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In the present paper, several dynamic properties tests of the viscoelastic damper at−5◦C

are conducted under different frequencies and displacements to investigate the dynamic

behavior of the viscoelastic damper at low temperature. The seven-parameter fractional

derivative model is modified with the temperature-frequency equivalent principle and

utilized to describe the dynamic properties of the viscoelastic damper. The 9050A and

ZN22 viscoelastic materials are used to verify the modified seven-parameter fractional

derivative model. The experimental and numerical results show that the viscoelastic

damper has perfect energy dissipation capacity at low temperature, and the modified

seven-parameter fractional derivative model can well capture the dynamic behavior of

viscoelastic materials and dampers.

Keywords: viscoelastic damper, properties tests, mathematical modeling, temperature-frequency equivalent

principle, seven-parameter fractional derivative model

INTRODUCTION

Viscoelastic materials and dampers are a kind of passive energy dissipation techniques, which
are widely used for vibration isolation and suppression in the fields of aerospace, mechanical
engineering, precision instruments, and civil engineering. Rao (2003) introduced the noise control
and vibration isolation technology with special treated viscoelastic laminates and spray paints
and its application in vehicles and commercial airplanes. Rashid and Nicolescu (2008) developed
a tuned viscoelastic damper for the unwanted vibration control of a workpiece on a palletized
workholding system in milling operations. The tuned viscoelastic damper has high damping
performance over a wide range of excitation frequencies, and can effectively reducethe vibration
amplitudes during the milling process. Xu Z. D. et al. (2019) utilized a new kind of vibration
isolation and mitigation system with high damping viscoelastic materials for reducing dynamic
responses of a platform structure. The simulation results show that the system can significantly
reduce the dynamic responses of the platform. Xu (2007) and Tsai and Lee (1993) applied the
viscoelastic dampers in civil engineering to control the seismic behaviors of the reinforced concrete
frame structures and high-rise buildings, respectively. The mathematical models for viscoelastic
materials are investigated, and the effectiveness of the viscoelastic dampers are verified with
dynamic experiments.
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In practical applications, viscoelastic dampers are always
added to the building structures or equipment, and work together
to reduce the vibration responses. The dynamic properties,
structure design and applications of viscoelastic dampers have
been extensively studied by scholars. Min et al. (2004) carried
out the seismic experiments of a 5-story full-scale steel structure
model with added viscoelastic dampers, and presented a design
process of the viscoelastic dampers by using the modal strain
energy method. Samali and Kwok (1995) summarized the usage
of viscoelastic dampers in building structures, and identified
the factors affecting the dynamic performance and design
procedure of viscoelastic dampers. Matsagar and Jangid (2005)
investigated the seismic behaviors of multi-storied base-isolated
structures with various types of isolation systems. The structures
were also connected to the adjacent base-isolated or base-
fixed structures by using viscoelastic dampers. The governing
equations of motions for the structures were derived and
solved with the Newmark’s step-by-step method. The viscoelastic
damper connection is found to be effective and useful in
upgrading the seismic performance of the combined structures.
Xu et al. (2003, 2004) introduced the simplex method to optimize
the design parameters and locations of viscoelastic dampers,
and conducted shaking table tests about reinforced concrete
structures with viscoelastic dampers to validate the efficiency of
the simplex method.

Viscoelastic materials are the main components of the
viscoelastic damper, and the mechanical properties of the
viscoelastic damper are greatly affected by the damping
performance of the viscoelastic materials. Therefore, it is
necessary to study the dynamic properties of viscoelastic
materials. The appropriate selection of mathematical models is
the basis for the investigation of energy dissipation and material
application of viscoelastic materials. The classical models, such
as the Kelvin model, Maxwell model, generalized viscoelastic
models et al. (Christensen, 1971), can well describe the dynamic
properties of the viscoelastic materials with varying frequencies.
Based on classical models, Payne (1963) found that the amplitude
of loading displacement had a significant influence on the
dynamic properties of viscoelastic materials and proposed the
Krous model to capture the displacement effect. Drozdov
and Dorfmann (2002) studied the fracture and reformation
phenomenon of the polymer molecular chains and formulated
the viscoelastic constitutive relations of the rubber polymers
considering the temperature influence.

The theory of fractional derivative is a concept from
mathematical field, which unifies and generalizes classical
calculus for non-integer order of derivation. After the first
introduction by Abel in the last decades of nineteenth century,
the fractional derivative was successfully applied in many
areas such as heat conduction, diffusion, viscoelasticity, and
mechanics of solids, control theory, and electricity (Caputo,
1974; Bagley and Torvik, 1983; Koeller, 1984; Rossikhin and
Shitikova, 1997). Pritz (2003) and Schiessel et al. (1995) utilized
the fractional derivative to study the viscoelastic materials and
obtained the five-parameter fractional derivative model and
generalized fractional derivative mathematical model. Poojary
and Gangadharan (2018) introduced fractional calculation

to modify the traditional viscoelastic theories and used the
fractional Maxwell model to describe the viscous behavior
of magnetorheological elastomers. Liu and Xu (2006) adopt
the higher-order fractional derivative model to discuss the
rheological properties of human bones, and the test and
numerical results show that the higher-order fractional derivative
model is successful and efficient in describing the viscoelasticity
of human tissues. Xu et al. (2014, 2015, 2016), Xu Y. S. et al.
(2019) combined the fractional derivative mathematical models
and the temperature-frequency equivalent theory to characterize
the effects of ambient temperature and frequency on dynamic
performance of viscoelastic dampers.

It can be seen that there are few studies on the dynamic
properties of viscoelastic materials and dampers at extreme
low temperature with fractional derivative. In the present
paper, several dynamic properties tests of the viscoelastic
damper at −5◦C are conducted under different frequencies
and displacements. The seven-parameter fractional derivative
model is modified with the temperature-frequency equivalent
principle and utilized to describe the dynamic behaviors of
the viscoelastic damper. The 9050A and ZN22 viscoelastic
materials are used to verify the modified seven-parameter
fractional derivative model. The experimental and numerical
results show that the viscoelastic damper has perfect energy
dissipation at low temperature (−5◦C), and the modified seven-
parameter fractional derivative model can well capture the
dynamic behavior of viscoelastic materials and dampers under
different frequencies and temperatures.

PROPERTIES TESTS

To investigate the mechanical properties of the viscoelastic
damper at low temperature, the dynamic properties tests under
different excitation frequencies and displacement amplitudes
with−5◦C are carried out and analyzed. The results show that the
viscoelastic damper has perfect energy dissipation capacity, and
the dynamic properties are increasing with excitation frequency
and reduces when the displacement amplitude increases.

Test Procedure
The viscoelastic damper used in this paper consists of two 10-
mm thick parallel viscoelastic layers and three 7-mm thick steel
plates, as seen in Figure 1. The viscoelastic material used for the
viscoelastic layers is based on the nitrile butadiene rubber, which
has been developed and tested in our previous research (Xu et al.,
2016), and has high energy dissipation capacity. The viscoelastic
layers and the steel plates are connected together by chemical
bonding in vulcanization, and deform in the opposite direction.
The viscoelastic layer of the viscoelastic damper undergoes
almost pure shear deformation and the external energy can be
transferred into heat during the loading process.

In order to study the influence of excitation frequency
and displacement amplitude on mechanic properties of the
viscoelastic damper, the performance tests are conducted with a
100 kN servo-hydraulic test machine in RC&PC Key Laboratory
of Education Ministry, China, as shown in Figure 2. Each test
is conducted with 10 cycles of sinusoidal displacement ud =
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FIGURE 1 | Photo of the viscoelastic damper.

FIGURE 2 | Properties tests of the viscoelastic damper.

u0 sin
(

2π ft
)

, where u0 is the maximum displacement during
one loading circle, and f is the excitation frequency, the loading
conditions are listed in Table 1. The environmental temperature
of the viscoelastic damper is kept at −5◦C with a temperature
controlling device during the whole test, as seen in Figure 2.

Test Results and Analysis
To obtain the dynamic properties of the viscoelastic damper, the
force-displacement recording of the fifth loading circle at each
test condition is picked up and vividly graphed. Additionally, the
dynamic properties parameters of the viscoelastic damper at each
test condition is obtained and analyzed.

The representative hysteresis curves of the viscoelastic damper
are given in Figure 3. It can be seen that the hysteresis
curves of the viscoelastic damper are almost full ellipse, which
demonstrates that the viscoelastic damper has perfect energy

TABLE 1 | Loading conditions for properties tests of the viscoelastic damper.

Temperature

t (◦C)

Displacement

amplitude

d (mm)

Frequency

f (Hz)

Cycle number

(cycles)

−5 0.2, 0.5, 1.0, 1.5, 2 0.1, 0.2, 0.5, 1.0 10

dissipation (Tsai and Lee, 1993; Samali and Kwok, 1995; Min
et al., 2004). It can be seen in Figures 3A,B that, the slope
and area of the hysteresis curves increase when the frequency
increases, meaning that the energy dissipation capacity and
stiffness increase with increasing frequency. Figures 3C,D show
that the area of the hysteresis curves increases with increasing
displacement, while the slope of the hysteresis curves is slightly
decreased. As the slope and area of the hysteresis curves
are directly related to the energy dissipation and stiffness of
the viscoelastic damper, it can be concluded that the energy
dissipation increases with increasing displacement and the
stiffness decreases.

According to the energy dissipation theory of viscoelastic
dampers (Tsai and Lee, 1993; Samali and Kwok, 1995; Min et al.,
2004), each single hysteresis curve of the viscoelastic damper with
the sinusoidal excitation ud = u0 sin

(

2π ft
)

can be taken as a full
ellipse as shown in Figure 4. The force-displacement relationship
has the form

(

Fd − Keud

ηKeu0

)2

+

(

ud

u0

)2

= 1 (1)

where Fd and ud is the damping force and displacement of the
viscoelastic damper, respectively; Ke is the equivalent stiffness
and Ke =

F1
u0
, and u0 is the displacement amplitude, and F1

is the damping force at the maximum displacement; F2 is the
corresponding force at the zero displacement, and F is the biggest
damping force in the single hysteresis curve.

Then, the most important dynamic parameters, the storage
modulus G1 and loss factor η of the viscoelastic damper can be
expressed as

G1 =
F1hv

nvAvu0
(2)

η =
F2

F1
(3)

where nv presents the number of viscoelastic material layers, Av

and hv is the shear area and thickness of the viscoelastic material
layer. For the viscoelastic damper used in this study, nv = 2,Av =

3000mm2 and hv = 10mm. Then, with Equations (2) and (3), the
storage modulus G1 and loss factor η of the viscoelastic damper
at each test condition can be calculated and listed in Table 2.

To clearly reveal the dynamic properties and energy
dissipation of the viscoelastic damper, the storage modulus G1

and loss factor η at each test condition are pictured in Figure 5.
Figures 5A,B show the relationship of characteristic

parameters and excitation frequency. It can be seen that the
storage modulus and loss factor increase rapidly with increasing
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FIGURE 3 | The representative force-displacement hysteresis loops of the viscoelastic damper. (A–D) d = 0.5mm, d = 2.0mm, f = 0.1Hz, and

f = 1.0Hz, respectively.

FIGURE 4 | Force-displacement hysteresis curve.

frequency. Take 1mm as an example, the storage modulus is
increased by 14.59% in the range of 0.1–0.2Hz, increased by
32.03% in the range of 0.2–0.5Hz, and increased by 19.52% in
the range of 0.5–1.0Hz. The loss factor is increased by 24.6%
in the range of 0.1–0.2Hz, increased by 24.63% in the range of

0.2–0.5Hz and increased by 20.46% in the range of 0.5–1.0Hz. In
summary, the storage modulus and loss factor of the viscoelastic
damper are greatly influenced by the excitation frequency.

Figures 5C,D give the relationships between the characteristic

parameters and displacement amplitude. It can be seen that

the storage modulus and loss factor decreases with increasing
displacement amplitude. Taking the condition of 0.5Hz as an

example, the storage modulus is decreased by 9.52% in the

range of 0.2–0.5mm, decreased by 4.69% in the range of
0.5–1.0mm, decreased by 9.07% in the range of 1.0–1.5mm,

and decreased by 8.4% in the range of 1.5–2.0mm. The loss

factor is decreased by 1.29% in the range of 0.2–0.5mm,
decreased by 8.48% in the range of 0.5–1.0mm, decreased by

2.19% in the range of 1.0–1.5mm and decreased by 8.45%
in the range of 1.5–2.0mm. It also should be noted that

the storage modulus with frequency 0.1Hz and displacement
0.2mm are much larger than that with frequency 0.2Hz

and displacement 0.2mm, this abnormal phenomenon may

occur due to the test errors during the experimental process
and the properties complexity of viscoelastic materials at low

temperature situations. In summary, the displacement amplitude

have important influence on the storage modulus and loss factor
of the viscoelastic damper.
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TABLE 2 | Characteristic parameters G1, η of the viscoelastic damper.

Displacement

d (mm)

Frequency

f (Hz)

Storage modulus

G1 (MPa)

Loss factor

η

0.2 0.1 2.5578 0.6942

0.2 2.2325 0.8012

0.5 2.9713 0.8442

1.0 3.8817 0.9869

0.5 0.1 1.7238 0.5332

0.2 2.0579 0.6507

0.5 2.6885 0.8333

1.0 3.6217 0.9282

1.0 0.1 1.6943 0.4911

0.2 1.9408 0.6119

0.5 2.5625 0.7626

1.0 3.0626 0.9186

1.5 0.1 1.5822 0.4547

0.2 1.8828 0.5825

0.5 2.3300 0.7459

1.0 2.7726 0.8716

2.0 0.1 1.5546 0.4254

0.2 1.7681 0.5352

0.5 2.1343 0.6829

0.1 2.4470 0.7688

MODIFICATION OF THE
SEVEN-PARAMETER FRACTIONAL
DERIVATIVE MODEL

The seven-parameter fractional derivative model include three
parallel elements, one Hook spring element and two fractional
Maxwell models (Müller et al., 2011), as shown in Figure 6. The
stress-strain relation of the Hook spring can be given as

µ0ε0 = σ0 (4)

where µ0 presents the modulus of the Hook spring element. For
the two fractional Maxwell models

µiεis = ηiD
αiεid = σi (5)

εis + εid = εi (6)

where µi and ηi present the modulus of the spring and
the damping coefficient of the fractional dashpot for the i-th
fractional Maxwell model, respectively, i = 1, 2; Dαi denotes
the αi-order fractional derivative, and 0 < αi < 1; σi and εi
denote the stress and strain of i-th fractional Maxwell model,
respectively; εis andεid present the strain of the spring and
dashpot, respectively. Then we have

ε0 = ε1 = ε2 = εt (7)

σ0 + σ1 + σ2 = σt (8)

where σt and εt are the stress and strain of the seven-parameter
fractional derivative model.

From Equations (5) and (6), we can obtain

µiηiD
αiεi =

(

µi + ηiD
αi

)

σi (9)

By performing the Fourier transform on Equation (9), we can get

µiηi
(

jω
)αi

ε∗i =
(

µi + ηi
(

jω
)αi

)

σ ∗

i (10)

where ω is the angular frequency of the loading stress or strain;
and j is the unit complex number; and the star symbol denotes
that the strain and stress are in complex form. Then the modulus
of each fractional Maxwell model in complex form, expressed in
the frequency domain, can be obtained as

G∗

i =
µiηi

(

jω
)αi

µi + ηi
(

jω
)αi

(11)

Together with Equations (4), (7), (8), and (11), we can
obtain the complex modulus of the seven-parameter fractional
derivative model

G∗
= µ0 +

2
∑

i=1

µiηi
(

jω
)αi

µi + ηi
(

jω
)αi

(12)

By applying the relation jαi = cos
(

αiπ
2

)

+sin
(

αiπ
2

)

j into
Equation (12), the complexmodulus can be decomposed into two
parts, the real part and the imaginary part, which are defined as
the storage modulus and loss modulus of viscoelastic materials,
and the ratio of the loss modulus to the storage modulus is taken
as the loss factor, then

G1 =Re
(

G∗
)

= µ0 +

2
∑

i=1

µ2
i ηiω

αicos
(

αiπ
2

)

+ µiη
2
i ω

2αi

µ2
i + 2µiηiωαicos

(

αiπ
2

)

+ η2i ω
2αi

(13)

G2 =Im
(

G∗
)

=

2
∑

i=1

µ2
i ηiω

αisin
(

αiπ
2

)

µ2
i + 2µiηiωαicos

(

αiπ
2

)

+ η2i ω
2αi

(14)

η =
G2

G1
(15)

Where G1, G2, and η denote the storage modulus, loss modulus
and loss factor of viscoelastic materials.

There is an equivalent relationship between high temperature
and low frequency for most viscoelastic materials when the
temperature is from the glass transition temperature Tg to Tg+

100◦C, which can be described by the temperature-frequency
equivalent theory (Xu et al., 2014, 2015, 2016; Xu Y. S. et al.,
2019), as shown in Equation (16)

G1 (ω,T) = G1 (αTω,T0)

η (ω,T) = η (αTω,T0) (16)

where T0 is the reference temperature, and αT is the function of
temperature and has the form

αT = 10−12(T−T0)/[525+(T−T0)] (17)
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FIGURE 5 | The storage modulus and loss factor of the viscoelastic damper with different test conditions. (A–D) Storage modulus, loss factor, storage modulus, and

loss factor, respectively.

FIGURE 6 | The seven-parameter fractional derivative model.

when this theory is used to describe the dynamic properties of
the viscoelastic damper with different temperatures, the dynamic
parameters of the viscoelastic damper in Equations (13)–(15) can

be changed as

G1 = µ0 +

2
∑

i=1

µ2
i ηi(αTω)αicos

(

αiπ
2

)

+ µiη
2
i (αTω)2αi

µ2
i + 2µiηi(αTω)αicos

(

αiπ
2

)

+ η2i (αTω)2αi

(18)

G2 =

2
∑

i=1

µ2
i ηi(αTω)αisin

(

αiπ
2

)

µ2
i + 2µiηi(αTω)αicos

(

αiπ
2

)

+ η2i (αTω)2αi
(19)

η =
G2

G1
(20)

Equations (17)–(20) are the formulations of the modified seven-
parameter fractional derivative model. The advantage of this
modified model is that it is more efficient in describing the
nonlinear behavior of viscoelastic materials (Müller et al., 2011),
and it can reveal the influence of different temperatures and
frequencies on the mechanical properties of viscoelastic materials
at the same time.
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MODEL APPLICATION FOR THE
VISCOELASTIC DAMPER

In this section, in order to deeply investigate the influence of
frequency on the dynamic properties of the viscoelastic damper
at low temperature (−5◦C), the abovementioned mathematical
model, the modified seven-parameter fractional derivative
model, and the equivalent fractional Kelvin model (Xu et al.,
2015) are employed to numerically calculate the storage modulus
and loss factor of the viscoelastic damper. The expression of the
equivalent fractional Kelvin model has the form

G1 = q0 + q1(αTω)γ cos
(γπ

2

)

(21)

η =
q1(αTω)γ sin

( γπ
2

)

q0 + q1(αTω)γ cos
( γπ

2

) (22)

where q0 and q1 are the coefficients related to the viscoelastic
materials, γ is the order of fractional derivative, αT has been
given in Equation (17).

Because Equations (17)–(22) in the two models could not
describe the displacement amplitude influence, the impact of
displacement amplitude on dynamic properties of viscoelastic
dampers is ignored, and only parts of the test data (with
displacement 0.2 and 1.5mm) in Table 2 are used to determine
the parameters of the modified seven-parameter fractional
derivative model and the equivalent fractional Kelvin model with
the least squares method. Then for the modified seven-parameter
fractional derivative model, the parameters can be obtained as,
µ0 = 2.8954 × 105, µ1 = 4.4113 × 107, η1 = 1.5075 × 106,
α1 = 0.2054, µ2 = 2.1123 × 108, η2 = 1.0714 × 106, α2 =

0.7104, and T0 = −16.89◦C. For the equivalent fractional Kelvin
model, q0 = 9.3111 × 105, q1 = 1.831 × 107, γ = 0.5516,
and T0 = −114.15◦C. The test data with the displacement
1.0mm (which are not used for the parameters determination)
are used to verify the numerical results of the proposed model.
The experimental and numerical results comparisons of the
modified seven-parameter fractional derivative model and the
equivalent fractional Kelvin model of the viscoelastic damper are
summarized in Table 3 and graphed in Figure 7.

It can be obviously seen in Figure 7 that both the modified
seven-parameter fractional derivative model and equivalent
fractional Kelvin model have perfect accuracy in describing
the characteristic parameters of the viscoelastic damper with
different frequencies. The errors of both models for storage
modulus and loss factor are <10%, but the errors of the modified
seven-parameter fractional derivative model always have smaller
values. For example, when the frequency is 1Hz, the storage
modulus and loss factor of the viscoelastic damper in test data
are 3.0626 MPa and 0.9186; while for the numerical results from
the modified seven-parameter fractional derivative model, the
storage modulus and loss factor are 3.2062 MPa and 0.8836,
and the errors are 4.69 and 3.52%, respectively; for equivalent
fractional Kelvin model, the storage modulus and loss factor are
3.3053MPa and 0.845, the errors are 7.83 and 8.02%, respectively.

MODEL VERIFICATION

To further verify the accuracy of the modified seven-parameter
fractional derivative model with different temperatures,
the experimental data (Xu et al., 2015) for 9050A and
ZN22 viscoelastic materials under different frequencies and
temperatures are compared with the numerical results calculated
from the modified seven-parameter fractional derivative model
and the equivalent fractional Kelvin model.

Some parts of the experimental data are used to evaluate the
model parameters, and the numerical results are compared with
the whole test results. With the least squares method, the model
parameters of 9050A materials can be determined as, µ0 =

1.0563 × 106, µ1 = 4.6305 × 107, η1=6.1554, α1 = 0.9741,
µ2 = 7.5296 × 108, η2 = 4.685 × 104, α2 = 0.3144, and T0 =

153.85◦C for the modified seven-parameter fractional derivative
model; and q0 = 1.9032 × 106, q1 = 229.7502, γ = 0.6888,
and T0 = 164.57◦C for the equivalent fractional Kelvin model.
The model parameters of ZN22 materials can also be obtained as,
µ0 = 2.1575× 106, µ1 = 4.6317× 108, η1=0.0547, α1 = 0.6682,
µ2 = 3.9676 × 108, η2 = 0.0733, α2 = 0.6326, and T0 =

272.2◦C for the modified seven-parameter fractional derivative
model; and q0 = 2.1972 × 106, q1 = 0.1322, γ = 0.6575, and
T0 = 270.72◦C for the equivalent fractional Kelvin model. The
experimental and numerical results comparisons of 9050A and
Zn22 viscoelastic materials are given in Tables 4, 5, and vividly
graphed in Figures 8, 9. Figure 8 shows the experimental and
numerical results comparisons of 9050A material.

It can be concluded from Figure 8A that the modified seven-
parameter fractional derivative model is more accurate than
the equivalent fractional Kelvin model when describing the
storage modulus with different frequencies. Take 0.1Hz as an
example, the test data for storage modulus is 2.5 MPa; and the
numerical results from the modified seven-parameter fractional
derivative model is 2.3737 Mpa with error 5.05%; and the
numerical results from the equivalent fractional Kelvin model
are 2.369 Mpa with error 5.24%. It can be seen in Figure 8B

that with the frequencies 0.2–1.0Hz, the errors of the modified
seven-parameter fractional derivative model is a little larger
than the equivalent fractional Kelvin model when describing
the loss factor with different frequencies, this may due to
the complexity of viscoelastic materials at low temperatures,
test errors, or the local distortion when determining the
model parameters.

It also can be revealed from Figures 8C,D that the modified
seven-parameter fractional derivative model is better than the
equivalent fractional Kelvin model in capturing the variation
trends of storage modulus and loss factor with different
temperatures. Take−20◦C as an example, the test data for storage
modulus and loss factor are 17 MPa and 1.38; and the numerical
results from the modified seven-parameter fractional derivative
model are 15.8014 Mpa and 1.3002, with errors 7.05 and 5.78%;
the numerical results from the equivalent fractional Kelvinmodel
are 13.5023 Mpa and 1.6153, with errors 20.57 and 17.05%. It
should be emphasized in Figure 8D that the numerical loss factor
curve from the modified seven-parameter fractional derivative
model has more consistency with the experimental loss factor
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TABLE 3 | Comparison of experimental and numerical results when d = 1.0mm.

Frequency f (Hz) Experimental results Modified seven-parameter fractional

derivative model

Equivalent fractional Kelvin model

Storage modulus

G1 (MPa)

Loss factor

η

Storage modulus

G1 (MPa)

Loss factor

η

Storage modulus

G1 (MPa)

Loss factor

η

0.1 1.6943 0.4911 1.6295 0.4977 1.597 0.4907

0.2 1.9408 0.6119 1.9371 0.5921 1.9071 0.6022

0.5 2.5625 0.7626 2.5292 0.7484 2.5489 0.7469

1.0 3.0626 0.9186 3.2062 0.8863 3.3023 0.845

FIGURE 7 | The experimental and numerical results comparison of the viscoelastic damper when d = 1.0mm. (A,B) Storage modulus, and loss factor, respectively.

TABLE 4 | Experimental and numerical results comparison for 9050A viscoelastic material.

Temperature

t (◦C)

Frequency

f (Hz)

Experimental results Modified seven-parameter fractional

derivative model

Equivalent fractional Kelvin model

Storage modulus

G1 (MPa)

Loss factor

η

Storage modulus

G1 (MPa)

Loss factor

η

Storage modulus

G1 (MPa)

Loss factor

η

−20 1 17 1.38 15.8014 1.3002 13.5023 1.6153

−10 1 5.8 1.39 6.2628 1.4611 6.9226 1.3634

−10 2 10 1.40 10.3450 1.4929 9.9943 1.5223

0 0.1 2.5 0.4 2.3737 0.4106 2.3690 0.3697

0 0.5 3.3 0.9 3.3091 0.7464 3.3148 0.8007

0 1 3.8 1.10 3.9911 1.0028 4.1786 1.0239

0 5 9.7 1.39 9.0002 1.5222 8.7982 1.4736

10 1 3.0 0.71 3.0625 0.6511 2.9797 0.6793

10 2 3.4 0.92 3.6285 0.8700 3.6385 0.8968

20 1 2.7 0.40 2.5096 0.4539 2.4330 0.4094

curve than that from the equivalent fractional Kelvin model,
which proves the advantage of the modified seven-parameter
fractional derivative model in describing the nonlinear dynamic
behaviors of viscoelastic materials, especially at low temperature.
The same conclusion can be obtained from Figure 9 which
compares the experimental and numerical results of ZN22
viscoelastic material.

CONCLUSIONS

In present paper, the dynamic properties tests of the viscoelastic
damper are carried out at low temperature (−5◦C). The
influence of frequency and displacement on the dynamic
properties of the viscoelastic damper are discussed. The seven-
parameter fractional derivative model is modified and applied to
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TABLE 5 | Experimental and numerical results comparison for Zn22 viscoelastic material.

Temperature

t (◦C)

Frequency

f (Hz)

Experimental results Modified seven-parameter fractional

derivative model

Equivalent fractional Kelvin model

Storage modulus

G1 (MPa)

Loss factor

η

Storage modulus

G1 (MPa)

Loss factor

η

Storage modulus

G1 (MPa)

Loss factor

η

15 0.5 6 1.14 6.7519 1.1116 6.6662 1.1235

15 1 9.7 1.32 9.4360 1.2457 9.2464 1.2776

15 2 14.0 1.40 13.7233 1.3362 13.3163 1.3993

20 0.1 3.1 0.5 2.9859 0.4600 3.0104 0.4527

20 0.5 4.6 0.86 4.5429 0.8657 4.5404 0.8649

20 1 5.9 1.01 5.9258 1.0425 5.8932 1.0510

20 2 8.3 1.19 8.1212 1.1926 8.0271 1.2171

25 0.5 3.1 0.6 3.4286 0.6138 3.4545 0.6099

25 1 4.3 0.72 4.1624 0.7953 4.1804 0.7950

30 1 3.6 0.58 3.2503 0.5570 3.2849 0.5549

FIGURE 8 | The experimental and numerical results comparison of 9050A viscoelastic material. (A–D) Storage modulus, loss factor, storage modulus, and loss

factor, respectively.

describe the dynamic behaviors of the viscoelastic damper. The
experimental data for 9050A and ZN22 viscoelastic materials
under different frequencies and temperatures are utilized to

validate the modified seven-parameter fractional derivative
model. Finally, some notable conclusions can be obtained
as follows:
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FIGURE 9 | The experimental and numerical results comparison of ZN22 viscoelastic material. (A–D) Storage modulus, loss factor, storage modulus, and loss

factor, respectively.

(1) The viscoelastic damper has perfect energy dissipation
capacity with nearly full ellipse hysteretic curves at
low temperature.

(2) The loading frequency and displacement amplitude have
important influence on the dynamic properties of the
viscoelastic damper. The storage modulus and loss factor
increase quickly with increasing frequency, while decrease
when the displacement amplitude increases.

(3) The dynamic behavior of the viscoelastic damper and
viscoelastic materials (9050A and ZN22) can be precisely
depicted by the modified seven-parameter fractional
derivative model, which can simulate the nonlinear dynamic
properties of viscoelastic materials with varying frequencies
and temperatures.

(4) Viscoelastic dampers can serve in a wide temperatures
ranges (−20–50◦C) with larger displacements. The present
work only studies the viscoelastic damper at −5◦C with
displacements 0.2–2.0mm. The dynamic properties and
mathematical modeling of viscoelastic dampers at extreme
temperatures (for example, −20 or 50◦C) and large
displacement amplitudes still need to be further investigated.
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