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Properties of the water column and bottom derived from 

Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS) data 

Zhongping Lee, Kendall L. Carder, Robert F. Chen, and Thomas G. Peacock 

Department of Marine Science, University of South Florida, St. Petersburg, Florida 

Abstract. Using Airborne Visible Infrared -Imaging Spectrometer (AVIRIS) data as an 
example, we show in this study that the properties of the water column and bottom of a large, 
shallow area can be adequately retrieved using a model-driven optimization technique. The 
simtfltaneously derived properties include bottom depth, bottom albedo, and water absorption 
and backscattering coefficients, which in turn cotfid be used to derive concentrations of 
chlorophyll, dissolved organic matter, and suspended sediments in the water column. The 
derived bottom depths were compared with a bathymetry chart and a boat survey and were 
found to agree very well. Also, the derived bottom albedo image shows clear spatial patterns, 
with end-members consistent with sand and seagrass. The image of absorption and 
backscattering coefficients indicates that the water is q •uite horizontally mixed. Without 
bottom corrections, chlorophyll a retrievals were -50 mg nf 3, while the retrievals after bottom 
corrections were tenfold less, approximating real values. These restfits suggest that the model 
and approach used work very well for the retrieval of subsurface properties of shallow-water 
environtnents even for rather turbid enviromrents like Tanya BaY, Florida. 

1. Introduction On the basis of a recent semianalytical model for shallow- 
water remote sensing [Lee et al., 1998], Lee et al. [1999] 

Remote sensing by aircraft or satellite has been proven to be showed that underwater information such as bottom depth and 
very useful for quickly providing important environmental water column properties could be analytically and 
information over large areas. However, owing to research simultaneously derived from hyperspectral data using an 
priorities or technical limitations most such remote-sensing optimization approach. In the process, no data were used 
applications have been focused on open ocean and offshore except the measured remote-sensing reflectance. The retrieved 
waters. Nearshore waters, owing to complexities ranging from depths agreed with the true depths within 8% for a range from 
land ranoff to bottom reflection, have been studied less often 2 to 25 m for waters of the west Florida shelf, the Florida 
using satellite imagery. The presence of bottom-reflected light Keys, and the Bahamas [Lee et al., 1999]. These kinds of 
obviates the utility of most empirical algorithms for retrieving results provide confidence that properties of submerged coastal 
properties of the water column (e.g., chlorophyll and environments such as bathymetry, water quality parameters 
absorption coefficients), while then scattering and attenuation (e.g., absorption and clarity)j and bottom albedo can be derived 
of incident light by the water complicates retrievals of bottom just from passive hyperspectral data as long as the data have an 
depth and albedo. However, near-shore waters are important adequate signal-to-noise ratio and the water column is well 
for our quality of life, and at the same time, near-shore mixed. However, it is not known yet how this technique would 
environments are under continuous stress due to human perform for spectral images of a more complicated 
activities and natural events. Methods and techniques are environmenL 
needed to monitor the properties of near-shore waters as well 

In this study, using Airborne Visible Infrared Imaging 
as the condition of benthic ecosystems such as seagrass beds. 

Spectrometer (AVIRIS) data over the Tampa Bay (Florida) 
In the earlier coastal studies, bottom depth and albedo estuary, we show that the model-driven optimization technique 

retrievals from satellite images required many assumptions to [Lee et al., 1999] can be applied to spectral images of shallow 
be made [e.g., Clark et al., 1987; Lyzenga, 1985; Zhang et al., and turbid coastal waters to adequately retrieve underwater 
1999] or ancillary ground truth data. These procedures may be information without a priori knowledge of the optical 
appropriate for a given study location, but they often are not properties of the water column or bottom reflectivity or depth. 
for other shallow regions. A more universal, reliable, and 
practical technique is desired for the retrieval of properties of 
shallow, near-shore environments from spectral imagery. 

Copyright 2001 by the American Geophysical Union. 

Paper number 2000JC000554. 
0148-0227/01/2000JC000554509.00 

2. AVIRIS Data 

The Airborne Visible Infrared Imaging Spectrometer of Jet 
Propulsion Laboratory is a test bed for future spacecraft 
imaging spectrometers [Green, 1999]. It has 224 spectral 
channels from 400 to 2400 nm and a 4 m x 4 m spatial 

resolution when viewing from an altitude of 3810 m. In the 
past decade, many land and oceanic applications were carried 

11,639 



11,640 LEE ET AL.: PROPERTIES OF WATER COLUMN AND BOTTOM FROM AVIRIS DATA 

(82ø38.3W, 27ø43.2N) 
(82ø38.7W, 27ø42.1N) 

Figure 1. The study area. 

out using AVIRIS data [e.g., Green, 1999; Carder et al., 
1993a, 1993b; Hamilton et al., 1993]. 

Low-altitude AVlRIS data over Tampa Bay (Florida) were 
collected from a Twin-Otter aircraft flying at 3810 m altitude 
on November 18, 1998, at 1200 local time. Figure 1 shows the 
study area. The AVlRIS radiance calibration and atmospheric 
correction were performed vicariously using the method of 
Carder et al. [1993a], which consisted of comparing modeled 
upwelling radiance at the aircraft altitude to AVIRIS data at a 

relatively uniform site (-5 km away from this image) where 
the water-leaving radiance was measured. Briefly, the 
atmospheric radiance was calculated by MODTRAN4 at the 
A VIRIS altitude using a midlatitude winter model with a 

maritime extinction aerosol type. By adjusting visibility of the 
model to match the total A V IRIS radiance at 807 nm the 

modeled atmospheric radiance was finalized for the vicarious 

calibration site. We then initially assumed the aerosols to be 
horizontally homogeneous in their properties for the entire 
AVIRIS transect. For this low-altitude AVIRIS data, typically, 
we observed water leaving radiance values of-30% of the 
total sensor signal at 550 nm. After atmospheric correction, the 
ratio of the calculated water-leaving radiance to MODTRAN4- 
calculated downwelling total irradiance at the surface provided 
initial remote-sensing reflectance R•s(• ) curves. To overcome 
effects of nonhomogeneity in aerosol properties and errore in 
atmospheric correction, a first-order adjustment to the above 

From Figure 1 it is easy to imagine that the study area is 
very complicated, with distinct patterns from left to right. 
However, without further analysis, it is difficult to tell what 
causes the spatial variation since it may result from changes in 
bottom depth (deep versus shallow), bottom substrate (sand 
versus seagrass), and/or water turbidity. Traditional 
approaches typically avoid regions like this because of a lack 
of knowledge of the water column contributions, the 

attenuation coefficients, and bottom albedos. We apply here a 
newly developed shallow-water inversion scheme [Lee et al., 
1999] to this complicated environment. The white horizontal 
line in Figure 1 indicates the route of a bathymetric survey, 
from which the measured bottom depths were used for 
comparison with AVIRIS derived depths. The white vertical 
line in Figure 1 is selected to show the bottom influence on 

empirical retrieval of chlorophyll a concentrations. 
Also measured at the AVIRIS calibration site were the 

chlorophyll a concentration and water absorption coefficients 
from bucket samples using methods described in the Sea- 
viewing Wide Field-of-view Sensor (SeaWiFS) protocols 
[Mueller and Austin, 1992]. The chlorophyll a concentration 
was 5.0 mg m -3, and the absorption coefficient at 440 nm of 
0.9 m 4. This was a sum of absorption of pure water [Pope and 
Fry, 1997], particle, and gelbstoff (yellow substance or colored 
dissolved organic matter). 

/•(g) values was carried out in a manner similarly to that of 3. Inverting Remote-Sensing 
Arnone et al. [19981. (1)/•s(g) is biased to make R•s(750= 0 Reflectance 
and get /•½)=•½)-•(750; (2) on the basis of an 
empirical relationship from ship-borne data, Rr•(750)was Remote-sensing reflectance Rr, is an apparent optical 
estimated from/•s(650, Rr•(750) = 0.0001 + 0.02 R}s(650); property [Preisendorfer, 1976], controlled by the absorption 
(3) finally, we get R•s(g)=l•s(g)+R•s(750. This Rr•(3,) is then coefficients, scattering properties, and the bottom albedo and 
used as input in the follow•g remote sensing inversion. bottom depth. It is also influenced by fluorescence and Raman 
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emission [Marshall and Smith, 1990; Lee et al., 1994] and by 

the angles of solar input and output radiance [Morel and 
Gentill, 1993]. For waters with vertical homogeneity and 

ignoring the inelastic scattering contributions, 

Rrs(•,) =J[a0L), b•)L), p0L), H, O,•, O,,, qq, (1) 

u = bd(a+bb) to= a+b• (5) 

bb = bt• + bo•, (6) 

a = a,v + a,+ ag. (7) 

Note that both u and tc are inherent optical properties, and it 

where a(g) is the absorption coefficient, bo()•) is the is the combination of (2)-(7) that provides the expression for 
backscattering coefficient, ,0(3.) is the bottom albedo, H is the Rrs. In (2), 0.5/(1-1.5 rrs) is the water-to-air divergence factor 
bottom depth, 0w is the subsurface solar zenith angle, Ov is the [Gordon et al., 1988; Mobley, 1994], and (1-1.5 rr,) accounts 
subsurface viewing angle from nadir, and q> is the viewing 
azimuth angle from the solar plane. For brevity, wavelength 
dependence may not be explicitly included unless required for 
clarity. 

In order to retrieve the bottom depth the water column 
contributions and optical properties of the water column have 
to be known or derived. Historically, values for water column 

for the internal reflection of the water-air interface, which is 

important when rr, values get high for very shallow and/or 
very turbid waters. Here bb• is the backscattering coefficient of 
pure seawater, while bop is the backscattering coefficient of 
suspended particles; a, is the absorption coefficient for 
phytoplankton pigments, and ag is the absorption coefficient 
for gelbstoff and detritus [Carder et al., 1991 ]. 

contributions were approximated from values of adjacent deep When Rr•(Z) is known, remote determination of subsurface 
waters [e.g., Polcyn et al., 1970; Lyzenga, 1978, 1981; OWeill properties is a mathematical process: spectrally decomposing 
and Miller, 1989], and light attenuation values were assumed (2) and accurately deriving the quantities of interest. For n 
known a priori [e.g., Polcyn et al., 1970; Paredes and Spero, independent channels of Rr•(Z), (2) is a series of equations: 
1983] or empirically derived from an image by regression 
using a few true depths provided by lidar or on-site ship 
measurements [Lyzenga, 1985; Philpot, 1989]. All of these 
methods require knowledge of a few actual depths or accurate 
attenuation values. This suggests that ff neither of those 
conditions is met, bottom depth cannot be accurately derived. 

To be able to derive properties of shallow-water 
environments routinely, it is desired to simultaneously derive 
bottom depth and albedo and the optical properties of the water 

Rrs(• 1 ) = F(aw(• 1 ),bbw(• ),a0 (•),a s (•1), 

Rr• (Ja) = F(aw(Ja),bbw(g2),ao(Ja),as(22), 

. 

= r(a, (&,),% 

f(X. ), Z-Z), 

(8) 

column. The model-driven optimization technique developed i.e., each measured Rr•00 spectrum consists of at least four 
by Lee et al. [1999] demonstrated that most of the underwater unknown spectra (a•00, as00, b•p00, and P00) and one scalar 
information could be derived from the measured remote- unknown (H), assuming the values of aw00 and b•00 are 

sensing reflectance. known [Pope and Fry, 1997; Morel, 1974]. This suggests that 
For •p = 90 ø the semianalytical model (SA model) for Rrs is for n equations, there are (4n + 1) unknowns to be deduced. In 

[Lee et al., 1999] 

0.5 
Rr$ 

1-1.5 rrs 

+--pe - + tc , 

(2) 

r• • (0.084 + 0.170u) u. (3) 
Here rr, is the subsurface remote-sensing reflectance, or ratio 

of the upwelling radiance to downwelling irradiance evaluated 
just below the surface, and rdP, is the remote-sensing 
reflectance for optically deep waters. 

The first term on the right side of the rrs equation expresses nrn 4 is used as a representative average in our inversion 
the trimcation of the path radiance expected for presence of a 
black bottom at depth H, while the second term expresses the 
bottom contribution at the surface after attenuated by the two- 

way path through the water column. 

In (2) there are two optical path elongation factors: one for 
photons from the water column (DC,) and the other for photons 
from bottom (DS,). These are approximated as [Lee et al., 
1999] 

DC. • 1.03(1 +2.4u) ø'• DS• • 1.04(1 +5.4u) ø'•. 

Here u and tc in (2)-(4) are defined as 

order to solve for this many unknowns, additional relationships 
have to be established to reduce the number of unknowns (or 

increase the number of equations). 

Here a•0•) is simulated by a single-parameter model [Lee et 
al., 1998]: 

a,0•) = [a00•) + a•0•) In(P)] P, (9) 

with P = a•(440), the variable for phytoplankton absorption 
coefficient at 440 nm. This approach allows at(Z ) curvature to 
change with a•(440) value, consistent with field observations, 
at least to first order. Values for aoO0 and a•(Z) are provided in 
Table 1. 

Here as0•) is expressed as [Bricaud et al., 1981; Roesler et 
al., 1989; Carder et al., 1989] 

ag0•) = G e 's(x'n•), (10) 

with G = a•(440). S is the specWal slope, and a value of 0.015 

process. This S value as well as aoO0 and a•00 values can be 
replaced if site-specific knowledge is available. 

Here b•p00 is expressed as 

bbp()t)=X -- , (11) 

where X = bbn(400), which is an effective particle 

(4) backscattering coefficient as solar zenith angle and sensor 
viewing angle were also imbedded in the parameterization 
[Lee et al., 1999]. In other words, it includes some small 
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0.24 

O.1G 

0.04 

b) 

9.5 

9.0 

,1.O 

0.0 

Plate 1. (a) Image of derived bottom albedo at 550 nm. (b) Image of derived bottom depth in meters. 
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b) 

Plate 2. (a) Image of depth comparison. Lines are the isobaths from NOAA chart. Depths are in feet for 
comparison (1 foot = 0.3048 m). (b) Image. of derived absorption coefficient at 440 nm. 
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Table 1. Parameters for the Empirical a•0•) Simulation ø 

Wavelength 

390 0.5813 0.0235 

400 0.6843 0.0205 

410 0.7782 0.0129 

420 0.8637 0.006 

430 0.9603 0.002 

440 1.0 0 

450 0.9634 0.006 

460 0.9311 0.0109 

470 0.8697 0.0157 

480 0.789 0.0152 

490 0.7558 0.0256 

500 0.7333 0.0559 

510 0.6911 0.0865 

520 0.6327 0.0981 

530 0.5681 0.0969 

540 0.5046 0.09 

550 0.4262 0.0781 

560 0.3433 0.0659 

570 0.295 0.06 

580 0.2784 0.0581 

590 0.2595 0.054 

600 0.2389 0.0495 

610 0.2745 0.0578 

620 0.3197 0.0674 

630 0.3421 0.0718 

640 0.3331 0.0685 

650 0.3502 0.0713 

660 0.561 0.1128 

670 0.8435 0.1595 

680 0.7485 0.1388 

690 0.389 0.0812 

700 0.136 0.0317 

710 0.0545 0.0128 

720 0.025 0.005 

a From L•e [1994]. 

effects of phase function on scattering angle. Y is the spectral 
shape parameter of particle backscattering. A value of 0.5 is 
used for all the pixels of this study, consistent with more turbid 

Rrs(550) < 0.01 and Rrs(710)/Rrs(670) > 1.2, 

spectral shape of p• is used; otherwise, spectral shape of 
P•nO is used. 

After the above empirical/semianalytical models are 
assembled, (8) becomes 

Rrs (•)= F(aw( • ),bbw(• ),P,G,X,B,H) 

..Rrs (Ja ) = F(aw (Ja ),bbw(J,2 ),P,G,X,B,H) (13) 
. 

Rrs ()l n )= F(aw(A n ),bbw 01 n ),P,G,X,B,H). 

There are only five variables for (13): P, G, X, B, and H. 
These five variables uniquely influence the grs(•) spec• 
which avoids the possibility of a singularity arising from (13), 
unless the data are very noisy. 

The final question now is how to mathematically derive the 
five tinknowns from known Rr•00 spectrum. Theoretically, we 
only need five independent channels to solve for five 
tinknowns. However, (13) is neither 100% accurate nor 100% 

complete in modeling the remote-sensing reflectance spectra of 
real environments, even if we have perfect sensors and 
atmospheric corrections. For example, it lacks terms for 
fluorescence of pigments, fluorescence of colored dissolved 
organic matter, and Raman scattering. Also, the empirical, bio- 
optical models used are not guaranteed to perfectly match the 
waters under study. All of these missing components are 
present, though mostly small, in the measured data, and 
distributed unevenly across the spectrum. Also, the wavelength 
of maximum bottom contribution depends on the wavelength 
of maximum transparency, which varies as a function of 
absorption and scattering. Since the values of absorption and 
scattering vary from place to place, it is hard to know a priori 
which wavelength contains the maximum bottom contribution. 
Figure 3 shows examples of measured remote-sensing 
reflectance, where one spectrum has maximum reflectance 
-480 nm and another has -570 nm. Thus it is difficult to 

determine the best five channels to be used for the derivation. 

Taking all of the above uncertainties into consideration, it is a 
practical and reasonable idea to apply all the useable channels 
for the derivation of the five tinknowns by means of an 
optimization scheme. 

A computer program has been developed for the 
optimization used in the inversion. This optimization is 

effectively a predictor-corrector, model-inversion scheme, 
achieved by adjusting the values of P, G, X, B, andH in (13) to 
minimize a predefined err function, which is 

[675{' ^ 2+•igrs A 2-10-5 
750k 

err- 675 800 , (14) 

400 750 

waters [Sathyendranath et al., 1989; Lee et al., 1999]. with •rs for values from (13) and Rrs for values from AVIRIS. 
The parameter •)•) is expressed using 550 nm-normalized, The cutoff between 675 and 750 nm is because no term is 

sand albedo Psand00 or grass albedo P•()0 shapes (see Figure included in the model to express the solar-stimulated 
2), i.e., chlorophyll fluorescence presented in the measured data. Also, 

•(3.) =B p•,nd(3-) or •(3.) =B p•(3.), (12) this spectral range is greatly affected by the absorption of 
water vapor that is quite variable. The computer program 

where B is the bottom albedo value at 550 nm. Here p•,d(3.) automatically changes the values of P, G, X, B, and H until err 
and/3•,(3.) were from earlier field measurements (Z. Lee et reaches a minimum At that point, values for P, G, X, B, and H 
al., unpublished data, 1992). We used the following empirical are then considered to be derived. In the process, P, G, X, B, 
criteria to initially separate sand from grass bottoms: if Rr•00 and H are initiated at 0.2, 0.5, 0.01, 0.05, and 2.5, respectively, 
of a pixel satisfies and are all kept positive. Note that no field data are 
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Figure 2. The spectra shapes of sand and seagrass bottom albedo used in this study. 

required/used except the measured Rr•(3.) curves. Knowledge 
of time- and space-dependent regional values for S, ao(•) and 
a;(•) values, however, can improve retrieval quality for a 
given site and season. 

4. Results 

computational burden caused by the optimization technique. 
The computed results are shown in Figures 4-9. 

Figure 4 shows examples of modeled and AVIRIS-retrieved 
grs(•,) curves for some selected pixels. The modeled Rrs(3.) 
curves match AVIRIS Rr•(3.) very well, suggesting that the 
calibration and atmospheric correction were quite good, 
leaving very little residual noise in the Rr•(3.) spectra. Note that 

Using a Pentium 400 Mhz, personal computer, the 630 x the difference ~685nm is due to chlorophyll a fluorescence in 
510 (>300,000 pixels) AVIRIS image was processed in ~6 the AVIRIS data. 
hours. It is not as fast as empirical regression algorithms, but it Plate la shows the image of derived bottom albedo at 550 
provides much more accurate retrievals for not only depth but nm, which shows clear spatial patterns, as clearly depicted by 
also bottom albedo and water optical properties. The 6 hours of the two modes of its histogram (Figure 5). The bottom albedo 
processing time is manageable if we are just processing a few values ranged from 0.02 to 0.2, with a few pixels around 0.3 
images. For a large number of images, increased numbers of (Plate l a, top left). These values are consistent with values 
computers or more powerful computers can alleviate the ranging from shaded grass canopies to those expected for 

0.016 

0.012 

oO.. 

0.008 

0.004 

o 
o 

0.000 I T•T• 

400 450 500 550 600 650 700 750 800 

wavelength (nm) 

Figure 3. Examples of measured remote-sensing reflectance of' two sandy bottoms. 
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Figure 4. Examples of AVIRIS measured and modeled remote-sensing reflectance of this study. 

sandy bottoms [Hou et al., 2000]. If we set a criteria such that 
albedo values <5% are seagrass and > 10% are muddy quartz 
sand, then this image suggests that seagrass occupies the left 
side, and sand occupies the fight side of the image. At the top 
left, there is a strip of a sandy bar. 

Plate lb shows the image of derived bathymetry, ranging 
from -0.3 to 4.6 m, with the deepest place in the left lower 
corner. The upper left part of the image is much shallower, 
with depths around 0.6-1.2 m, and in the middle of the image 

the depths are-2.4 m. 
To see how the derived depths compared with earlier known 

depths, we scanned a bathymetry chart (National Oceanic and 

image and superimposed it on the AVIRIS depth image, as 
shown by Plate 2a. The depths in the chart were surveyed 
before 1978, and values were for mean lower low water. In 

Plate 2a the lines are the isobaths from the chart. To make the 

two depth charts comparable, the AVIRIS-derived depths were 
converted from meters to feet (1 foot = 0.3048 m). The water 

was in the middle of a rising tide when AVIRIS was collecting 
imagery, so we subtracted 1.3 feet from the AVIRIS-derived 

depths to make it comparable with chart depths. By comparing 
the two depth images, there are some interesting findings: (!) 
Both charts show that the deepest places are at the lower left 
corner (marked A), with depth values around 14 feet (4.6 m). 

Atmospheric Administration (NOAA) No. 11414) into an Also, both charts show the shallowest places are at the sandy 

30000 

20000 - 

lOOOO - 

o 

0.0 0.2 0.3 

55o) 

Figure 5. Histogram of p(550) values. Clearly, we see wide variations of this value. 



IJEE ET AL.: PROPERTIES OF WATER COLUMN AND BOTTOM FROM AVIRIS DATA 11,647 

0.0 

-1.2 

-1.8 

-2.4 

-3.0 

-3.6 

AVIRIS 

ß CHART 

..... BOAT 

horizontal distance 

F•e 6. Depth comparison among the A¾]]•S-derived, boat survey, and the National Oceanic and 
Atmospheric Adm•istrafion (NOAA) chart data. 

bar at the top left (1-2 feet, 0.3-0.6 m). (2) The shoal area near 
the middle left part of the image (marked B) appears to have 
been eroded and deepened between the time of NOAA 
measurements and the AVIRIS overflight (>20 years), with the 
area of this shoal region reduced by -20%. The once 2-3 feet 
(0.6-0.9 m) area (marked B) is now 6-7 feet (1.8-2.1 m) deep 

(also see the arrow point in Figure 6), and the substrate has 
likely changed from once being grassy to now being sandy. (3) 
A channel has been opened at the top of the image (marked C). 
This place was previously uniformly -2 feet (0.6 m) in depth, 
but it is now a channel with depths of-6 feet (1.8 m). 

To see how accurate the AVIRIS-derived depths were, we 

took a boat survey to the study area on December 8, 1999, 
which was -1 year later than the AVIRIS flight. Figure 6 
shows the depth comparison, which also includes a few points 
selected from the NOAA chart. As shown, the depth values 

from three sources agree with one another quite well, except 
that the NOAA depths appear a little bit shallower (-0.15 m), 
which could be due to the coarse interpolation of the NOAA 

depths. Except for the pixels around the deep channel shown in 
the boat survey (see Figure 6), the depths overall agree with 
each other very well. For the depth mismatch between AVIRIS 
and the boat survey around the deep channel it could be caused 
by the nearby boat (see Figure 1), with stirred-up sediments 
being viewed as a false bottom in the AVIRIS image. 
Repetitive AVIRIS coverage of the same area can overcome 
such uncertainties. 

Putting aside the time lag between AVIRIS and boat survey 
(note that no major storms hit the region during that year lag) 
and errors in atmospheric correction, other possible sources of 
error include the remote-sensing reflectance model and the 
spectral shape of the bottom albedo used for the inversions. 
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Figure 8. Image of derived particle backscattering coefficient at 400 nm. 
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Remember that we only used two distinctive shapes in our those absorption values. More than 90% of the pixels have 
inversion. From pixel to pixel, however, owing to the changes absorption coefficient values in a range of 0.7-0.9 m -•. Highest 
in bottom composition we would expect changes also in the a(440) values (--1.5 m -1) appeared in the shallow, lower middle 
spectral shape of bottom albedo. Other than significant part of the image (just off the city of St. Petersburg, Florida), 
changes between grass and sand, we do not know yet how to which may be due to the very shallow water there (see Plate 
detect subtle changes remotely. Improved algorithms and an lb) and perhaps due to some runoff from the city. In the 
updated database for spectral shape of the bottom albedo are middle of the image, the absorption coefficient is, in general, 

needed for this region. fairly constant, with an average value of 0.8 m -•. 
Plate 2b shows the image of the derived total absorption Unfortunately, we do not have field measurements for the 

coefficient at 440 nm, while Figure 7 shows the histogram of study image since the boat was at the atmospheric 
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correction/calibration site (--5 km away from this image)i The shoal region are shown in Figure 10. This includes chlorophyll 
a(440) value, however, at the calibration site was ~0.9 m' that concentrations from various retrievals along with depths for 
day, which suggests the AVIRIS-derived absorption values 
were quite consistent with nearby waters. More importantly, 
we do not see the sharp, horizontal gradients in this absorption 
image that appear in albedo and depth images (Plates l a and 
lb). These results suggest that the waters observed in the 
image appear to be well mixed horizontally, and the approach 
did separate clearly the causes in the radiance variation shown 
in Figure 1 into water column and bottom effects. 

Figure 8 shows the retrieved image of the particle 
backscattering coefficient at 400 nm, and its histogram is 
shown on Figure 9. We see that most of the pixels have 
bbp(400) values between 0.02 and 0.03 m 4. Clearly, this image 
is consistent with the a(440) image in that the majority of the 
water body was well mixed. 

With these results, we can now confidently point out that 
most of the radiance variation in Figure 1 was due to changes 
in bottom depth and bottom composition, with the water itself 
relatively well mixed horizontally. This is rather amazing 
considering that the diffuse attenuation coefficient of the water 
column at 440 nm is about [Gordon et al., 1980] 
(a+bb)/cos(Ow) • 1.0 m -1, and the beam attenuation coefficient 
at 440 nm is about a(440) + b(440) • a(440) + 50 bb(440) •, 2.1 
m 4 if we assume a 2% ratio of backscattering to total 
scattering (bb/b) [see Mobley, 1994]. These values indicate that 

the waters under study are very turbid compared to clear-water 
regions where earlier spectral bathymetry experiments have 
occurred [e.g., Lyzenga, 1985]. 

5. The Influence of the Bottom on 

Empirical Retrievals 

It has been acknowledged that empirical, spectral ratio 
algorithms for pigment concentrations or absorption 
coefficients cannot be applied to optically shallow waters. The 
results of applying an empirical chlorophyll a algorithm to this 

the vertical line shown in Figure 1. The empirical algorithm for 
chlorophyll a concentration is the OC-2 formula [O'Reilly et 
al., 1998], 

[C] = 10 0'341-3'00•+2'81 •2-2'0417 -0.04, (15) 

with 7 = log(Rr•(490)/Rr•(555)). 

In Figure 10 the left scale is for chlorophyll concentration, 
and the fight scale is for bottom depth. Chlorophyll 
concentrations were calculated in three ways: (1) [C]_opt, 
chlorophyll concentration by optimization, was calculated 
from optimization-derived a•(440) values, using a 0.05 m 2 mg- 
• chlorophyll-specific absorption coefficient at 440 nm (open 
circles); (2) [C]_dp, chlorophyll concentration for optically 
deep waters, was calculated using (15) after bottom effects 
were corrected from Rrs values (open triangles); and (3) 
[C]_sh, chlorophyll concentration for shallow waters, was 
calculated using (15) with raw Rrs values, i.e., no correction for 
bottom effects (open squares). 

We see that the depths (solid circles) range_widely from 
-0.6 - 4.3 m, but [C]_opt remains ~4-5 mg rrf 3, while 20 < 
[C]_dp < 30 mg m -3, and 20 < [C]_sh < 100 mg m '3. Though 
[C]_opt and [C]_dp differ significantly in absolute value, both 
show relatively small variations from pixel to pixel, as 
expected for horizontally mixed waters. On the other hand, we 

see strong pixel-to-pixel variations for [C]_sh, which clearly 
indicates the strong influence of bottom on the empirical 
retrieval of chlorophyll concentrations. [C]_opt retrievals do 
suffer sometimes from bottom effects over the very shallow 
(~ 1.2 m) grass beds area. 

The variations of [C]_sh, however, are not simply correlated 
with the values of depth. [C]_sh provides similar values to 
[C]_dp for bottom depths ~1.2-1.5 m, while [C]_sh differs 
significantly with [C]_dp for bottom depths -2.7 m. The 
reason is that 1312-2 uses the ratio Rr•(490)/Rr•(555). The 
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Figure 10. Comparison of retrieved chlorophyll a concentrations of a selected line. Solid circles are for 
depth; open circles are for values from optimization; open triangles are for values after bottom correction; 
and open squares are for values without bottom correction. See text for details. 
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influence of the bottom on this ratio (or other spectral ratios) is suggests that high-quality, high spectral and spatial resolution 
not just a function of depth; it is also a function of properties of airborne imagery data can be used for environmental 
water column and bottom [see Lee et al., 1998]. When the reconnaissance to provide guidance for future detailed ground 
bottom gets shallower, although the contribution from the surveys for updating bathymetric and bottom substrate maps. 

bottom increases, the contribution from the water column If a satellite equipped with a hyperspectral sensor with 30 m 
decreases (see (2)). Depending on water and bottom resolution and enhanced signal-noise ratio such as the Coastal 
constituents, the two effects sometimes compensate each other Ocean Imaging Spectrometer (COIS [Davis and Carder, 
so that the Rr•(490)/Rr•(555) ratio may be the same for two 1997]) is ever funded and launched, it would provide a means 
different depths. In this case the OC-2 derived chlorophyll to globally monitor, even in shallow waters, changes in 
concentration may be similar even though one has stronger bathymetry and benthie habitats, environmental factors 
bottom contribution than the other. indicative of eutrophication (e.g., chlorophyll a, absorption and 

The big difference between [C]_opt and [C]_dp is the fact scattering coefficients), and runoff. Global detection of 
that the OC-2 algorithm was designed for "case 1" waters navigational hazards, storm damage, environmental stress 
[Morel and Prieur, 1977], where the ratio of gelbstoff factors, and climate change effects (e.g., E1 Nifio flooding) 
absorption to pigment absorption at 440 nm is generally ~0.8- 
1.2 [Morel, 1988, Gordon et al., 1988]. For the estuary in this 
study, however, that ratio is as high as 5-8. As a result, the 
Rr•(490)/R•(555) ratio here is largely an indicator of the 
gelbstoff absorption rather than pigment absorption even 
where bottom influence is minimal. [C]_opt values are much 
closer to the real values (chlorophyll concentration at the 
calibration site was ~5.0 mg m -3 on that day) as the absorption 
coefficients for pigments and gelbstoff were derived 
independently in the optimization process. The missing 
[C]_opt points and those with very low [C]_opt values shown 
in Figure 10 were due to the influence of the shallow grass 
beds, which limit the effectiveness of spectrally decomposing 
the water column signals from that due to bottom since both 

pigment and seagrass absorb strongly in the blue-green region. 

would be a boon for resource and safety management. This 
initial effort provides an example of the some of the 
applications that could be addressed by COIS if it were 
successfully launched. 
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