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Abstract Camelids produce functional antibodies devoid
of light chains of which the single N-terminal domain is
fully capable of antigen binding. These single-domain
antibody fragments (VHHs or Nanobodies®) have several
advantages for biotechnological applications. They are
well expressed in microorganisms and have a high
stability and solubility. Furthermore, they are well suited
for construction of larger molecules and selection systems
such as phage, yeast, or ribosome display. This minire-
view offers an overview of (1) their properties as compared
to conventional antibodies, (2) their production in micro-
organisms, with a focus on yeasts, and (3) their therapeutic
applications.
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Introduction

The field of recombinant antibody technology has rapidly
progressed during the last two decades, mainly because of
the interest in their human therapeutic use. The ability to
select specific human antibodies by display technologies

and to improve their affinity, stability, and expression level
by molecular evolution has further boosted the field. Whole
antibodies are complex molecules that consist of heavy and
light chains (Fig. 1a). They contain an N-linked oligosac-
charide attached to the second heavy-chain constant domain
(CH2) that is essential for antibody effector functions such
as antibody-dependent cellular cytotoxicity (ADCC), com-
plement-dependent cytolysis (CDC), and for retaining a
long serum half-life.

Although isolated antibody heavy (Utsumi and Karush
1964) and light chains (Yoo et al. 1967) can retain antigen-
binding specificity, their affinity and solubility is often
reduced (Ward et al. 1989). However, the paired N-terminal
variable domains of heavy (VH) and light (VL) chains are
sufficient for antigen binding (Sundberg and Mariuzza
2002). Such antibody fragments can be produced as
monovalent antibody fragment (Fab) or as single-chain Fv
(scFv) where the VH and VL domains are joined by a
polypeptide linker (Fig. 1a). Their production in microbial
cells is often cumbersome, especially when producing
multivalent formats, because of the requirement for domain
association.

The discovery that camelids (bactrian camels, dromedar-
ies, and llamas) produce functional antibodies devoid of
light chains (Hamers-Casterman et al. 1993) formed a
further breakthrough because their single N-terminal do-
main (VHH, also referred to as Nanobody®) binds antigen
without requiring domain pairing. These heavy-chain anti-
bodies also lack the CH1 domain, which in a conventional
antibody associates with the light chain and to a lesser
degree interacts with the VH domain (Fig. 1b). Although
single-domain antibodies later were also identified in
particular cartilaginous fish (Greenberg et al. 1995), most
research on the biotechnological application of single-
domain antibodies was done using camelids because of
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their ease of handling, including immunization. Methods to
isolate antigen-specific VHHs from immune (Arbabi-
Ghahroudi et al. 1997; Van der Linden et al. 2000a),
nonimmune (Tanha et al. 2002; Yau et al. 2003; Verheesen
et al. 2006), or semisynthetic (Goldman et al. 2006)
libraries using phage, yeast, or ribosome display are now
well established. For further reading on these topics, we
refer to recently published reviews (Muyldermans 2001;
Dufner et al. 2006).

Properties

Sequence analysis (Hamers-Casterman et al. 1993;
Muyldermans et al. 1994; Vu et al. 1997; Harmsen et al.
2000) and elucidation of the crystal structure (Desmyter et
al. 1996, 2001; Spinelli et al. 1996) has revealed several
structural features of VHH domains. Similar to conven-
tional VH domains, VHHs contain four framework regions
(FRs) that form the core structure of the immunoglobulin
domain and three complementarity-determining regions
(CDRs) that are involved in antigen binding. This contrasts
with shark single-domain antibodies that have a vestigial
CDR2 that does not contribute to antigen binding (Streltsov
et al. 2004). As compared to human VH domains, the VHH
FRs show a high sequence homology of more than 80%, and
their 3D structures can be superimposed (Muyldermans et al.
2001; Holliger and Hudson 2005).

The most characteristic feature of VHHs is the presence
of amino acid substitutions at four FR2 positions (positions
37, 44, 45, and 47; Kabat numbering) that are conserved in
conventional VH domains and that are involved in forming
the hydrophobic interface with VL domains. Occasionally,
antigen-binding single-domain antibody fragments that lack
these characteristic FR2 substitutions are isolated from
camelids. These fall into two groups. The low-affinity
binders isolated from a nonimmune library originated from
conventional antibodies, presumably because of the poly-
merase chain reaction crossover cloning artifact, as they
were linked to the CH1 domain (Tanha et al. 2002). We
refer to these as VHH-like conventional VHs. However,
such single-domain antibody fragments with conventional-
like FR2 sequences that bind antigen with high affinity are
isolated from immune libraries with the high efficiency of
about 10% (Conrath et al. 2001a; Saerens et al. 2004;
Harmsen et al. 2005a, 2007), which equals their presence in
unselected libraries (Harmsen et al. 2000). This is not
expected when such clones originate from a cloning
artifact. Unlike the clones isolated by Tanha et al. (2002),
these clones often contain a hydrophilic residue (mostly
arginine) at position 103. This substitution is probably
important for their single-domain nature (Desmyter et al.
2001) because conventional antibodies contain a highly
conserved hydrophobic residue (tryptophan) at this position
that contacts VL. This suggests that these represent
functional VHH domains derived from recombination of

Fig. 1 Schematic diagram of
conventional (a) and heavy-
chain (b) antibodies and frag-
ments thereof. Variable
domains derived from the anti-
body heavy (VH) and light
(VL) chains are shaded dark
gray and light gray, respec-
tively, whereas constant
domains (CH and CL) are not
shaded. Note the absence of the
light chain and CH1 domain in
heavy-chain antibodies. Anti-
body domains that pair by
noncovalent interactions are
indicated by overlaying them.
The B-subunits of naturally
pentamerizing toxins that are
used to generate pentabodies
are indicated as hatched
spheres
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conventional VH gene segments with heavy-chain constant
gene segments during B cell maturation. This was con-
firmed by the absence of the CH1 domain when such VHH
domains were reisolated from the original immune reper-
toire using a CDR3-specific primer (De Haard, unpublished
observation). Therefore, we refer to these as conventional-
like VHH domains. Although the increased hydrophilicity
of VHHs predominantly relies on the aforementioned
changes in the former VL interface, some amino acids at
positions that form a slightly hydrophobic patch on
conventional VH domains that contacts CH1 (Lesk and
Chothia 1988) are also changed into hydrophilic residues in
VHHs (Muyldermans et al. 1994; Harmsen et al. 2000).

Furthermore, the CDRs of VHHs contain some charac-
teristic features. Firstly, the N-terminal part of CDR1 is more
variable (Vu et al. 1997; Harmsen et al. 2000; Nguyen et al.
2000). Secondly, many dromedary VHHs have an extended
CDR3 that is often stabilized by an additional disulfide bond
with a cysteine in CDR1 or FR2 (Muyldermans et al. 1994)
resulting in the folding of the CDR3 loop across the former
VL interface (Desmyter et al. 1996). A particular subfamily
of llama VHHs (VHH3) also contains an extended CDR3
that is stabilized by an additional disulfide bond with a
cysteine at position 50 in FR2. However, VHHs of this
subfamily are rarely isolated, and most llama VHHs have
CDR3 loops similar in length to those found in human VHs.

VHHs have many advantages for biotechnological
applications, which are summarized in Table 1. An
important advantage is their high microbial production
level (see next section).

Several advantages result from their single domain
nature. Thus, VHH libraries generated from immunized
camelids retain full functional diversity. This contrasts with
the diminished diversity of conventional antibody libraries
because of reshuffling of VL and VH domains during
library construction. As a result, high-affinity antigen-
binding VHHs can be isolated by directly screening a
limited number of clones from immune libraries without
prior selection using display technologies (Frenken et al.

2000; Harmsen et al. 2005b). Furthermore, the single-
domain nature facilitates subsequent molecular manipula-
tion. For example, for many applications, it is advantageous
to engineer monovalent antibody fragments into multivalent
formats to increase functional affinity (termed avidity) or to
produce bispecific antibody fragments that can simulta-
neously bind to different antigens. Such molecules (dia-
bodies, Fig. 1a) can be produced using conventional
recombinant antibodies using linkers between the VH and
VL domains of a specific length, although this often results
in aggregation and reduced affinity because of mispairing
of VH and VL domains (Glockshuber et al. 1990; Whitlow
et al. 1993). VHHs are more suitable for production of such
formats because they allow more flexible linker design,
which is important for simultaneous binding of multivalent
antigens, without the problems posed by domain mispair-
ing. Thus, several functional trivalent-bispecific VHHs
have been successfully produced (Coppieters et al. 2006;
Roovers et al. 2007).

The use of mixtures of a limited number of monoclonal
antibodies (oligoclonal antibodies) is advantageous over
single monoclonal antibodies for particular applications,
such as toxin neutralization (Nowakowski et al. 2002).
Because of regulatory requirements, such oligoclonals are
preferentially produced from single cells. Again, VHHs are
predicted to be more suitable for single-cell production of
oligoclonals because of the absence of domain mispairing,
although this is yet to be demonstrated experimentally.

Contrary to conventional antibodies, VHHs have been
shown to remain functional at 90°C (Van der Linden et al.
1999) or after incubation at high temperatures (Van der
Linden et al. 1999; Perez et al. 2001). This high apparent
stability is mainly attributed to their efficient refolding after
chemical or thermal denaturation and to a lesser extent
because of an increased resistance against denaturation
(Perez et al. 2001; Dumoulin et al. 2002; Ewert et al. 2002).
The increased apparent stability is probably due to an
increased hydrophilicity of the former VL interface region
because a “camelized” human VH fragment that contains

Table 1 Advantages of camelid single-domain antibody fragments as compared to conventional antibody fragments

Advantage Molecular basis

Facile genetic manipulation Single-domain nature
Increased functional size of immune libraries No decrease in library size because of reshuffling of VL and VH domains
Facile production of multivalent formats More flexible linker design and no mispairing of VL and VH domains
Facile production of oligoclonal preparations from single cells No mispairing of VL and VH domains
High physicochemical stability Efficient refolding due to increased hydrophilicity and single-domain nature
High solubility Increased hydrophilicity
Recognition of hidden antigenic sites Small size and extended flexible CDR3
Rapid tissue penetration, fast clearance Small size
Well expressed Efficient folding due to increased hydrophilicity and single-domain nature

See text for references
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several of the hallmark hydrophilic amino acid residues of
VHHs was more stable than the original VH fragment (Davies
and Riechmann 1995, 1996), whereas “decamelization” of a
VHH to mimic a VH domain reduces its thermodynamic
stability (Conrath et al. 2005). In addition to these specific
mutations, the packing of extended CDR3 loops against this
former VL interface contributes to domain stability (Bond
et al. 2003). Furthermore, refolding of VHHs only requires
domain refolding, whereas conventional antibodies also
require association of VH and VL domains.

VHHs can also recognize antigenic sites that are
normally not recognized by conventional antibodies such
as enzyme active sites (Lauwereys et al. 1998; De Genst et
al. 2006) and conserved cryptic epitopes (Stijlemans et al.
2004). This facilitates their use as enzyme inhibitors or in
diagnosis of trypanosome infections. The ability to recog-
nize these recessed antigenic sites has been attributed to
their smaller size and the ability of the extended CDR3 loop
to penetrate into such sites (Desmyter et al. 1996; De Genst
et al. 2006). It is interesting to note that this structure–
function relation is also observed in a rare example of a
broadly reactive human mAb that recognizes the recessed
and conserved CD4-binding cavity of human immunodefi-
ciency virus type 1 gp120 by virtue of an extended CDR3
(Zwick et al. 2003). With respect to antigen binding, the
single-domain nature could be a disadvantage for binding to
small antigens such as haptens and peptides because these
normally bind in a groove or cavity at the VH–VL interface
(Sundberg and Mariuzza 2002). Indeed, llamas immunized
with clenbuterol developed conventional but not heavy-
chain antibodies against this hapten (Lange et al. 2001).
However, hapten- and peptide-binding VHHs have been
successfully isolated using strong selection systems (Spinelli
et al. 2000; Yau et al. 2003; Alvarez-Rueda et al. 2007;
Harmsen et al. 2007). The affinities of VHHs are generally
comparable to those of conventional antibody fragments
(Muyldermans et al. 2001). Occasionally, VHHs with affinity
constants (KD) as low as 100 pM are isolated (Saerens et al.
2004; De Genst et al. 2006; Harmsen et al. 2006), which
equals the affinity ceiling proposed for natural antibodies
(Sundberg and Mariuzza 2002).

Because of their small size of about 15 kDa, VHHs
rapidly pass the renal filter, which has a cutoff of about
60 kDa, resulting in their rapid blood clearance. In
addition, the small size results in a fast tissue penetration.
This is advantageous for targeting of VHHs coupled to
toxic substances to tumors (Cortez-Retamozo et al. 2004),
in vivo diagnosis using imaging, and treatment of snake
bites (Harrison et al. 2006). However, for other thera-
peutic applications, such as treatment of infectious or
inflammatory diseases, the short serum half-life of about
2 h (Cortez-Retamozo et al. 2002; Harmsen et al. 2005a)
is a disadvantage.

Production in microorganisms

Although a fully active nonglycosylated IgG was recently
produced at high level in Escherichia coli, most functional
complete antibodies can only be efficiently produced using
mammalian cells, especially when their appropriate glyco-
sylation is required for therapeutic applications. However,
antibody fragments that lack the Fc with its N-linked
oligosaccharide are preferably produced in microbial
systems (Arbabi-Ghahroudi et al. 2005). These have a
shorter development time from gene to product and require
simple well-established fermentation conditions that can be
performed on large-scale resulting in costs of goods that
can be as low as $1 per gram heterologous protein (Estell
2006). Most large-scale microbial production systems are
based on E. coli, yeasts, or filamentous fungi. Production in
E. coli can be done by secretion into the oxidizing
periplasmic space or expression in the reducing cytosol.
The latter requires the often cumbersome refolding of
antibody fragments (Arbabi-Ghahroudi et al. 2005). Using
eukaryotic microbial hosts, antibody fragments are gener-
ally produced by targeting to the secretory pathway. This
enables efficient disulfide bond formation, addition of N-
linked oligosaccharide, and secretion of soluble, correctly
folded product to the culture medium.

VHHs have often been produced in E. coli (Arbabi-
Ghahroudi et al. 1997; Rahbarizadeh et al. 2005). There is
only one example of VHH production in filamentous fungi,
which resulted in limited proteolytic degradation of the
secreted product (Joosten et al. 2005) because of the high
levels of proteases secreted by filamentous fungi (Gerngross
2004). VHHs have also often been produced in the yeast
Saccharomyces cerevisiae (Frenken et al. 2000; Thomassen
et al. 2002; Van der Vaart 2002). VHH production by the
favored yeast expression host Pichia pastoris was only
recently described (Rahbarizadeh et al. 2006). Occasionally,
yeast-produced VHHs are N-glycosylated (Frenken et al.
2000; Harmsen et al. 2005a). This can affect antigen binding
(Van der Vaart et al. 2006). Furthermore, it could complicate
their therapeutic use because the addition of yeast-specific
high-mannose oligosaccharides results in a high immunoge-
nicity and decreased serum half-life because of binding to
specific mannose receptors on cells of the reticulo-endothe-
lial system (Sethuraman and Stadheim 2006).

Although VHHs are generally well produced in micro-
organisms, the production level of different clones can vary
by a factor of 100 (Frenken et al. 2000; Harmsen et al.
2005b; Van de Laar et al. 2007). Several VHH sequence
patterns can be associated with their production level. First,
the presence of a potential N-linked glycosylation site often
increases production levels in yeast (Sagt et al. 2000).
Second, in our experience (Harmsen, unpublished observa-
tions), conventional-like VHHs are generally produced at
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reduced levels in yeast. This contrasts with the reported
efficient production in E. coli of VHH-like VHs (Tanha et
al. 2002) but is consistent with the increased production
level of “camelized” conventional VH domains in E. coli
(Davies and Riechmann 1995). Third, the presence of
unpaired C-terminal cysteines reduces expression levels
(Simmons et al. 2006). Fourth, replacement of hydrophobic
residues of conventional VH domains normally interacting
with CH1 increased scFv production in E. coli (Nieba et al.
1997), suggesting that the hydrophilic mutations that
naturally occur at these positions in VHHs also contributes
to their high expression level. However, there are many
examples of VHHs that differ by only a few amino acids
and are produced at highly variable levels where the exact
amino acid change responsible for the difference in
production level is difficult to predict (Frenken et al.
2000; Harmsen et al. 2005b). Furthermore, without such
knowledge, VHH production can be improved by random
molecular evolution using deoxyribonucleic acid shuffling
(Van der Linden et al. 2000b), as has often been done for
conventional antibody fragments (Dufner et al. 2006). The
high refolding capability of VHHs, which is a consequence
of their sequence, has also been correlated with a high
production level in E. coli (Jespers et al. 2004; Olichon
et al. 2007).

In addition to the nature of the VHH, host factors
affecting VHH production have been identified. In baker’s
yeast, the specific VHH production rate is correlated with
growth rate (Thomassen et al. 2005) and can be up to
fivefold increased by growing on ethanol as the carbon
source (Van de Laar et al. 2007). Supplementation of the
medium with sorbitol, casamino acids, or ethylenediamine
tetraacetic acid improves VHH production by P. pastoris
(Rahbarizadeh et al. 2006).

In addition to monovalent VHHs, several expression
formats for the production of VHH multimers have been
described (Fig. 1b). These include genetic fusions of two
(Conrath et al. 2001b; Harmsen et al. 2005a) or three
VHHs (Coppieters et al. 2006; Roovers et al. 2007) that
either recognize different antigens or the same repeating
antigen to increase functional affinity. Although such
VHH fusions are less efficiently produced than their
monovalent versions, their production level exceeds that
of their conventional-antibody-based fusion counterparts
without aggregation or low solubility. However, antigen
binding by the C-terminal VHH in such fusions can be
compromised (Conrath et al. 2001b) presumably because
of steric hindrance by the N-terminal VHH. The avidity of
VHHs has also been strongly increased using genetic
fusions to the B-subunits of an E. coli toxin that self-
assembles into a homopentamer (Zhang et al. 2004),
resulting in pentameric recombinant antibodies (“penta-
bodies,” Fig. 1b).

VHHs on their own cannot recruit effector functions
such as ADCC and CDC. This limits their therapeutic
application. Although such effector functions can be
indirectly recruited using bispecific (conventional) antibody
fragments binding to host immunoglobulin (Holliger et al.
1997), it may be more efficient to recruit these functions by
fusing VHHs to host Fc domains. Production of such
functional antibodies requires the correct glycosylation of
the CH2 domain, which until recently could only be
accomplished using higher eukaryotic cells (Nguyen et al.
2003) but not by microbial production. However, this may
now be feasible using P. pastoris strains with an engineered
glycosylation machinery that are able to produce proteins
with a specific human glycoform (Hamilton et al. 2006).
Furthermore, transgenic mice containing hybrid llama/
human antibody loci that contain llama V regions and
human D, J, and C regions have recently been used to
generate human heavy-chain antibodies in mice (Janssens
et al. 2006).

Therapeutic applications

Although VHHs are highly suited for applications that
require a high stability, such as use in shampoo for the
prevention of dandruff (Dolk et al. 2005), as capturing
reagents in immunoaffinity purification (Verheesen et al.
2003), or use in biosensors (Pleschberger et al. 2004), we
would like to focus on their therapeutic applications, which
are more challenging. Several VHHs are now being studied
for use in various disease areas, including oncology (Revets
et al. 2005) and in infectious, inflammatory, and neurode-
generative diseases (Table 2).

VHHs are especially suited for oral immunotherapy
because of their resistance against extremes of pH and the
capacity to bind to the target at high concentrations of
chaotropic agents (Dumoulin et al. 2002, 2003). Adminis-
tration to piglets of a VHH that effectively prevents intestinal
attachment of E. coli bacteria that cause diarrhea resulted in
poor in vivo protection (Harmsen et al. 2005b) because of
degradation by gastrointestinal proteases (Harmsen et al.
2006). However, by selection for proteolytic stability, a VHH
could be isolated from the original library that was not
degraded in vivo (Harmsen et al. 2006). VHHs that
successfully prevented diarrhea caused by rotavirus in a
mouse model were similarly selected for resistance against
the acidic environment of the stomach (Van der Vaart et al.
2006). Alternatively, VHH proteolysis can be prevented by
local VHH production using natural gut commensal bacteria.
Thus, diarrhea could also be prevented by lactobacilli that
produce rotavirus-neutralizing VHHs fused to a cell surface
anchor (Pant et al. 2006). Treatment of caries, caused by
Streptococcus mutans, with VHHs conferred only limited

Appl Microbiol Biotechnol (2007) 77:13–22 17



protection (Kruger et al. 2006). Because these VHHs should
function in the oral cavity, the low level of protection cannot
be due to proteolytic VHH degradation within the gastroin-
testinal tract.

The short serum half-life because of a rapid renal
clearance limits the efficacy of VHHs in many parenteral
applications. Therefore, VHHs have been targeted to
normally long-lived serum proteins such as albumin
(Coppieters et al. 2006; Roovers et al. 2007) or immuno-
globulin (Harmsen et al. 2005a) using bispecific VHHs
recognizing these serum proteins in addition to the
therapeutic target, resulting in half-lives that equal the
half-life of albumin (2 days in mice) and immunoglobulin
(9 days). An alternative well-known approach to increase
serum half-life of proteins is the chemical addition of
polyethylene glycol (PEG). Such PEGylation of foot-and-
mouth disease (FMD) virus-neutralizing VHHs not only
increased serum half-life but also increased in vitro
neutralizing potency to levels above that of the hyperim-
mune serum (Harmsen et al. 2007). However, in contrast to
the full protection afforded by the hyperimmune serum,
these VHHs poorly protected guinea pigs from FMD viral
challenge infection, suggesting that Fc-mediated effector
functions are required for efficient in vivo protection
(Harmsen et al. 2007).

Nevertheless, many diseases were successfully treated
with VHHs in the absence of Fc-mediated effector
functions. These VHHs either are used as targeting
devices for toxic enzymes or block a specific molecular
interaction. For example, sleeping sickness was success-
fully treated with VHHs that bind to a trypanosome coat

protein and were fused to the apolipoprotein L-1 enzyme,
resulting in trypanosome lysis (Baral et al. 2006). In
oncology, a VHH directed against carcinoembryonic anti-
gen was used for targeting the genetically fused β-
lactamase to tumor cells. This enzyme then converts an
injected nontoxic prodrug into a toxic drug in the vicinity of
the targeted tumor cells, leading to their killing (Cortez-
Retamozo et al. 2004). Several VHH therapies are also
being developed for treatment of oncology or inflamma-
tory diseases based on blocking molecular interactions.
VHHs binding to epidermal growth factor receptor
(EGFR) can block epidermal growth factor (EGF) binding
to its receptor, which can be used to treat solid tumors
(Roovers et al. 2007). Tenfold more potent EGFR-binding
VHHs could be obtained by construction of bivalent
formats. It is interesting to note that the recently approved
conventional antibody Panitumumab directed against
EGFR also blocks EGF binding and is expected to give
poor ADCC and CDC (Reichert and Valge-Archer 2007).
Furthermore, by blocking receptor interaction, VHHs
binding to tumor necrosis factor-α can be used for
treatment of rheumatoid arthritis (Coppieters et al. 2006).
The potency of bivalent formats was 500-fold increased as
compared to monovalent VHHs and even exceeded the
potency of clinically used conventional antibodies both in
vitro and in a murine arthritis model. Similarly, lipopoly-
saccharide (LPS)-binding VHHs were isolated that block
LPS binding and signaling to host cells for treatment of
sepsis (El Khattabi et al. 2006).

The potential immunogenicity of VHHs could compro-
mise their parenteral therapeutic use, especially in treat-

Table 2 Examples of therapeutic applications of camelid VHHs

Disease Pathogen Target antigen VHH valency for
disease target

Additional fusion partner Reference

Sleeping sickness Trypanosomes VSG oligomannose Monovalent Apolipoprotein L-I Baral et al. 2006
Infant diarrhea Rotavirus Unknown Monovalent None Van der Vaart et al.

2006
Infant diarrhea Rotavirus Unknown Monovalent Lactobacillus cell-surface

anchor
Pant et al. 2006

Piglet diarrhea E. coli F4 fimbriae Monovalent None Harmsen et al. 2006
Caries S. mutans I/II adhesion Monovalent None Kruger et al. 2006
FMD FMD virus VP1 Monovalent PEG Harmsen et al. 2007
Sepsis N.

meningitidis
LPS Monovalent None El Khattabi et al.

2006
Cancer – CEA Monovalent β-Lactamase Cortez-Retamozo et

al. 2004
Cancer – EGF receptor Bivalent Anti-albumin VHH Roovers et al. 2007
Rheumatoid arthritis – TNFα Bivalent Anti-albumin VHH Coppieters et al. 2006
Brain disorders – α (2,3)-

Sialoglycoprotein
Monovalent None Muruganandam et al.

2002
Neurodegenerative
diseases

– Bax Monovalent None Gueorguieva et al.
2006
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ments that require repeated injections. Until now, multiple
injections of VHHs have not shown any immunogenicity in
mice, as assessed by the presence of specific antibodies, T
cell proliferation, or cytokine levels (Cortez-Retamozo et al.
2002; Coppieters et al. 2006). This could rely on their high
sequence homology to conventional VH domains and on
their high stability because aggregation of proteins is
known to increase immunogenicity (Hermeling et al.
2004). If necessary, technologies developed to decrease
immunogenicity of mouse monoclonal antibodies (Presta
2006) could also be applied to VHHs. Alternatively,
immunogenicity could be reduced by the use of conven-
tional-like VHHs, which have an even higher structural
homology to conventional VH domains.

For their use in targeting drugs across the blood–brain
barrier (BBB) into the brain, VHHs were selected that
transmigrate the human BBB in an in vitro model and
accumulate in the brain after intravenous injection into mice
(Muruganandam et al. 2002). These could be used for
treatment of neurological disorders. Finally, Bax-specific
VHHs have been expressed in the cytoplasm, resulting in
so-called intrabodies, to prevent oxidative-stress-induced
apoptosis that is implicated in several neurodegenerative
diseases (Gueorguieva et al. 2006). Because of their
stability, VHHs are especially suited for intrabody produc-
tion because this requires expression in the reducing
environment of the cytoplasm (Gueorguieva et al. 2006;
Rothbauer et al. 2006).

Conclusions

Since the discovery of heavy-chain antibodies in 1993, the
field of single-domain antibody fragments has been rapidly
growing. VHHs have many advantages for biotechnological
applications. They can be economically produced in micro-
organisms and have a high stability. Furthermore, they are
highly suited for expression as multivalent, including
bispecific, formats or as enzyme fusions. This permits a
plug-and-play approach, where, depending on the target,
biology potency can be increased by multivalent constructs
or bispecific VHH recognizing two different targets can be
made. This also enables the tailor-made design of serum
half-life using site-directed PEGylation or by targeting to
long-lived serum proteins using bispecific VHHs. Although
fusions of targeting VHHs to Ig-binding VHHs or Fc can be
used to recruit effector functions most current research on
VHHs focuses on therapeutic applications where such
effector functions are not required. Finally, conventional
whole antibodies occasionally give side effects because of
their bivalent nature, which can result in target cross-
linking, or the presence of the Fc region. Evidently, such
side effects are not expected to occur using monovalent

VHHs. This, however, is yet to be confirmed as the first
VHH has entered phase I clinical trials in 2007 (http://
www.ablynx.com).
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