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Abstract. This paper is concerned with certain properties of the three fourth-order Legendre-type 

differential expressions. After normalization to the compact interval [ -1, 1] of the real line, there 

are five distinct such differential expressions. There is one of the second order (the classical 

Legendre differential expression), three expressions of the fourth order (discovered by H.L. Krall 

in 1938 and 1940), and one of the sixth order (discovered by Littlejohn in 1981). The three 

fourth-order expressions have a number of interesting properties when considered in the classical 

integrable-square space on ( -1, 1), and in the relevant measure integrable-square spaces on [ -1, 1]. 

The paper discusses some of these properties and detennines the smoothness conditions satisfied 

by elements of the maximal domains and the self-adjoint operator domains. These results are 

related to the orthogonal polynomials generated, firstly in the measure spaces and, secondly, by the 

fourth-order spectral differential equations linked to the Legendre-type differential expressions. 

1. Introduction. The positive and non-negative integers are denoted by N = 
{1, 2, 3, ... , } and No = {0, 1, 2, ... , }, and the real and complex numbers by lR and 

<C. 
With M and N real, non-negative parameters let the monotonic, non-decreasing 

function fl : lR --+ JR. be defined by 

{
-1-M 

fl(x) = x 

1+N 

Received September 1993. 

(x E (-oo, -1]) 

(x E (-1, 1)) 

(x E [1, oo)). 
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Let f..L be the regular, non-negative measure generated by fl on the Borel sets of JR., and 

let L 2 ([ -1, 1]; f..L) denote the integrable-square Hilbert space of equivalence classes 

of Borel measurable functions with norm and inner product given, respectively, by 

llfll!: = 1 lf(x)l2 df..L(x) (1.2) 
[-1,1] 

(f, g)JL : = 1 f(x)g(x) df..L(x) 
[-1,1] 

= Mf( -l)g( -1) + /_~ f(x)g(x) dx + Nf(1)g(l). (1.3) 

The integral in (1.2) is a Lebesgue-Stieltjes integral and the integral in (1.3) is the 

standard Lebesgue integral. 

The measure f..L has finite moments in respect of the sequence of powers { xn : n E 

No}; i.e., 

x <--+ xn E L2 ([-1, 1]; f..L) or 1 lxnl 2 df..L(x) < oo, (n E No). 
[-1,1] 

Furthermore, the set {xn: n E N0} is linearly independent in L2 ([-1, 1]; f..L). 

The Legendre-type polynomials are the orthogonal polynomial systems formed 

by applying the Gram-Schmidt orthogonalization process to the set {xn : n E No} in 

L 2 ([ -1, 1]; f..L). Five cases emerge from the measure w 

(i) M=N=O 

(ii) M>O, N=O 

(iii) M=O, N >0 (1.4) 

(iv) M=N>O 

(v) M > 0, N > 0, M =/= N. 

Case (i) yields the classical Legendre polynomials; see Chihara [1, Chapter V] and 

Szego [18, Chapter IV]. The Cases (ii), (iii) and (iv) were considered by H.L. Krall 

[11], [12], and A.M. Krall [10]. The final case (v) was developed by Littlejohn in his 

thesis [13]. 

The orthogonal polynomials in all these five cases (1.4) are special examples of 

the general Koornwinder polynomials considered in [9]; see in particular [9; Sections 

1--4] with a = f3 = 0. The general Koornwinder notation of {P;:,f3,M,N (x) : x E 

[ -1, 1]; n E N0} then reduces to 

{P~·o,M,N(x): x E [-1, 1];n ENo} (1.5) 

for the orthogonal polynomials considered in this paper. 
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Another significant unifying property of these five cases (1.4) of orthogonal poly

nomials is that each system is also generated by a formally symmetric spectral dif

ferential equation of the form 

s 

_L)-1Y(q,(x)y(r)(x))(r) = Ay(x), (x E (-1, 1)), (1.6) 

r=O 

where s EN, the spectral parameter A E C, and the coefficients 

{q,:r=0,1, ... ,s} 

are real-valued polynomials on lR with degree q, = 2r (r = 0, 1, ... , s). The best 

possible, (i.e., the smallest) integer s for which (1.6) is effective depends on the 

particular case determined by (1.4); the coefficients {q,} depend not only on the case 

in (1.4) but also on the parameters M and N, but not on the spectral parameter A. 

For case (i) of (1.4), we haves = 1, yielding the classical second-order Legendre 

differential equation (see [1] and [18]). For cases (ii), (iii), and (iv), the value of 

s is 2, yielding the fourth-order Legendre-type differential equations of H.L. Krall 

[11], [12]. For case (v), s = 3, yielding the sixth-order Legendre-type differential 

equation studied by Littlejohn [13]; see also the recent paper of Everitt, Littlejohn, 

and Loveland [7]. 

Later work on these Legendre-type differential equations was undertaken by 

Everitt, A.M. Krall, Littlejohn, Loveland, and Marie; see [3], [4], [5], [7], [8], and 

[10]. A detailed statement of some properties of all five Legendre-type differential 

equations (1.6) can be found in theresearchreportofEveritt, Littlejohn, and Loveland 

[6, Sections 0, 1, and 2]. The spectral theory of the self-adjoint differential operators 

generated by the differential equations (1.6) in the Hilbert spaces L2 ([-1, 1]; p.,) is 

considered in detail in the thesis of Loveland [14]; see also the forthcoming papers 

[15] and [16]. 

In this paper we are concerned with properties of the operator domains arising 

in cases (ii), (iii), and (iv) of (1.4) for which the order of the respective Legendre

type differential equations is 4. We give below the explicit form of these differential 

equations quoting from [6, Section 1, (1.6)-(1.21)]. For this purpose it is convenient 

to introduce the positive numbers A and B defined by (see (1.4)) 

A = M-1 when M > 0, B = N-1 when N > 0; (1.7) 

A and B are not defined and not required when M = 0 or N = 0, respectively. 

The three fourth-order Legendre-type differential equations then take the form, 

hereby defining, in the notation of [6, (1.16), (1.18), and (1.20)] and in terms of the 

case numbers of (1.4), the three differential expressions 

Case (ii) (A = M-1 , N = 0) 

MLf)[y](x): = ((1- x2 ) 2 y"(x)) 11 - (2(1- x)((2A + 1)x 

+ 2A + 3)y'(x))' + ky(x) = A.y(x), (x E (-1, 1)) 
(1.8) 
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Case (iii) (M = 0, B = N-1) 

MRk2)[y](x): = ((1-x2) 2y"(x))"- (2(1 +x)((-2B -1)x 

+2B +3)y'(x))1 +ky(x) = Ay(x), (x E (-1, 1)) 
(1.9) 

Case (iv) (M = N > 0, B = A = M-1 = N-1) 

MLk2)[y](x)": = ((1- x2)2y"(x)) 11 - ((8 + 4A(1- x2))y'(x))' + ky(x) 
(1.10) 

= AY (x), (x E ( -1, 1)). 

In all three cases k 2: 0 is a translation parameter essential for the proof of certain 

spectral theoretic properties of the associated differential operators. (Note that Land 

R are used in cases (ii) and (iii) to indicate that the discontinuity in fl is, respectively, 

at the endpoints -1 and + 1; this use of L and R is continued below for a number of 

definitions concerning domains and operators). 

If, in the notation of Koomwinder, see (1.5) above, the systems of orthogonal 

polynomials arising in cases (ii), (iii) and (iv) of (1.4) are denoted, respectively, by 

{P~·o,M,o : n E N0}, {P~·o,o,N : n E No}, {P~·o,M,M : n E No}, (1.11) 

then, essentially, it was established by H.L. Krall [11, 12] that these polynomials are 

solutions, respectively, for the three differential equations (1.8), (1.9), (1.10) with 

A-= ALC2l(A k) A= ARC2l(B k) A= AC2l(A k) 
n ' ' n ' ' n ' ' 

for each n E N0. Explicitly, these eigenvalues are given by, see [6, (1.17), (1.19), 

(1.21)] 

ALC:)(A, k) = n(n + 1)(n2 + n + 4A) + k 

AR~ 2 )(B, k) = n(n + 1)(n2 + n + 4B) + k 

(n E No), 

(n E No), 

(1.12) 

(1.13) 

A~ 2 ) (A, k) = n(n + 1)(n2 + n + 4A- 2) + k (n E No). (1.14) 

Furthermore, the explicit forms of the polynomials in (1.11) was obtained by H.L. 

Krall [11, 12] (see also A.M. Krall [10]) and are (recall (1.7)) 

0 0 M 0 f--., (-1Y(n + r)!(n2 + n + 2A- r) (1- X)r 
p , , , (x) = L... -- ' 

n r=O (r !)2(n- r) !(n2 + n + 2A) 2 (1.15) 

o o o N f--., ( -1Y (n + r)! (n2 + n + 2B - r) ( 1 + x )r 
p , , , (x) = L... -- , 

n r=O (r!)2(n-r)!(n2+n+2B) 2 (1.16) 

[n/2] ( -1Y(2n- 2r) !(A+ n(n-1) + 2r) 
pO,O,M,M (x) = '""" 2 xn-2r, 

n L...r--O A2nr!(n- r)!(n- 2r)! (1.17) 
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with normalization so that 

In this paper it is convenient to take k = 1 and then, since, all three differential 

expressions are of the same order, to define 

with, respectively, eigenvalues {.ALn : n E No}, {.ARn : n E No}, and {.An : n E N0}. 

All three differential expressions in (1.18) are Lagrange symmetric and of the 

general form considered in the now classic text of Naimark [17, Chapter V]. The 

common domain D of all three expressions is given by 

D := {f: (-1, 1)-+ C: j E AC 1 ~l(-1, 1), r = 0, 1, 2, 3}, 

and Green's formula takes the form, for all j, g E D and all compact [a, jl] c 
(-1, 1), 

i 13
{'g(x)N[f](x)- f(x)N[g](x)}dx = {f, g}(x)[!, (1.19) 

where N[·] represents any one of ML[·], MR[·], M[-]. Here,{-,·}(-) : D x D x 

( -1, 1) -+ Cis a general notation for a skew-symmetric bilinear form, which for the 

three cases of N[·] represented by (1.18), we write as, respectively, 

L[j, g]O, R[j, g]0, [f, g](·), (1.20) 

with j, g ED. 

As an example of the bilinear forms of (1.20) we give in detail the explicit formula 

for L[f, g]O, since this will be required in the following sections: 

L[f, g] =[((1- x2) 2 f"(x))'- (1- x)p(x)f'(x)lg:(x) 

- [((1- x 2)2 g"(x))1 - (1- x)p(x)g'(x)]f(x) (1.21) 

- (1-x2) 2 (f"(x)g'(x)- f'(x)g"(x)) (x E (-1, 1)); 

here, for convenience, we have defined 

p(x) :=2((2A+1)x+2A+3) (x E (-1, 1)). (1.22) 

The corresponding results for the bilinear forms R [f, g] 0 and [j, g] 0 are recorded 

in the thesis [14, Section 6.2], and [4, Section 2] or [14, Section 4.2]. 

The maximal domains of the three differential expressions of (1.18), in the classical 

space L2 (-1, 1), are represented by b..L, b..R, and b.. respectively. In the general 

notation of (1.19), they are defined as the linear manifold of L 2 ( -1, 1) 

{f: (-1, 1)-+ C: fED; j, N[f] E L2 (-1, 1)}. (1.23) 
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From (1.19), it follows that the limits 

lim {f, g}(x) := {f, g}(±1) 
x-+±1 

(1.24) 

exist and are finite in C, for all f, g in the relevant maximal domain. 

The classical theory of the determination of all self-adjoint operators generated 

by N[·] in L2 (-1, 1) is given in [17, Section 18]. ill this space L2 (-1, 1), the 

domains of all self-adjoint operators with separated boundary conditions applied 

at the endpoints ±1 are found by applying a well-determined number of boundary 

conditions to elements of the appropriate maximal domain of the form 

{f, w_}(-1) = 0, {f, w+}(1) = 0; (1.25) 

here w_ and w+ are chosen in a prescribed way from the maximal domain. For 

details of this method, see [17, Section 18], and for the application in the cases of 

(1.18) see, respectively, [14, Sections 5.6, 6.6, 4.5]. 

ill this paper we are concerned with the domains D (T L), D (T R) and D (T) of the 

self-adjoint differential operators here denoted by T L, T R, and Tin the Hilbert spaces 

L 2 ([ -1, 1]; f.L) with measure f.L determined by cases (ii), (iii), and (iv), respectively, 

of (1.4) such that 

(i) the spectrums of T L, T R, and T are discrete with eigenvalues {A.Ln : n E 

No}, {A.Rn : n E No}, and {A.n : n E No} (see (1.12), (1.13), (1.14), respec

tively); 

(ii) the corresponding eigenvectors ofT L, T R, and T are {P~·o,M,o : n E N0}, 

{P~·o,o,N : n E No}, and {P~·o,M,M : n E No}. 

The operator Twas first defined in [4] and [3], and later considered in [14, Chapter 

IV]. The operators T LandT R were first defined in [14, Chapters V and VI]. From 

these works and [6, p. 14], we make the following operator domain definitions, noting 

that the three functions 1, 1 - x, and 1 + x, (x E ( -1, 1)) all belong to the maximal 

domains .b..L and !lR. 

(i) D(T L) :={f E IlL: L[f, 1](+1) = 0, L[f, 1- x](+1) = 0} 

(ii) 

D(TR) :={f E !lR: R[f, 1](-1) = 0, R[f, 1 +x](-1) = 0} (1.26) 

D(T) :=ll 

{ 
-8Af'(-1) + f(-1) 

(T Lf)(x) := ML[f](x) 

{ 
MR[j](x) 

(T Rf)(x) := 8Bf'(1) + f(1) 

{ 
-8Af'(-1) + f(-1) 

(Tf)(x) := M[f](x) 

8Af'(1) + f(1) 

X= -1 

almost all x E ( -1, 1] 

almostallx E [-1, 1) 

x=1 

X =-1 

almostallx E (-1, 1) 

x=l. 

(1.27) 
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These spectral properties of T as an operator in the Hilbert space L 2 ([ -1, 1]; fL), 

with fL given by case (iv) of (1.4), were developed in [4] and [3], and then reported 

in [6, Chapter N]. The corresponding results for T L and T R are discussed in [6, 

Chapters V and VI]. 

The definition of all three operators requires information on the elements of oper

ator domains at the singular endpoints ± 1 of the interval ( -1, 1). The results in the 

following theorem justify the explicit definition of the operators in (1.27). 

Theorem 1.1. Let the Lagrange symmetric differential expressions M L [ · ], M R [. ], 

and M[·] be defined by (1.8), (1.9), (1.10) and (1.18); let the maximal domains flL, 

flR, and fl be defined within the Hilbert space L 2 ( -1, 1) by (1.23); Let the operator 

domains D(T L), D(T R) and D(T) be defined, within the designated Hilbert space 

L 2 ([-1, 1]; f.L), by (1.26). Then thefollowing properties hold: 

(i) iff E flL, then f" E L 2 ( -1, 0], and f, f' E ACloc[ -1, 1) and f(x) -

O(lln(1 - x)l) (x ~ +1); iff E flR, then f" E L 2 [0, 1) and f, f' E 

ACloc(-1, 1] and f(x) = O(lln(1 + x)l) (x ~ -1); iff E fl, then 

f" E L 2(-1, 1) and f, f' E AC[-1, 1]; 

(ii) iff E D(T L) or D(T R) or D(T), then f" E L 2 ( -1, 1) and f, f' E 

AC[-1, 1]. 

The results stated in (i) are best possible in the following sense: 

(i)* there exists g E flL such that g(x) rv ln(1- x) (x ~ +1); 

there exists g E flR such that g(x) rv ln(1 + x) (x ~ -1); 

(ii)* for each domain D(T R), D(T L), and D(T), there exists an element g such 

that g" ¢ LP ( -1, 1) for any index p > 2; here each g is independent of p. 

Proof. The proof of statements (i) and (ii) for 6.. and D(T) is given in [4] and [3]. 

The proof of statements (i) and (ii) for flL, D(T L), flR, and D(T R) is given in the 

following sections of this paper. The proofs of (i)* and (ii)* are discussed below. 

Remarks. 1. Even though the differential expression M[·] has singularities at the 

endpoints ±1, in that the leading coefficient x f-.+- (1 - x 2P has zeros of order 2 at 

both ±1, nevertheless all functions in the maximal domain fl have continuous first 

derivatives on [-1, 1]; this property does not extend to the expressions ML[·] and 

M R [ ·] since both maximal domains flL and flR have elements which are unbounded 

near either + 1 or -1. 

2. In comparison with the previous remark, the uniform properties of the operator 

domains D(T L), D(T R) and D(T) are remarkable; the three domains have the 

property that all elements have continuous first derivatives on [ -1, 1]. 

3. The smoothness results of all elements of the operator domains D (T L), D (T R) 

and D (T) justify the form of the definitions of the operators T L, T R and T given in 

(1.27). 

4. The proof of Theorem 1.1 for the operator Tis essentially given in the earlier 

papers of Everitt, A.M. Krall, and Littlejohn, [3] and [ 4]. However these results 

are included in the statement of Theorem 1.1 for completeness and also to show the 

remarkable uniformity in properties ofthe three operator domains given in (ii) of the 
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theorem. Also the previous results obtained for the operator T can be used to shorten 

the proof of Theorem 1.1 for the operators T L and T R. 

The contents of the paper are as follows. Section two contains the statement of 

a technical lemma (due to Chisholm and Everitt [2]); the result of this lemma is 

essential to the proof of Theorem 1.1. Section three reviews the form of proof of 

Theorem 1.1. Section four covers the connection between the operators T L and T R, 

and their joint connection with the operator T. Section five contains the proof of (i) 

and (i)*, and Section six contains the proof of (ii) and (ii)* of the theorem. 

2. A boundedness result in L 2 (-1, 1). The following result is essential for our 

proof of Theorem 1.1. The proof of Theorem 2.1 may be found in [2, Section 2]. 

Theorem 2.1. (Chisholm-Everitt) Let [a, b] be a compact interval oflR and suppose 

A, v : [a, b] ---+ <C satisfy 

A E Lf0c[a, b), V E Lf0c(a, b]. 

Define the two operators A, B : L2 (a, b)---+ Lf0c(a, b) by 

(Af)(x) := v(x) 1x A(t)f(t) dt, (x E (a, b)) 

(Bf)(x) :. A(x) 1b v(t)f(t) dt, (x E (a, b)), 

for all f E L 2(a, b). Then a necessary and sufficient condition for both A and B to 

map L 2 (a, b) into L 2 (a, b) is that there exists a positive number K such that 

3. Preliminaries. We remind the reader that details of the spectral analysis of the 

differential operators generated by the fourth-order differential expressions M R [ ·], 

ML[·] and M[·], in both the spaces L 2 (-1, 1) and L 2 ([-1, 1]; p,), can be found in 

[3], [4] and the Loveland thesis [14, Chapters IV, V and VI]. The objective here is to 

give consideration to the proof of Theorem 1.1 as given in Section one above. 

As pointed out in Section one, the results for the domains .6. and T stated in 

Theorem 1.1 are proved in [3] and [4]. 

In considering the proof of Theorem 1.1 for the domains .6.L, D(T L) and .6.R, 

D (T R), it is sufficient to prove the results for the L case, say. This follows from the 

similarity between the differential expressions M L[·] and M R[·]; i.e., if xis replaced 

by - x on [ -1, 1] then, formally, M L [ ·] is mapped into M R [ ·], and vice versa. Thus 

in the following sections we give the proof of Theorem 1.1 for M L [ ·] only, i.e., for 

the domains .6.L and D(T L). 

4. The endpoint -1 for the differential expression ML[·]. We note that the 

analytic properties of M L[·] at -1 are entirely similar to the properties of M[·] at 
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the endpoint -1. Analytically, this similarity between these differential expressions 

at -1 is best seen in the properties of the differential equations, both of the fourth 

order: 

ML[y] = 0 and M[y] = 0 on (-1, 1). 

Both these equations have the same form of polynomial coefficients at the endpoint 

-1. This endpoint is a regular singularity of both equations; the Frobenius solutions 

have the same asymptotic behavior near this endpoint. 

For details of these Frobenius solutions for M[y] = 0 at -1, see [ 4, Section 4, 

(4.2)-(4.5)], and in a more definitive form [14, Section 4.2, (4.2.2)-(4.2.5)]. For 

details oftheFrobenius solutions of ML[y] = 0 at -1 see [14, Section 5.2, (5.2.12)

(5.2.15)]. The comparison confirms the analytical identification of the properties of 

the maximal domains b. and b.L, and the operator domains D(T), D(T L), in the 

neighborhood of this endpoint -1. 

There is one further analytical similarity between these two differential expres

sions. In the proof of the required properties of the elements of b.= D(T), see [4, 

Section 2, (2.11)] and [3, Section 2, (2.3)], use is made of an "imbedded" second

order linear differential equation. This technical device also extends to the proof 

of the properties of the domains b.L and D (T L) and the "imbedded" equations for 

M[.] and M L [ ·] both have a regular singularity at the endpoint -1, the same form of 

polynomial coefficients, and same form ofFrobenius solutions. 

Thus the previously obtained results for the differential expression M[ ·] imply the 

following results for M L [ ·] in the neighborhood of -1: 

(i) iff E b.L then f" E £ 2(-1, OJ and j, f' E AC[-1, 0], 

(ii) iff E D(TL) then f" E £ 2(-1, 0] and j, f' E AC[-1, 0]. 
(4.1) 

Consequently, in proving Theorem 1.1 for b.L and D (T L), it suffices to show that 

the results required are valid in the neighborhood of the endpoint + 1. 

5. The maximal domain b.L at endpoint+ 1. It suffices in this section to confine 

attention to the proof of the result 

f E b.L implies f(x) = O(lln(1- x)l) (x-+ +1). (5.1) 

Without loss of generality, we can assume 

(i) f to be real-valued on (-1, 1); 

(ii) f to be identically zero in the interval [ -1, ~] by using the fundamental 

result in Naimark [17, Section 17.3, Lemma 2]. 

To summarize, we take f E b.L with the properties 

f: (-1, 1)-+ lR f(x) = 0 (x E (-1, !D. (5.2) 

With ML[·] given by (1.18), integrate over [0, x] with X E c!. 1) to obtain, and 

hereby defining the mapping A : [0, 1] x b.L -+ lR 

A(x; f):= -((1- x2) 2 f"(x))' + (1- x)p(x)f'(x) (5.3) 

=-fox { ML[f](t)- kf(t)} dt, (5.4) 
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where for convenience we have put, see (1.22), 

p(x) := 2((2A + 1)x + 2A + 3) (x E [-1, 1]), (5.5) 

and where A= M-1 > 0 is the parameter in the definition of the measure f.L, in case 

(ii) of (1.4). We use either definition (5.3) or the equivalent equation (5.4) in our use 

of A. We note from (5.4) that 

A'(·; f) E L 2[0, 1] and A(·; f) E AC[O, 1]. (5.6) 

Define the second-order, Lagrange symmetric differential expression P[·] by 

P[g](x) := -((1- x2) 2g'(x))' + (1- x)p(x)g(x) (x E [0, 1]), (5.7) 

where g: [0, 1]---+ lR and g, g' E ACtoc[O, 1). Now rewrite the definition (5.3) of A 

in the form 

P[f'](x) = A(x; f) (x E [0, 1)). (5.8) 

This suggests we study the differential equation (the "imbedded" equation) 

P[y](x) = A(x; f) (x E [0, 1)) (5.9) 

which requires consideration of the homogeneous equation 

P[y](x) = -((1- .i2) 2 y'(x))' + (1- x)p(x)y(x) = 0 (x E [0, 1)). (5.10) 

The Frobenius analysis of ( 5.1 0) for the regular singular endpoint at+ 1 gives indicia! 

roots of 0 and -1. Thus we have one solution of the form 

00 

cp(x) = Lan(X -1t ao -:f. 0 (5.11) 

n=O 

with convergence for lx - 11 < 2. Clearly for this solution cp, there exists ~ E [0, 1) 

such that cp(x) -:f. 0 for all x E [~, 1). 

A second, independent solution of (5.10) is then given by 

1x dt 

lf;'(x) = cp(x) ~ (1- t2)2cp2(t) (x E [~, 1)) (5.12) 

and it then follows that the Wronskian W ( cp, 1f;') satisfies 

W(cp, lj;')(x) = (1- x2)2(cp(x)lf;''(x)- cp'(x)lj;'(x)) = 1 (x E [~, 1)). 

The asymptotic form of these solutions in the neighborhood of 1 can be shown to be, 

as x ---+ 1, 

cp(x) = ao + O(lx -11), cp'(x) = a1 + O(lx -11) (5.13) 

lj;'(x) = bo(x -1)-1 + 0(11n(1- x)J) 

lf;''(x) = -bo(x -1)-2 + O(lx -11-1), 

(5.14) 
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sos I 

where we note that ao =I= 0 and b0 =I= 0. 

Now define 'll : [~, 1) x IlL ---+ lR by 

'll(x; f):= qJ(x) ix 1/f(t)A(t; f) dt + 1/f(x) 11 
qJ(t)A(t; f) dt (5.15) 

using (5.6) and (5.13) to validate the definition. 

By direct differentiation we obtain 

P['ll(·; f)](x) = A(x; f) (x E [~, 1)) (5.16) 

and hence the general solution of (5.9) is of the form, with a, f3 E JR, 

y(x) = aqJ(x) + {31/f(x) + 'll(x; f) (x E [~, 1)). 

Returning to (5.8) we obtain the representation, for some unique a, f3 E JR, and 

functional identity 

f'(x) = aqJ(x) + {31/f(x) + 'll(x; f) (x E [~, 1)). (5.17) 

From (5.14), (5.15) and use of (5.6), we obtain (here the symbol K represents a 

positive. number, but not necessarily the same number from use to use, or line to line) 

l'll(x; f) I ::::; K 1x(1- t)-1IA(t; f)ldt + K(1- x)-1 11
IA(t; f)ldt 

~ X (5.18) 

::::; K ix (1- t)-1dt + K(1- x)-111 
1dt::::; Kjln(1- x)l (x---+ 1). 

With these estimates used in (5.17) we obtain 

lf'(x)l::::; K(1- x)-1 (x E [~, 1)) (5.19) 

and on integrating 

lf(x)l::::; Kjln(1-x)j, i.e., f(x) = O(jln(1-x)j) (x---+ 1). (5.20) 

This completes the proof of (5.1) and (i) of Theorem 1.1 for IlL. 

To show that this result is best possible we appeal to the detailed Frobenius analysis 

of the solutions of the homogeneous differential equation ML[y] = 0 on [0, 1) given 

in [14, Section 5, (5.2.8) to (5.2.11)]. It can be shown that this equation has a solution 

qJo with a series representation 

00 00 

qJo(x) = ln(1- x) Ldn(x -l)n + Len(x -l)n with do# 0, en# 0 
n=O n=O 
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valid for the interval ( -1, 1). Since cpo E L 2[0, 1) it follows that cp0 E 6. at least on 

[0, 1); however 

cpo(x) rv do ln(1 - x) (x ~ 1) 

and this implies that (5.20) is best possible in general. This completes the proof of 

(i) * of Theorem 1.1 for 6.L. 

6. The operator domain D (T L) at endpoint + 1. To complete the proof of (ii) 

of Theorem 1.1 for ML[·], we need to prove 

f E D(T L) ===} f" E £ 2[0, 1) and f, f' E AC[O, 1]. (6.1) 

The sesquilinear form associated with the symmetric differential expression M L[·] 

is given by, see (1.21) above, for f, g E /:)..£ andx E (-1, 1), 

L[f, g](x) = [((1- x2) 2 J"(x))'- (1- x)p(x)f'(x)J.g(x)- [((1- x2) 2g"(x))' 

- (1-x)p(x)g'(x)]f(x)- (1-x2) 2 (f"(x)g'(x)- f'(x)g"(x)). (6.2) 

As before, see (1.24), we note 

L[f, g](1) :=lim L[f, g](x) exists and is finite for all f, g E /:)..£. (6.3) 
x-+1 

A computation shows that both functions 

x :~ 1 and x ~ (1 -x) (x E [-1, 1]), E /:)..£. (6.4) 

We recall that, see (1.26) 

D(T L) := {f E 6.£: L[f, 1](1) = L[f, (1- x)](1) = 0} (6.5) 

using the results (6.3) and (6.4). 

If now f E 6.£ then from (6.2), (6.3) and (6.4) and a direct computation, also 

recalling the definition (5.3) and (5.6) of A, we obtain the connections 

A(1; f)= lim A(x; f) 
x-+1 

= lim (-((1-x2) 2f"(x))' + (1-x)p(x)f'(x)) = -L[f, 1](1). 
x-+1-

(6.6) 

In the same way we obtain, using the result that L[f, 1] is finite 

lim(-(1-x)p(x)f(x) + (1-x 2?f"(x)) = L[f, (1-x)](1). (6.7) 
x-+1 

Using the estimates (5.20) for f, this last result (6.7) simplifies to 

lim(l- x 2? f"(x) = L[f, (1- x)](1). 
X-+1 

(6.8) 



FOURTH ORDER LEGENDRE TYPE EXPRESSIONS 807 

From (5.3) we obtain, for x E [0, 1), 

1((1- x2) 2 f"(x))'l:::; JA(x; f) I+ Jp(x)(1- x)f'(x)J 

:::; sup{JA(x; f) I: x E [0, 1]} + sup{Jp(x)(1- x)f'(x)J : x E [0, 1)} (6.9) 

:::; K1 + Kz (say), 

where K1 is finite from (5.6) or (6.6), and Kz is finite from (5.5) and (5.19). Thus 

(6.10) 

Now suppose that f satisfies the boundary condition, see (1.26), 

L[f, (1- x)](1) = 0. (6.11) 

From (5.20) it follows that limx---+1 p(x)(1- x)f(x) = 0 and then from (6.7) we 

obtain 

lim(1-x2) 2 J''(x) = 0. 
x---+1 

(6.12) 

From (6.10) and (6.12) we deduce 

(x E [0, 1)) 

which yields, using (6.9), 

This gives in turn 

lf"(x)l:::; K(1- x)-1 (x E [0, 1)) 

and on integrating over [0, 1) 

1/'(x)l:::; Klln(1-x)J (x E [0, 1)) (6.13) 

which should be compared with the earlier estimate, obtained without the condition 

(6.11), of (5.19). From (6.13) then we obtain 

f E /)._£ and L[f, (1- x)](1) = 0 imply j' E L 2 [0, 1). (6.14) 

Returning now to the representation (5.17) for f' we note that if(6.11) holds then 

f' E L 2 [0, 1); clearly cp E L 2 [0, 1); from the estimate (5.18) we obtain'¥(; f) E 
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L 2 [0, 1); from the asymptotic form (5.14) we see that 1jr fj. L2 [0, 1). For (5.17) to be 

consistent it follows then that {3 = 0 and we have the result 

f E ~L and L[f, (1-x)](1) = 0 imply f'(x) = a<p(x)+'ll(x; f) (x E [5, 1)). 

(6.15) 

The final stage in the proof is to suppose that the second boundary condition to 

determine D(T L) is satisfied, i.e., from (1.26), 

L[f, 1](1) = 0, i.e., A(l; f) = 0, 

from (6.6). From (5.6) and (6.16) we obtain 

A(x; f)= -1 1 
A'(t; f) dt 

Returning to (6.15) and differentiating we find 

f"(x) = aq/(x) + 'l!'(x; f) 

and 

(x E [0, 1)). 

(x E [5, 1)) 

(6.16) 

(6.17) 

(6.18) 

'l!'(x; f) =q/(x) ix 1/r(t)A(t; f)dt+1fr'(x) 11 
cp(t)A(t; f)dt. (6.19) 

The first term on the right-hand side of (6.19) is, from (5.6), (5.14), and (5.15), of 

the order O(lln(1- x)l) (x -r 1-), and hence is in L 2 [5, 1). For the second term 

write, from (6.17), 

i.e., 

1/r'(x) 11 
cp(t)A(t; f) dt = -1/r'(x) 11 

cp(t)(/
1 

A'(s; f) ds) dt 

= -1/r'(x) 11 
(t -1)cp(t)C ~ 1 /

1 
A'(s; f) ds) dt; 

\t'(x) 11 
cp(t)A(t; f) dt\ :S: lx ~ 112 11 

It -11{ It~ 11 /
1 

IA'(s; f) Ids} dt 

(6.20) 

for all x E [5, 1). 

We now make critical applications of Theorem 2.1. To the right-hand side of this 

last result we apply this theorem with 

a= 5, b = 1, A.(s) = (1- x)-1, v(x) = 1 (s E [5, 1)) 

for which we have 

(t E [5, 1)). 
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Since A'(·, f) E L 2 (~, 1), from (5.6), Theorem 2.1 gives 

t r-+ (1- t)-111 
IA'(s; f) I dx (6.21) 

This is followed by a second application of Theorem 2.1 with 

a=~, b = 1, A.(t) = (1- t)-2 , v(t) = 1- t (t E (~, 1)) 

for which we have 

This, together with (6.21), when applied to (6.20), shows that 

x r-+ 1/r'(x) 11 
cp(t)A(t; f)dt (x E [~, 1)), E L 2 (~, 1). 

Thus, returning to (6.19), it follows that 'II'(-; f) E L 2 (~, 1) and hence to L 2 (0, 1). 

Finally, from (6.18), it follows that when both boundary conditions (6.11) and (6.16) 

are satisfied by f E ~L, then this implies that f" E L 2 (0, 1). Thus provided we 

define f(r)(+1) = limx--+1 f(r)(x), for r = 0, 1, we obtain f, f' E AC[O, 1]. This 

completes the proof of (ii) of Theorem 1.1 for D (T L). 

To show that this result is best possible we define a function g : [ -1, 1] ---7 JR. by 

putting 

g"(x) := ((1-x) 112 In(1-x))-1 (x E [~, 1)) 

and then completing the definition on [ -1, ~] by polynomial extension so that g" E 

cC2l [ -1, 1). The function g itself is then defined by 

g(x) := 1x(x-t)g"(t)dt (x E [-1,1]). 

A computation shows that g E ~L and that g satisfies both boundary conditions 

(6.11) and (6.16). Hence g E D(T), g" E L 2 [ -1, 1) and yet g" ¢ LP[ -1, 1] for any 

p > 2. This completes the proof of (ii)* of Theorem 1.1 for D (T L). 

Taken together with all previous results and remarks, this completes the proof of 

Theorem 1.1. 
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