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2Tigar, Nikole Pašića 213, 18300 Pirot, Serbia
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Opalized white tu	 (OWT) with 40 �m average particle size and 39.3m2/g speci�c surface area has been introduced into
polyisoprene rubber (NR). �eir reinforcing e	ects were evaluated by comparisons with those from precipitated silica (PSi). �e
cure characteristic, apparent activation energy of cross-link (�ac) and reversion (�ar), and mechanical properties of a variety of
composites based on these rubbers were studied. �is was done using vulcanization techniques, mechanical testing, and scanning
electron microscopy (SEM). �e results showed that OWT can greatly improve the vulcanizing process by shortening the time
of optimum cure (tc90) and the scorch time (ts2) of cross-linked rubber composites, which improves production e�ciency and
operational security. �e rubber composites �lled with 50 phr of OWT were found to have good mechanical and elastomeric
properties. �e tensile strengths of the NR/OWT composites are close to those of NR/PSi composites, but the tear strength and
modulus are not as good as the corresponding properties of those containing precipitated silica. Morphology results revealed that
theOWT is poorly dispersed in the rubbermatrix. According to that, the lower interactions betweenOWTand polyisoprene rubber
macromolecules are obtained, but similar mechanical properties of NR/OWT (100/50) rubber composites compared with NR/PSi
(100/50) rubber composites are resulted.

1. Introduction

Modern engineering systems are being increasingly produced
from components that combine two or more materials for
enhanced performance. During the processing of rubber
vulcanizates, mixing of �ller and cross-linking are the two
substantial parameters as the homogeneity of mixing and
cross-linking signi�cantly a	ect the properties of the vul-
canizates. Recent investigations (from both a technological
and fundamental point of view) show that the interfacial
bonding strength has a profound in�uence on the failure of
dissimilar or composite materials [1]. Silica has been used
as nonblack reinforcing �ller in the rubber industry for a
long time. Reinforced rubber blends are suitable materials
for industrial practice [2]. Obviously, in such systems both

components (�ller and rubber) have the reactive groups
for the additional cross-linking reaction to take place [3].
Besides, the so-called “dispersion” forces there are a variety of
other interactions between particles. A key one among them
is hydrogen bonding, which tends to be a signi�cant force in
the case of fumed silica, where hydrogen bonding between
surface silanol groups takes place. �e surface of hydrated or
precipitated silica is highly polar and hydrophilic because of
the presence of numerous silanol groups [4, 5]. Many authors
have investigated the role of �ller networking in the elastic
properties of elastomer composites [6–9].

In recent years, rubber composites have attracted great
interest, both in industry and in academia, because they
o�en exhibit remarkable improvements in materials prop-
erties when compared with the virgin polymer composites.
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Table 1: �e chemical composition and physical properties of OWT and PSi.

�e chemical composition (%) OWT PSi �e physical properties OWT PSi

SiO2 94.27 76 Speci�c weight (g/cm3) 2.27 2

Al2O3 2.54 7 BET surface (m2/g) 39.3 60

Fe2O3 0.57 — pH 7 11.5

CaO 0.9 — Density (kg/m3) 370 140

MgO Trace — Sieve residue (%) 0.15 —

Na2O 0.06 7

K2O 0.08 —

Usuki et al. [10] prepared some EPDM/clay hybrids with
montmorillonite, and the results showed that the tensile
strength and storagemodulus were improved and the perme-
ability decreased 30% (compared with neat EPDM). Organo-
montmorillonite (OMMT) as a substitute for carbon black
in natural rubber compounds was researched by Arroyo
et al. [11]. �e mechanical properties of NR �lled with 10 phr
organoclay were comparable to those of the compound with
40 phr carbon black. Moreover, the organoclay improved the
strength of the NR without any reduction in the elasticity
of the material. Essawy and El-Nashar [12] studied the use
of montmorillonite as a reinforcing and compatibilizing
material for NBR/SBR rubber blend. Teh et al. [13] studied
the e	ects of epoxidized natural rubber as a compatibilizer in
melt compounded natural rubber/organoclay nanocompos-
ites.

Similarly, the cure characteristics, clay dispersion, and
thermomechanical properties of these nanocomposites were
determined. Zheng et al. [14] studied the in�uence of clay
modi�cation on the structure and mechanical properties of
EPDM/montmorillonite nanocomposites and showed that
the OMMT layers were fully exfoliated in the EPDM matrix
and the composites had goodmechanical properties.Wang et
al. [15] in researching the in�uence of �llers on free volume
and gas barrier properties in SBR revealed that gas perme-
ability is mainly in�uenced by fractional free volume and
tortuous di	usional path e	ects attributed to the clay plate-
like morphology. �e properties of calcined and hydrous
kaolin �lled nylon 66 composites were investigated by Buggy
et al. [16] with respect to particle size and surface treatment
with an aminosilane coupling agent. Finally, Liang et al. [17]
prepared isobutylene-isoprene rubber/organic modi�ed clay
nanocomposites by solution or melt intercalation, and the
prepared nanocomposites exhibited outstanding mechanical
properties and improved gas barrier properties.

Tu	 usually named according to the nature of rock frag-
ments, for example, bazalt’s tu	, adenzit’s tu	, rhyolitic tu	,
and so forth. On the basis of glass and crystal contents in the
tu	, they can be divided into vitroclastic and crystaloclastic.
Some tu	s are composed mainly of glassy ash particles. Tu	
belongs pyroclastic rocks which are hydrothermally altered
with porphyritic texture. �e color is from white to yellow
white. It is easily crushed with sharp edges. Opalized tu	
is volcanic material which su	ered hydrothermal changes
during geologic period.

In the present study, opalized white tu	 (OWT) was
used as the reinforcing agents in NR rubber compared to
NR/precipitated silicate (PSi) composites and the curing,
mechanical, heat aging resisting, and morphology properties
of the corresponding rubber composites were analyzed.

2. Experimental

2.1. Materials

2.1.1. Rubber. RSS 1 refers to ribbed smoked sheets
(Malaysia), produced from natural rubber latex as ribbed
sheets, by coagulation with acids and sheeting, properly
air dried and smoked, and visually graded. Ribbed smoked
sheets (RSS) are graded based on visual assessment of quality.

2.1.2. Fillers. Opalizedwhite tu	 (OWT)with 40 �mprimary

particle size and 39.3m2/g speci�c surface area was obtained
as an industrial product from the mining company AD

Strmoš Probištip-Česinovo in FYR of Macedonia. It belongs
to the pyroclastic rocks which are the products of explo-
sive volcanic eruptionsis. �e opalized tu	 is constructed
of the mineral tridymite, cristobalite, quartz, feldspat, and
limonite. Vulkasil A1 (Bayer, Germany) (precipitated sodium
aluminium silicate, namely, PSi) with a medium reinforcing
e	ect was used. �e chemical composition and physical
properties of OWT and PSi are given in Table 1.

2.2. Methods of Preparations. Formulation of the composites
is given in Table 2. �e compounds (Table 2) were prepared
using a laboratory mixing roll mill of dimensions 400 ×
150mm at a speed ratio of the rollers �1/�2 = 28/22, at
a roller temperature of 40–50∘C. �e processing time a�er
each component addition was about 2min. �e compound
rubber was allowed to stand overnight before vulcanization.
�e rheometric characteristics were assessed by a Mon-
santo Oscillating Disc Rheometer R-100, according to the
ASTM D2084-95 standard testing method. �e optimum
curing time (tc90) was determined at 160∘C. �e compounds
were molded using an electrically heated hydraulic press
(Indexpell, Kerala, India) under a pressure of 60MPa at a
temperature optimum curing time. �ese cured sheets were
conditioned before testing (24 h maturation at 25∘C).
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Table 2: Formulation of the composites based of NR/PS and NR/OWT characteristics.

Sample
Compounds (phr)a

NR/PSi NR/OWT ZnO Stearic acid Vulkacit DMb Vulkacit Db Sulfur

1 100/50 — 2.5 1.4 2.5 0.1 1.4

2 — 100/20 2.5 1.4 2.5 0.1 1.4

3 — 100/40 2.5 1.4 2.5 0.1 1.4

4 — 100/50 2.5 1.4 2.5 0.1 1.4

5 — 100/60 2.5 1.4 2.5 0.1 1.4
aParts per hundred; baccelerators Vulkacit DM-2-benzothiazol-2-yldisulfanylbenzothiazole, Vulkacit D-diphenyl guanidine.

Table 3: Rheometric characteristics of NR/PSi and NR/OWT rubber composites.

Sample
NR/PSi
(phr)

NR/OWT
(phr)

�ℎ
(dNm)

��
(dNm)

Δ�
(dNm)

��2
(s)

��90
(s)

CRI (s−1)

1 100/50 — 5.3 0.9 4.4 60 198 0.72

2 — 100/20 3.4 0.4 3.0 102 316 0.70

3 — 100/40 3.8 0.4 3.4 84 210 0.79

4 — 100/50 3.9 0.4 3.5 84 206 0.82

5 — 100/60 3.8 0.3 3.5 80 214 0.75

2.3. Methods of Characterization

2.3.1. Fourier Transform Infrared Spectra (FTIR-ATR) of Filler.
Fourier transform infrared spectra (FTIR) were recorded
on a Bruker IFS-66 spectrometer with an attenuated total
re�ection (ATR) attachment. �e internal re�ection element
(IRE) chosen was a 45-degree KRS-5. Potassium bromide
(KBr) used matrix material. �e KBr pellets of samples
were prepared by mixing (1.5–2.00)mg of samples, �nely
grounded, with 200mg KBr (FT-IR grade) in a vibratory
ball mixer for 20 s. �e mixture is now transferred to a die
that has a barrel diameter of 13mm. �is is then placed in a
suitable press and pressed (evacuation is optional) at around
12,000 psi for one to two minutes. Re-crystallization of the
KBr results in a clear glassy disk about 1mm thick. �is disk
is now ready to be analyzed by transmission.

2.3.2. Rheometric Characteristic. �e cure characteristics:��
(minimum torque), �ℎ (maximum torque), tc90 (optimum
cure time), ts2 (scorch time), and CRI (cure rate index) were
determined with a Monsanto Oscillating Disc Rheometer R-
100 at 160∘C in accordance with ASTMmethod D-2084.

2.3.3. Cure Kinetics. �e kinetic parameters for the cross-
linking process, such as apparent activation energy of cross-
link (�ac) and reversion (�ar) process, were calculated from
the torque-time curves. �e torque and time experiments
were performed using an accelerated sulfur curing system
with an oscillating disk rheometer (Monsanto Rheometer
model 100C) at two temperatures: 180 and 190∘C.

2.3.4. Mechanical Properties. Mechanical properties, such as
tensile strength, modulus (%), and elongation at break, were
measured with a Zwick-1425 tensile tester according to the
ASTM D412-98 standard testing method using a crosshead
speed of 500mm/min and at 25∘C. For the tensile experiment,

dumbbell samples were cut from a 2mm thick molded
sheet. �e tensile properties of the blends were examined
according to the ASTM D-412 standard testing method. Five
samples from each formulation were tested. �e hardness of
the samples was measured, as per the standard ASTM D-
2240 testing method. For hardness measurements, the sheets
having an e	ective thickness of 6mm were used. At least �ve
measurements were recorded, and the average values were
reported. To investigate the in�uence of thermal aging on the
mechanical properties, the obtained reinforced elastomeric
materials were performed in an air circulating oven operated
at 100∘Cduring 72 h and 168 h.�e retained percentage values
of tensile strength and elongation at break were calculated.
A�er aging, hardness is given in point. �e tensile properties
(tensile strength and elongation at break) and hardness were
measured before and a�er thermal aging has been studied.

2.3.5. Microscopic Examination by SEM. Samples were
immersed in liquid nitrogen for more than 15min to cool
down and then fractured immediately.�e fractured surfaces
of the blended materials were imaged by scanning electron
microscopy (SEM) using a JEOL JSM-5400 model SEM. �e
samples were sputter coated with gold for 3min under high
vacuum with image magni�cations of 3500x. �e aim was
to obtain some information on the mode of the fracture the
condition of the matrix, and �ller surfaces and dispersion.

3. Results and Discussion

3.1. Fourier Transform Infrared Spectroscopy of Fillers. �e
FTIR transmittance spectra of OWT and PSi are shown in
Figure 1 and the assignment of the bands is shown in Table 3.

�e characteristic bands almost at 1119, 792, and 466 cm−1

correspond to the stretching, bending and out of plane of Si–
O bonds [18, 19], respectively, for OWT, and 1088, 795, and
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Figure 1: FTIR spectra of OWT and PSi.

467 cm−1 for PSi. �e position and the shape of the main Si–
O vibration band at 1119 and 108 cm−1 show a stoichiometric
silicon dioxide structure. Moreover some impurity vibration
bands are seen in the FTIR spectra which were shown in
Table 3; as it is observed from the spectra, these are too
smaller than the main pick. �e characteristic bands for all
three types of SiO2 (quartz, tridimite, and cristoballite) are

obtained at 1119 cm−1 for OWT and at 1088 cm−1 for PSi. �e
width of these bands dependents on the chaotic state of solids.
�e band at 907 cm−1 for OWT originated from stretching
vibration of SiOH group. Its absence in PSi is a result of
heat treatment during synthesizing process. A peak in the

spectral range at around of 1635 and 1641 cm−1 is attributed to
vibrations of –OH (molecular water) [20]. �e FTIR spectra
also showed a large amount of OH groups at around of 3438

and 3480 cm−1.

3.2. Rheometric Characteristics. For �lled compounds, type
and content of �ller a	ect the cure characteristics [21]. Lots
of functional groups such as hydroxyl, silanols, siloxane, and
hydrogen bonded water exist on the silica surface but the
amount is small. Table 4 shows the rheometric characteristics,
such as delta torque ΔM (di	erence between the maximum
and minimum torques), scorch time (ts2), and optimum cure
time (tc90), of the compounds at 160∘C. Minimum torque
(��) is directly related to the viscosity of the compounds
at the test temperature. �e minimum torque can be taken
as a measure of the viscosity of the masticated rubber.
�eoretically, the torque di	erence (ΔM) represents the shear
dynamic modulus, which is indirectly related to the total
cross-link density of a rubber compound. �e total cross-
link density is contributed by the sulphide cross-link’s and
physical cross-link’s [22].

Whenever there is excessive mastication, the viscosity
registers a sharp decrease. �e maximum (�ℎ) and torque
di	erence (ΔM = Mh − Ml) increase, but minimum torque
�� decreases with the OWT content increase in the NR

Table 4: Assignment of the bands in the FTIR spectra of OWT and
PSi.

Assignment OWT PSi

Si–O out of plane deformation 466 cm−1 467 cm−1

Si–O bending 792 cm−1 795 cm−1

Si–OH stretching 907 cm−1 —

Si–O–Si stretching 1119 cm−1 1088 cm−1

O–H (molecular water) 1635 cm−1 1641 cm−1

OH stretching 3438 cm−1 3480 cm−1

rubber composites. �e ΔM could be used as an indirect
indication of the cross-link density of the rubber compound
[5]. As can be seen, the values of ΔM increase continuously
with OWT content increase up to 50 phr and then decrease.
�e tc90 values, cure rate index (CRI), and ts2 values decrease
with OWT content increase in NR rubber.

As compared with PSi, the lower values for all rheometric
characteristics of the rubber composites �lled with OWT
were notably reduced in vulcanization, which shows that
OWT can more e	ectively depress the viscosity of rubber
and improve the processability during curing (Table 3). �e
values of minimum torque (��) re�ected the interactions
between particles of �ller [23]. �e larger�� for PSi showed
the stronger interactions between PSi particles which are
attributed to the �ner size (15–30 nm average diameter) and
abundant –OH groups on the surface of the PSi. However, the
weaker interactions between OWT particles indicated by the
smaller�� are related to a slightly large size of OWT (300–
500 nm average diameter), its electrical neutral surface, and
the small density of –OHgroups on theOWTparticle surface.
�is property ofOWT�ller has great advantages in the case of
high viscosity rubber, such as some samples of NR, because
it is easy to mix and process. �e decrease in ts2 is can also
improve the productive e�ciency, which is good with regard
to prophase vulcanizing operation.WhenOWT�ller content
increases in NR/OWT rubber composites, optimal cure time
(tc90) is shortening, but vulcanization rate is extending.

3.3. Cure Kinetics (Activation Energy of Cross-Link and Rever-
sion Process). �e method for calculating the �ac and �ar
is described in our earlier works [21, 24, 25]. During the
vulcanization process, sulfur cross-links are formed between
the rubber polymer chains (cross-linking), whereas some of
the links decay (reversed). Besides intermolecular cross-link
(i.e. between two polymer chain), intramolecular type cross-
links are also formed. Intermolecular cross-links contribute
to the physical properties of the vulcanizate and the sulfur
content (poly-, di-, monosul�de cross-links and cyclic and
thiol group formation in the case of intramolecular) in the
cross-links determines aging characteristics. �resholds for
these two reactions, the activation energy of cross-link and
reversion process of cure are the characteristic parameter of
the cure properties of a given rubber compounds and can be
used as a criteria for energy compatibility of several rubber
compound, composing the product.
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Table 5: Kinetic parameter and values for �ac and �ar for NR/PSi and NR/OWT rubber composites.

Sample
NR/PSi
(phr)

NR/OWT
(phr)

k1
(s−1)

k2
(s−1)

k3
(s−1)

k4
(s−1)

�ac
(jmol−1)

�ar
(jmol−1)

�ar/ �ac

1 100/50 — 2.9 × 10−2 1.2 × 10−2 4.2 × 10−2 1.9 × 10−3 6 × 104 8.9 × 104 1.5

2 — 100/20 3.7 × 10−2 7.7 × 10−4 4.7 × 10−2 1.4 × 10−3 4.4 × 104 9.9 × 104 2.3

3 — 100/40 3.8 × 10−2 6.6 × 10−4 5 × 10−2 1.5 × 10−3 4.8 × 104 14.7 × 104 3.1

4 — 100/50 4.7 × 10−2 5.3 × 10−4 5.1 × 10−2 1.5 × 10−3 1.2 × 104 17.9 × 104 14.9

5 — 100/60 3.8 × 10−2 8.5 × 10−4 5.2 × 10−2 1.9 × 10−3 5.6 × 104 14.2 × 104 2.5

k1, k2 at T1 (180
∘C).

k3, k4 at T2 (190
∘C).

Reversion tendency was only observed at higher temper-
atures. For the stability of the system, the �ar must be greater
than the �ac, which is determined by the rheometric curve.
�at is, the curing process, which has lower activation energy,
occurs more readily and rapidly because the energy barrier is
lower.�e prediction of the curing state is usually determined
by rheometer, in which the kinetics is described by the torque
variation during vulcanization [26–28].

Table 5 shows kinetic parameter and variation of the
�ac, �ar, and their relation �ar/�ac with variation of OWT
content compared to NR/PSi composites. A compound with
the smallest possible �ac and higher values for �ar and
their �ar/�ac has a tendency to retain the basic physical
and mechanical characteristics. NR composite with 60 phr of
OWT has minimum value of �ac (5.6 kJ/mol) and maximum
value of �ar/�ac relation (14.9) is obtained for NR/OWT
(100/50) composites. Further increase of the amount of OWT
does not only indicate �ller-elastomer interaction, but also
�ller-�ller interaction and even the formation of a three-
dimensional �ller matrix.

3.4. Mechanical Properties. �e addition of �llers to poly-
meric materials leads to improvement in the mechanical
properties of the polymer matrix. �e reinforcement e	ect
is directly related to the properties of the interphase and
depends on the nature of the speci�c interactions between
polymer and reinforcing �llers [29]. �e incorporation of
�ller into elastomers imparts many interesting and useful
properties to the particle �lled composite material. It is well
known that the properties mainly depend on the dispersion
condition of �ller particles and their principal relevant
properties: particle size, surface area, aggregate structure,
surface activity, and rubber-�ller interactions [30].

�e surface activity, a poorly de�ned term, but widely
used in the �ller �eld, can in a chemical sense related to
di	erent chemical groups on the surface. In a physical sense,
variations in surface energy determine the capacity and
energy of adsorption. �e surface chemistry of silica has a
signi�cant e	ect only on the vulcanization behavior of �lled
compounds. Optimal reinforcing power can be achieved
only if the �ller is well dispersed in the rubber matrix.
�e chemical or physical interaction between the �ller and
the rubber is a further important factor in the reinforcing
e	ect [31]. In the case of carbon black the �ller-polymer
interaction is mainly of physical nature (physisorption) [32].

Interaction between �llers and rubbers has a signi�cant e	ect
on reinforcement properties of a �lled rubber. Rubber-rubber
interaction mainly occurs when blends of rubber are used
in compounds and are considered to be not as signi�cant as
�ller-rubber and �ller-�ller interaction.

Filler-rubber interactions are described by the compati-
bility of the �ller with the rubber, while �ller-�ller interaction
is described by the attraction of �ller to itself and the ability
to form a network. �e most important e	ect of �ller-
rubber interactions has to do with the occlusion of rubber.
�e so-called “bound rubber” is trapped between or within
aggregates where it is no longer part of the elastically active
rubber matrix. As the amount of carbon increased the bound
rubber content also increases. Silica has a high dispersive
component with a stronger �ller-rubber interaction and a
weaker �ller network. Filler-�ller interactions are a primary
mechanism in reinforcement, especially at high �ller loading.
�ese interactions depend on chemical interactions between
the �ller particle surfaces (�ller-�ller, �ller-rubber), physical
interactions (van der Waals forces, hydrogen bonding), mor-
phology of the �ller network, and �ller volume fraction [33].

Mechanical properties of nanocomposites generally
depend on factors such as �ller content, particle size and
shape, the degree of adhesion between the �ller and the
polymer matrix, and the dispersion degree of the �ller within
the matrix [34].

Tensile strength is a complex function consisting of the
nature and type of cross-link’s, cross-link densities, and
chemical structure of the used rubber. It is well known that
if rubber is deformed by an external force, part of the input
energy is stored elastically in the chains and is available
(released upon crack growth) as a driving force for fractur-
ing. �e remaining energy is dissipated through molecular
motions by heat, and as such, it is made unavailable to break
the chains. At higher cross-linking levels, chain motions
become restricted, and the dense network is incapable of
dissipating as much energy. �is results in a relatively facile
brittle fracture at low elongation [35].

As listed in Table 6, the tensile strength of NR/OWT
(100/50) rubber composites is close to that of NR/PSi
(100/50) rubber composites and exceeds those from PSi in
NR composites. As the OWT content increases, the tensile
strength decreases to its optimal value and then increase
(Table 5). Generally silica particles tend to agglomerate due
to formation of hydrogen bond between the surface hydroxyl
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Table 6: Mechanical properties of NR/PS and NR/OWT rubber composites.

Sample NR/PSi NR/OWT
Tensile
strength
(MPa)

Elongation
at break (%)

Hardness
(∘ShA)

Resilience
(%)

Tear
strength
(N/mm)

Modulus
at 200%
elongation
(MPa)

Modulus at
300%

elongation
(MPa)

Compression
set (%)

22 h/100∘C

1 100/50 — 14.6 530 66 58 78.9 4.46 6.9 39.3

2 — 100/20 15.7 720 21.3 56 56 2.45 3.4 31

3 — 100/40 15.4 660 58 54 77.1 3.1 4.6 30

4 — 100/50 13.8 640 60 56 79.3 3.2 5.1 30

5 — 100/60 14.1 645 62 50 80.6 3.4 4.4 36.6

groups. Higher amount of nanoparticles tends to increase the
surface interaction among themselves and thereby enhanced
the tendency for agglomeration. At lower loading of SiO2,
the nanoparticles were well dispersed and thereby increased
the surface area for interaction [36]. NR/OWT (100/20)
rubber blend hasmaximum tensile strength values.When the
OWT content increases, the values of the elongation at break
decrease. �e hardness values increase with OWT content
increase in rubber composites. �e mechanical properties
and chemical bonds between phases formed during the
networking process of the NR/OWT (100/50) compared to
NR/PSi (100/50) rubber composite are similar. �e stable
hydrogen bonds formed betweenmodi�er molecules and the
surfaces of OWT reinforced the intensity of interface interac-
tions among the OWT surface, modifying agent molecules,
and rubber molecules, and endow the OWT particle with
the desired reinforcing e	ects. �e functional group of the
side surface combines with the isoprene macromolecule
[5].

�e elasticity and tensile strength were decreased with
OWT content being increased and facilitated the curing up
to the optimal integrated properties in a short sulfuration
time, which advanced the productive e�ciency and saved
processing energy [2].

In Table 5 the e	ect of �ller loading on elongation at break
is shown. It indicates that elongation at break (%) decreases
gradually with increasing �ller loading. �e reduction of
elongation at break is due to sti	ening of the polymer matrix
by the �ller. Further increase in �ller loading causes the
molecular mobility decrease due to extensive formation of
physical bond between the �ller particles and the polymer
chain that sti	en the matrix [37].

Resilience is the ratio of energy released by the recovery
from deformation to that required to produce the deforma-
tion. �e rebound resilience is enhanced to some extent as
the cross-link density rises, and the resilience is related to
the �exibility of the molecular chains; the more �exible the
molecular chains, the better the resilience [5].

To investigate the in�uence of thermal aging on the
mechanical properties of the rubbers, the cross-linking reac-
tions were performed in an air-circulating oven operated at
100∘C for 72 h and 168 h. �e retained tensile strength per-
centage and elongation at break values were then calculated
before and a�er aging. Figures 2(a)–2(c) show themechanical
properties of NR/OWT and NR/PSi rubber composites such

as hardness, tensile strength, and elongation at break a�er
thermal aging at 100∘C during 72 h and 168 h. �e hardness
of all rubber blend composites increase with time of aging
being increased. �is can be attributed to the cross-link
density being increased a�er thermal aging. Well-dispersed
nanoparticles resulted in di�culties of heat andmass transfer
through the material, thereby preventing fast degradation.
Well-dispersed �ller acts as a mass transport barrier to
oxygen and volatile decomposition products [36].�e tensile
strength is a complex function of the nature and type of cross-
link’s, cross-link densities, the chemical structure of the used
elastomers, and the changes associated with degradation.
From Figures 2(a) and 2(b), we can observe that there is a
marginal decrease in the tensile strength and elongation at
break a�er aging for a period of 72 h. �e tensile strength
and elongation of NR/OWT rubber composite with 40 phr of
�ller (sample 3) are reduced by 9.7% and 6.7%, respectively,
compared to its original value. �ese reductions in the
properties are due to partial cross-linking of the elastomer
backbone and degradation of the rubber taking place upon
aging as observed by some of the researchers [38–40]. It
needs to be noted that with the increase in temperature,
there is more cross-linking of the polymer chain and the
�ller. �e restriction in chain mobility during tensile testing
might have also led to the reduction in tensile strength.
A�er 168 h tensile strength and elongation of NR/OWT
rubber composite with 60 phr of �ller (sample 6) are reduced
by 14.2% and 14.7%, respectively, compared to its original
value. Values of elongation at break decrease with aging
time increase. A�er thermal aging mechanical properties
values decrease and degradation process can be noticed. �e
changes in the tensile properties upon aging could be due
to several reasons such as change in the morphology of the
system; degradation of rubber and cross-linking; and change
in the level of interaction between components at elevated
temperatures. A change in the hardness values increased with
increasing OWT loading, which can be attributed to the
increased cross-linking density a�er thermal aging. �is can
be explained by the sulfur networking addition process of
the rubbers and the polysul�de cross-link density reduction
process. �e polysul�de reacts further to form mono-, di-
and cyclic-sul�de bonds during vulcanization via the dis-
sociation, recombination, and rearrangement of the sulfur
linkages. �ere was no change in the mechanical properties
value for NR/PSi rubber composites during thermal aging.
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Figure 2: Correlation of mechanical properties: tensile strength (a), elongation at break (b), and hardness (c) on the type and content of �ller
in NR rubber a�er aging at 100∘C during 72 h and 168 h.

3.5. Morphology of Rubber Composites. Morphology is a
major factor for �ller dispersion determined in rubber. It
is well known that the phase structure of the rubber is
in�uenced by several factors, including the surface char-
acteristics, �ller ratio, viscosity of each component, and
compounding process. �e primary factor that determines
the �nal morphology of the mixes is their composition. NR
with strong molecular polarity has higher surface tension.
PSi has a �ne particle size and lamellar thickness, uniformity,
and limited grain distribution andhas excellent surface e	ects
brought about by high speci�c surface area.

Figures 3(a) and 3(b) show the morphology of NR
composite with 50 phr of OWT and 50 phr of PSi. �e
dispersion of OWT �ller in the rubber is not uniform
and its heterogeneous nature is indicative. Two phases with
irregular shape can be observed. �is means that OWT
is poorly dispersed and interphase adhesion between NR
and OWT is weak. �us, free silica particles with relatively
more unreacted hydroxyl groups easily promote aggregation
through hydrogen bonding [19].

OWT has arranged themselves directionally, parallel in
the rubbermatrix.�e crack extension of the rubber between

the parallel OWT sheets will be hindered, passivated, and ter-
minated. �e crack cannot penetrate the rubber composites,
and the OWT thus yields a good reinforcing e	ect.

4. Conclusions

WhenOWT �ller content increase in NR/OWT rubber com-
posites, optimal cure time (tc90) is shortened, but vulcaniza-
tion rate is extendedwhich advances the productive e�ciency
and saves considerable energy. �e tensile capability is close
to that of rubber �lled with precipitated silica, but the tear
strength and modulus are inferior to that of PSi rubber
composites. In NR/OWT rubber composites �lled with 20
and 40 phr of OWT tensile strength are considerably higher
than NR/PSi �lled with 50 phr of PSi. NR/OWT rubber
composites also present excellent elasticity.

NR composite with 60 phr of OWT has minimum value
of �ac (5.6 kJ/mol) and maximum value of �ar/�ac relation
(14.9) and is obtained for NR/OWT (100/50) composites.
A�er thermal aging mechanical properties values decrease
and degradation process can be noticed. Morphology study
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(a) (b)

Figure 3: SEM micrographs of NR/OWT (a) and NR/PSi (b) rubber composite with 50 phr of �ller.

of NR/OWT (100/50) rubber composites shows poorly dis-
persed OWT in the NRmatrix and weak interphase adhesion
between NR and OWT as result of the �ller particle size
(40 �m). OWT as a natural �ller can be substitute of PSi in
many rubber products with wide potential applied.
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