ + (1 − α) t1−(α+β)y ′.

And similarly for the reverse order of operation,

Dα
�
Dβ[y]� = t2−(α+β)y ′′ + (1 − β) t1−(α+β)y ′. (35)

The commutator is readily evaluated to be
�
Dα,Dβ

�
y = Dα

�
Dβ[y]� − Dβ [Dα[y]] (36)

= t2−(α+β)y ′′ + (1 − β) t1−(α+β)y ′

−t2−(α+β)y ′′ − (1 − α) t1−(α+β)y ′

= (α − β) t1−(α+β)y ′.

Letting γ = (α + β) and δ = (α − β) gives
�
Dα,Dβ

�
y = δt1−γy ′ = δDγ[y], (37)

and thus
�
Dα,Dβ

�
= δDγ. (38)

One can readily verify several properties,

[Dα,Dα] = 0 (39)

because δ = (α − α) and
�
Dα,Dβ

�
= −

�
Dβ,Dα

�
(40)

because −δ = (β − α). Further,
�
Da,

�
Db,Dc

��
=
�
Da, (b − c)Db+c

�
(41)

= (b − c)(a − b − c)Da+b+c

=
�
ab − b2 − ac + c2� Da+b+c,

so it can readily be shown that
�
Da,

�
Db,Dc

��
+
�
Db, [Dc,Da]� + �Dc,

�
Da,Db

��
= 0. (42)

Thus, the Jacobi identity holds.
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Now consider

[Dα, t] . (43)

Acting on a general y with the commutator gives

[Dα, t] y = Dα[t y] − tDα[y]
= t

�
t1−αy ′

�
+ t1−αy − t

�
t1−αy ′

�

= t1−αy. (44)

Thus,

[Dα, t] = t1−α. (45)

It is interesting to consider

[Dα, t] y = t1−αy = Dα[Y ], (46)

where Y =
 t
ydt ′ or

Dαy = [Dα, t] y ′. (47)

This can be extended for an arbitrary differentiable function of t,

[Dα, f (t)] = t1−α f ′. (48)

So,

Dα f = f Dα + [Dα, f (t)] (49)
= f Dα + t1−α f ′.

Finally, one can consider
�
Iα,Dβ

�
and in doing so make use of Eqs. (12) and (14),

�
Iα,Dβ

�
y = tδ y + δ

 t y

x1−δ dx − tδ y (50)

= δ

 t y

x1−δ dx.

So,

�
Iα,Dβ

�
= δ

 t

dx
(·)

x1−δ . (51)

IV. ANTI-COMMUTATOR PROPERTIES

The anti-commutator is now considered by first defining the operator

Ĉγ ≡
1
2
�
Dα,Dβ

	
=

1
2
�
DαDβ + DβDa

�
. (52)

Operating on y with Ĉγ and using Eqs. (34) and (35) give

Ĉγy =
1
2
(t2−(α+β)y ′′ + (1 − α) t1−(α+β)y ′) (53)

+ t2−(α+β)y ′′ + (1 − β) t1−(α+β)y ′)
=

1
2

(
2t2−(α+β)y ′′ + (2 − (α + β)t1−(α+β)y ′

)
=

1
2
�
2t2−γy ′′ + (2 − γ)t1−γy ′

�
.

An interesting and important feature of Ĉγ is that it only depends on α + β and hence one can
consider α = β = γ/2. Thus,

Ĉ2α =
1
2
{Dα,Dα} = (Dα)2 (54)
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(n.b., (Dα)2 , D2α). Consider the cases, α = 1
2 ,

Ĉ1y = t y ′′ +
1
2
y ′ (55)

and α = 1,

Ĉ2y = y
′′. (56)

The parity of Ĉγ is

P̂Ĉγ = P̂
1
2
�
DαDβ + DβDa

�
(57)

=
1
2
�
P̂
�
DαDβ

�
+ P̂

�
DβDa

��
,

so use of Eq. (24) yields

P̂Ĉγ =
1
2
�
e−αiπDαe−βiπDβ + e−βiπDβe−αiπDα

�

= e−(α+β)iπ
1
2
�
DαDβ + DβDα

�
(58)

= e−γiπĈγ.

A. Operator equations for Ĉγ

Since it was shown above that only the quantity α + β is important, Ĉγ = Ĉ2α will be used
exclusively for the remainder of the paper; doing so will cast many of the expressions in a more
simple form. Let us now consider some simple but important operator equations. First, the homoge-
neous equation,

Ĉ2αy = 0, (59)

which becomes the differential equation

t2−2αy ′′ + (1 − α)t1−2αy ′ = 0 (60)

and has the solution

y = A
1
α

tα + B, (61)

as expected from Eq. (30). Next, consider the constant equation

Ĉ2αy = Λ, (62)

which becomes the differential equation

t2−2αy ′′ + (1 − 1α)t1−2αy ′ = Λ (63)

and has solutions

y =
Λ

2α2 t2α + A
1
α

tα + B (64)

(it is insightful to view t2α as (tα)2 ). Finally, consider the eigenvalue equation

Ĉ2αy = −Λy, (65)

which becomes the differential equation

t2−2αy ′′ + (1 − α)t1−2αy ′ + Λy = 0. (66)

This has solutions

y = A cos


√
Λ

α
tα

+ B sin



√
Λ

α
tα

. (67)
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FIG. 1. The first three eigenstates for Ĉ2αy =−Λy with boundary conditions y(0)= y(1)= 0 ordered from top to bottom.
Each graph shows the curve for α = 1

4 ,
1
2 ,

3
4 , 1 with the number next to the curve indicating the value of α. The value of α = 1

corresponds to y′′=−Λy and shows the well-known sine function. As α decreases from 1, the peak of the curve shifts to
smaller values of t and a pronounced asymmetry about t = 1

2 develops.

The plots in Fig. 1 show the solutions for boundary conditions y(0) = y(1) = 0 for the first three
eigenvalues and for α = 1

4 ,
1
2 ,

3
4 ,1.

These results show that the solutions are the same as those for D2 (D2[y] = y ′′) except with t
replaced by 1

α
tα. That is,

y ′′ = 0 =⇒ y = At + B, (68)

y ′′ = Λ =⇒ y =
Λ

2
t2 + At + B, (69)
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and

y ′′ = −Λy =⇒ y = A cos
√
Λt


+ B sin

√
Λt


. (70)

These can be compared with Eqs. (61), (64), and (67), respectively.

B. Self-adjoint variant of Ĉ2α

The operator Ĉ2α is not self-adjoint but it can be made so by multiplying by an integrating
factor h, where

h(t) = 1
t2−2α e

 t (1−α)x1−2α

x2−2α dx (71)

=
1

t2−2α e(1−α)
 t 1

x dx

=
1

t2−2α t1−α = tα−1.

So, one then defines

Â2α ≡ hĈ2α = t1−α d2

dt2 + (1 − α) t−α
d
dt

(72)

=
d
dt


t1−α d

dt


.

One can consider several operator equations as was done for Ĉ2α. All of these differential equations
will be in standard Sturm-Liouville form.

First, the homogeneous equation,

Â2αy = 0, (73)

as expected, yields the same results as for Ĉ2α in Eq. (61),

y = A
1
α

tα + B. (74)

The constant equation,

Â2αy = Λ, (75)

has solution

y =
Λ

1 + α
tα+1 + A

1
α

tα + B. (76)

The eigenvalue equation

Â2αy = −Λy (77)

has solutions

y = AΛ
η
2
√

tαJη

(
2η
α

√
Λ(tα) 1

2η

)
(78)

+BΛ
η
2
√

tαJ−η

(
2η
α

√
Λ(tα) 1

2η

)
,

where η = α
1+α . Figure 2 shows y for α = 1

4 ,
1
2 ,

3
4 , 1 where Λ = A = B = 1.

Figure 3 shows the first three eigenvalue solutions for α = 1
4 ,

1
2 ,

3
4 , 1. The boundary conditions

are y(0) = y(1) = 0. This forces B = 0 and leads to
√
Λ = α

2η nη, where nη is the nth zero of Jη.
Thus,

y = A
√

tαJη
(
nη(tα)

1
2η

)
, (79)

where the constant A has now incorporated the constant Λ
η
2 here for simplicity of notation.
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FIG. 2. The top (bottom) graph is for the first (second) term in Eq. (78) for A= B =Λ= 1 and α = 1
4 ,

1
2 ,

3
4 , 1 with the number

next to the curve indicating the value of α. For α = 1, one recovers the sine and cosine functions expected from y′′=−Λy.
These graphs illustrate a general characteristic in that decreasing α elongates the functions, i.e., for α < 1, the period of
oscillation from positive to negative increases as α decreases. The period is, of course, constant for α = 1.

Note when α = 1 (η = 1
2 ),

y = A
√

t J1
2

(
n 1

2
t
)
. (80)

Using Ref. 16,
√

xJ1
2
(k x) ∝ sin[k x],

y = A sin[nπt], (81)

where n 1
2
= nπ is interpreted as the nth zero of sine.

The eigenvalues can be determined from
√
Λ = α

2η nη,

Λ =
1
4

(
α

η

)2

n2
η. (82)

Figure 4(a) shows the first 5 values of Λ as a function of α. The spectrum for α = 1
4 ,

1
2 ,

3
4 , 1 is also

shown in Fig. 4(b). Note, all spectra are linearly increasing.
When α = 1, one recovers

Λ = n2
1
2
= n2π2. (83)
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FIG. 3. The first three eigenstates for Â2αy =−Λy with boundary conditions y(0)= y(1)= 0 ordered from top to bottom.
Each graph shows the curve for α = 1

4 ,
1
2 ,

3
4 , 1 with the number next to the curve indicating the value of α (to ease the

crowding, the α = 3
4 curve is not labeled). The value of α = 1 corresponds to y′′=−Λy and shows the well-known sine

function. Comparison with Fig. 1 shows a softening of the asymmetry about t = 1
2 for the Â2α compared with the Ĉ2α. In an

application to quantum mechanics developed in Sec. V, these graphs are precisely the wavefunctions for a fractional particle
in a box.

For other types of boundary value problems, it will be important to know the fractional derivative
of y in Eq. (78). This expression is quite complicated so it is not shown explicitly here but it is
easily obtainable using M. Figure 5 shows the behavior of the fractional derivative for
that case of Fig. 3. The fractional derivative tends to zero as α → 0 which is quite the opposite of the
behavior of the first derivative as can be gleaned from inspection of Fig. 3.

Figure 6 shows the results for the first three eigenvalue solutions for α = 1
4 ,

1
2 ,

3
4 , 1. The bound-

ary conditions are Dα[y(0)] = y ′(1) = 0.
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FIG. 4. (a) The values of the first four eigenstates of Â2αy =−Λy with boundary conditions y(0)= y(1)= 0 as a function of
α. (b) The spectrum, △Λ, for the first 5 quantum numbers (•). The effect of α is to reduce the value of Λ as α→ 0. However,
Λ goes as the square of the quantum number for all values of α as can be seen from the linear behavior of the spectrum (solid
lines are best linear fit results.)

FIG. 5. Numerically calculated limiting values of the fractional derivative for the first 8 eigenfunctions for Â2αy =−Λy with
boundary conditions y(0)= y(1)= 0. The curves increase in quantum number from bottom to top. The (•) are the calculated
values and the lines are smooth fits through those dots to guide the eye.
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FIG. 6. The first three eigenvalue solutions for α = 1
4 (a), 1

2 (b), 3
4 (c), 1 (d). The boundary conditions are Da[y(0)]= y′(1)=

0. Note Λ= 0 is an eigenvalue for these conditions; y0= 1 is the eigenfunction associated with Λ= 0 for all α. The curves
are labelled as y0, y1, y2 in increasing value of the eigenvalue.

V. APPLICATIONS TO QUANTUM MECHANICS

In the early 2000s, Laskin developed a formulation of fractional quantum mechanics based on
the path integral over Lèvy trajectories.17–20 Since that time numerous applications of fractional
quantum mechanics have appeared; a small sampling includes Refs. 21–25. A key aspect of that
formulation is the presence of the fractional Laplacian which in the one dimensional case would be
of the form (

− d2

dx2

)a/2
, (84)

where 1 < a ≤ 2 (note, in this section, x is used as the independent variable throughout rather
than t). The operator is not Hermitian but has nonetheless proven to be very useful. Interpreta-
tions of non-Hermitian Hamiltonians in general (not necessarily in fractional quantum mechanics)
have been given.26 Further, the fractional derivative requires an integral representation and this is
non-local.23

The approach taken here is different and hence does not coincide with the Laskin formulation.
Nevertheless, we offer it as a potential application for the Â2α operator developed in this work.
This approach carries some nice features in which the resultant Hamiltonian is self-adjoint and it is
constructed as a function of Katugampola derivatives so it is local in character.

The development is based on two key ideas. First, analogous to the standard (integer deriv-
atives) formulation of quantum mechanics, we let e±ik

xα

α play the role of the eigenstates of the
fractional momentum operator. That is, the fractional momentum operator is defined as the oper-
ator whose eigenvectors are e±ik

xα

α and whose eigenvalues are ±k. Before doing so, a Hermitian
fractional momentum operator is discussed. Second, we use a self-adjoint Hamiltonian built from
Â2α.
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A. The self-adjoint Hamiltonian operator

Starting with the premise of working with a Hermitian operator representation of fractional
momentum and then from there building up a Hamiltonian analogous to normal quantum mechanics
(~ and m suppressed),

p̂ = −iD1 −→ Ĥ =
�
−iD1� �−iD1� + V (x̂) (85)

= −D2 + V (x̂).
Taking that the core of the fractional momentum operator should be Dα and using Dα = x1−αD1,
one is able to produce a self-adjoint operator of the form27

ir(x)D1 + s(x) + i
2

r ′(x), (86)

where r and s are any real, differentiable functions. The natural choice is r = −x1−α (so r ′ =
−(1 − α)x−α) and s = 0. This results in a definition for the fractional momentum,

p̂α = −iDα − i(1 − α)
2

x−α. (87)

To construct the Hamiltonian, one can consider (adding additional generality)

p̂α p̂β =
(
−iDα − i(1 − α)

2
x−α

) (
−iDβ − i(1 − β)

2
x−β

)
= −DαDβ − (1 − α)x−αDβ

2
− (1 − β)Dαx−β

2
(88)

− (1 − α)(1 − β)x−αx−β

4
.

One must use the commutator from Eq. (49) to change the order of

Dαx−β = x−βDα + x1−α(−β)x−β−1 (89)
x−βDα − βx−αx−β.

So,

p̂α p̂β = −DαDβ − (1 − α)x−αDβ

2
− (1 − β)x−βDα

2
(90)

+
(1 − β)βx−αx−β

2
− (1 − α)(1 − β)x−αx−β

4
,

which is rather complicated. Even simplifying to α = β, one is left with

p̂α p̂α = −DαDα − (1 − α)x−αDα + (1 − α)

αx−2α

2
− (1 − α)x−2α

4


(91)

= −DαDα − (1 − α)x−αDα + (1 − α)
(

3α
4
− 1

4

)
x−2α

= −Ĉ2α − (1 − α)x−αDα − 1
4
�
3α2 − 4α + 1

�
x−2α,

which is also complicated. Such a construct is the most rigorous approach if one insists upon a
Hermitian operator representation, but the resultant Hamiltonian will be unwieldy from an analytic
perspective. If one gives ground on Hermiticity for p̂α, one can truncate the operator in Eq. (87) by
dropping the residual ir ′

2 (x) such that a starting point for a suitable (albeit non-Hermitian) definition
of a fractional momentum (suppressing ~) is

p̂α = −iDα. (92)

With this definition, ψ = eik
tα

α are eigenfunctions,

p̂αeik
xα

α = keik
xα

α (93)
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from Eq. (6). The definition of momentum given in Eq. (92) is not equivalent to that used in Laskin
fractional quantum mechanics. Aside from being defined using an integral representation-based
fractional derivative, that treatment also incorporates a (−i)α as opposed to simply a −i in Eq. (92).
One might consider constructing a general fractional Hamiltonian based on this as (suppressing the

1
2m )

Ĥαβ = p̂α p̂β + V (x̂), (94)

which would include

Ĥα = (p̂α)2 + V (x̂) (95)

as a special case. The issue with Ĥαβ is that it is not self-adjoint. It is perhaps not unreasonable to
replace p̂α p̂β with a function of Â2α and define

Ĥ = −Â2α + V (x̂). (96)

Like momentum, the definition of the Hamiltonian used here is not that used in Laskin fractional
quantum mechanics. There,

Ĥ = Db

(
− d2

dx2

)b/2
, (97)

where Db is a scaling factor, 1 < b ≤ 2. Again, this derivative ultimately needs to be defined via an
integral representation.24 Also, the (−1)b/2 appears Eq. (97) as opposed to −1 in Eq. (96).

B. The particle in a box model

As a concrete example, the particle in a box model is considered. Even this simple model can
be confusing in fractional quantum mechanics due to the non-local nature of the theory.23 It will be
seen that the results arising from the definition given in Eq. (96) are quite different from those seen
in more traditional fractional quantum mechanics.17,23,24

The particle in a box model falls out immediately from the work in Sec. IV B. Here,

Ĥψn = Enψ (98)

and Ĥ = −Â2α within the box, which is taken to be 0 < x < 1. So,

Â2αψn(x) = −Enψn(x), (99)

which is just Eq. (77). With boundary conditions ψ(0) = ψ(1) = 0, the wavefunction becomes

ψn(x) = Nn

√
xαJη

(
nη(xα)

1
2η

)
, (100)

where nη is the nth zero of Jη(x) for η = α
1+α . The normalization constant, Nn, can be determined to

be

Nn =
1

(η − 1) Jη−1
�
nη
�

Jη+1
�
nη
� . (101)

These wavefunctions are purely real. The energy levels are

En =
(1 + α)2n2

η

4
. (102)

The square of the wavefunctions for α = 1
4 ,

1
2 ,

3
4 , 1 is shown in Fig. 7.

The average value ⟨x⟩ and the variance δx ≡



x2
�
− ⟨x⟩2 for the ground state are plotted in

Fig. 8. The average value increases toward x = 1/2 as can be inferred from the graphs whereas the
variance, although not strongly changing, does peak and fall again as α goes from 0 to 1.

There are some important differences between the results obtained here and those from previ-
ous work.25 In those works, the box is usually taken to be −1 < x < 1 but the basic result is that

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  138.129.188.59 On: Fri, 12 Jun 2015 17:32:53



063502-16 D. R. Anderson and D. J. Ulness J. Math. Phys. 56, 063502 (2015)

FIG. 7. The mod-square ofψ (althoughψ is real) for the fractional particle in a box model for the first three quantum levels.
The wavefunctions themselves are identical to the functions plotted in Fig. 3. The energy level spacing is artificial for ease of
plotting. Fig. 4 shows how the energy levels behave as En =Λ.

the wavefunctions would translate to a 0 < x < L box in the form ψn = A sin
�
nπx
L

�
,where L is the

length of the box. This is identical to that for standard (integer derivative) quantum mechanics. The
energy levels are found to be

En = Dα

(
πn
L

)α
(103)

(suppressing the ~). The energy states increase with fractional power. This differs from the results
captured in Eq. (102) and Figs. 5 and 6.

Casting fractional quantum mechanics in the treatment above offers some desirable charac-
teristics such as a self-adjoint Hamiltonian, no burden of the non-local character, and automatic
inclusion of a generalization to include momentum of differing fractional characters p̂α and p̂β.
There are, however, some undesirable characteristics. One of which arises from the definition of the
Katugampola fractional derivative which is defined only for x ≥ 0. This is not a major difficulty in a

FIG. 8. The average value ⟨x⟩ and the variance δx ≡



x2
�
− ⟨x⟩2 for the ground state of the fractional particle in a box.

Although M provides an analytic expression for both ⟨x⟩ and δx, it is very complicated, so numerical answers
were obtained for a number of values of γ (•). These were then fit to a parabolic curve. ⟨x⟩ increases monotonically with
increasing α but δx has a mild peak at around α = 1

2 . (Based on the parabolic curve fit, the peak is at γ = 0.455.)
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physical setting because it is usually straightforward based on the physical nature of the problem as
to how to make a change of variables x → −x. Another undesirable characteristic is the singularity
at x = 0 which carries through to the Â2α operator. Although the standard (integer) derivative is not
defined at x = 0, the Katugampola fractional derivative is. So, the singularity is eliminated at the
boundary when using the fractional derivative.

An intuitive understanding of the fractional derivative is elusive; consequently physical intu-
ition about how fractional quantum mechanics should behave is also difficult. The asymmetry in
the wavefunctions shown in Fig. 7 is not intuitive to the authors. Some insight might possibly be
gleaned from the results collected in Eqs. (61), (64), and (67) where the solutions are the same as
those for D2 (D2[y] = y ′′) except with x replaced by 1

α
xα. For α < 1, this effectively acts to stretch

out the domain of the function emphasizing small values of x and de-emphasizing large values. In
terms of the quantum probability amplitude, it is “pushed” to lower values of x. In a sense, this
introduces a “phantom” potential energy term. Although speculative, this idea is consistent with
a similar feature found in the fractional version of the classical undamped harmonic oscillator in
which the fractional derivative introduces a “phantom” damping term.28

Finally, a question of when to insist on self-adjointness arises. In this treatment, Hermiticity
was relinquished at the fractional momentum operator level but was maintained at the product of
fractional momentum level (at the fractional kinetic energy level) via Â2α. One could wait to insist
on Hermiticity until the Schrödinger equation level. In this case, one could use Ĉ2α, Eq. (54),
in place of the products of momentum and then carry out making the Schrödinger equation a
self-adjoint differential equation. This would result in a weight function multiplying the eigenvalues
and orthonormalcy being defined over that weight function. If this were to be done for the particle in
a box, for example, then the wavefunctions would be equivalent to the functions plotted in Fig. 1.

VI. CONCLUSION

The properties of the recently developed Katugampola fractional derivative were explored. The
advantage of the Katugampola fractional derivative is that it is limit based rather than defined via
a fractional integral. This, among other things, does not introduce the non-local nature of earlier
integral representations. A key property of the Katugampola derivative is Dα[y] = t1−αy ′. From
this, a differential operator, Dα = t1−αD1, is self-evident. The focus of this work centered on explor-
ing the properties of these differential operators. The commutators, anti-commutators, and inverse
operators were studied. The anti-commutator served as the basis for defining a self-adjoint operator
which could potentially have some application in quantum mechanics.
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