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Abstract

Property claim services (PCS) provides indices for losses resulting from catastrophic events in
the US. In this paper, we study these indices and take a closer look at distributions underlying
insurance claims. Surprisingly, the lognormal distribution seems to give a better �t than the
Paretian one. Moreover, lagged autocorrelation study reveals a mean-reverting structure of indices
returns. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The property insurance industry has paid out over $75 billion in losses in the last
�ve years due to increasingly severe catastrophes. In 1999, insured losses from nat-
ural catastrophes and man-made disasters amounted to $28.6 billion, of which 85%
was caused by natural disasters and 15% by man-made ones. This amounted to the
second-heaviest claims burden ever for insurers, behind 1992, the year of hurricane
Andrew ($32.4 billion of insured losses of which $19 billion were due to the hurri-
cane alone; all losses in 1999 prices) [1]. The main cause of the heavy loss burden
resulted from storms Anatol, Lothar ($4.5 billion) and Martine, which ravaged much
of western Europe [2]. Some industry experts believe that even larger catastrophes are
coming because population and building development continue to increase. Moreover,
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there are reasons to believe that such catastrophes will occur more frequently and with
greater force in the future due to changes in the earth’s atmosphere [1,2].

At present, however, the insurance and reinsurance industries simply do not have the
resources needed to support a major catastrophe. For example, the primary insurance
and reinsurance industry in the US has capital to cover only 1% of about $30 trillion
of national property. So a $50 billion disaster would probably wipe out a large number
of insurance companies from business [3]. In order for the needed capacity to be
achieved, non-traditional forms of capital, such as hedge and pension funds, need to be
engaged. However, this cannot be done without standardization and commoditization of
insurance risks into tradable securities. These securities must also be e�cient hedging
mechanisms and risk management tools that the insurance industry is willing to buy.
The Chicago Board of Trade’s catastrophe options – based on PCS indices – were
among the �rst products which could potentially meet these needs, and thus bridge the
gap between the capital and insurance markets [4].

The purpose of this paper is to see what type of distributions �t PCS indices data and
whether there is signi�cant autocorrelation of indices returns [5,6]. These questions have
to be answered before more sophisticated methods are used for pricing of structured
derivatives based on PCS indices.

This paper is structured so that the next section describes the PCS indices. After
that, we present the four distributions and their mixtures �tted later on to the quarterly
PCS National index values from the period 1950–99. In Section 4 we brie
y discuss
the well- and not-so-well-known non-parametric tests often used for judging which
distribution �ts the empirical �nancial data best [7]. Finally, in the last section we
present results of our statistical analysis. Surprisingly, contrary to earlier reports [8,9],
the lognormal distribution seems to give a better �t than the Paretian one.

2. PCS indices

Property claim services (PCS) is recognized around the world as the property=casualty
insurance industry’s authority on insured catastrophic events. Since the inception of the
catastrophe serial number system in 1949, PCS has been responsible for estimating in-
sured property damage resulting from catastrophes a�ecting the US.

PCS provides indices for losses resulting from catastrophic events on a daily basis.
By de�nition, a catastrophe is an event that causes over $5 million of insured property
damage and a�ects a signi�cant number of policy holders and insurance companies.
PCS compiles its estimates of insured property damage using a combination of pro-
cedures, including a general survey of insurers, its National Insurance Risk Pro�le
(NIRP), and, where appropriate, its own on-the-ground survey [4].

A survey of companies, agents, and adjusters is one part of the estimating pro-
cess. PCS conducts con�dential surveys of at least 70% of the market based on
premium-written market share. PCS then develops a composite of individual loss and
claim estimates reported by these sources. Using both actual and projected claim
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Fig. 1. Regions covered by the PCS indices traded on CBOT (CA stands for California, TX for Texas, and
FL for Florida).

�gures, PCS extrapolates to a total industry estimate by comparing this information
to the market share data.

The PCS indices include direct and indirect insurance losses, i.e.,
• real property (buildings, detached garages, sheds, pool cabanas, etc.);
• contents of the building;
• living expenses (in the case of homeowners’ insurance);
• extra or business interruption expenses (in the case of commercial properties);
• personal boats (not ocean liners).

PCS indices track insured catastrophic loss estimates on a national, regional, and
state basis from information obtained by PCS. Nine PCS indices are listed for trading
on the Chicago Board of Trade, see Figs. 1 and 2:
• a National index covering all insured losses in the US;
• Eastern – consisting of Northeastern (storms) and Southeastern (hurricanes), Mid-

western (
oods, snow storms), and Western (earthquakes, tsunami waves) regional
indices;

• state indices for most exposed regions: Florida (hurricanes), Texas (tornadoes), and
California (earthquakes).

Only options (and combinations of options – spreads) on these indices are available
for trading.

3. Distributions

The derivation of claim size distributions from the claim data could be considered to
be a separate discipline in its own right, applying the methods of mathematical statistics
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Fig. 2. Annual PCS indices since 1950: National, Northeastern, Florida and California. All values represent
index points (1 pt = $100 mln).

[8]. The objective is to �nd a distribution function (d.f.) F which �ts the observed
data in a satisfactory manner. The models used for the d.f. F can be classi�ed into the
following three basic types:

(1) F is expressed in an analytic form which is �tted to the observed data;
(2) F is derived directly from statistical data in a tabular, parameter-free discrete

form;
(3) F is not speci�ed explicitly, but the lowest main characteristics, in particular the

mean, standard deviation and skewness, are derived from the data.
The analytical form is the approach most frequently adopted in the actuarial literature.

The problem is to �nd a suitable analytic expression which �ts the observed data well
and which is easy to handle. The lognormal, Pareto, Burr and gamma distributions, to
be dealt in the sequel, are typical candidates to be considered for applications.

Consider a random variable X which has the normal distribution. Let Y = expX .
The distribution of Y is called a lognormal distribution. The d.f. is given by

F(x) = �
(

ln x − �
�

)
=
∫ x

0

1√
2��y

e−(1=2) ((ln y−�)=�)2
dy; x; �¿ 0; � ∈ R ;

where �(x) is the standard normal (with mean 0 and variance 1) d.f. The lognormal
distribution is very useful in modeling of claim costs. It has a thick right tail and �ts
many situations well. For small � it resembles a normal distribution, although this is
not always desirable.
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One of the most frequently used analytic claim size distributions is the Pareto d.f.
which is de�ned by the formula

F(x) = 1 −
(

�
�+ x

)�
; x; �; �¿ 0 :

The �rst parameter controls how heavy a tail distribution has: the smaller the �, the
heavier the tail. Experience has shown that the Pareto formula is often an appropriate
model for the claim size distribution, particularly where exceptionally large claims
may occur [8,9]. However, there is a need to �nd heavy-tailed distributions which
o�er greater 
exibility than the Pareto d.f. Such 
exibility is provided by the Burr
distribution

F(x) = 1 −
(

�
�+ x�

)�
; x; �; �; �¿ 0 ;

which is just a generalization of the Pareto distribution.
All the three presented distributions su�er from some mathematical drawbacks (e.g.

lack of a closed form representation for the Laplace transform or non-existence of the
moment generating function). On the other hand, the gamma distribution

F(x) =
∫ x

0

1
�(�)��

y�−1e−y=� dy; x; �; �¿ 0 ;

does not have these drawbacks. It is one of the most important distributions for mod-
eling (not only insurance claims) because it has very tractable mathematical properties
and is related to other distributions [10].

Up to this point, we have assumed that all observations were positive valued. In
our case, like in other insurance contexts, PCS indices can have zero values as well.
However, such situations present no di�culties in the calculation of the total d.f.,
namely we can write

F(x) = P(X = 0) + P(X ¿ 0)F+(x); x¿0 ;

where F+ is a d.f. related to positive values of the PCS index and is given by one
of the above analytic forms. This means that the spike at zero can be easily removed.
When this is done, the model is reduced to one of the positive claims only.

4. Non-parametric tests

Once the distribution is selected, we must obtain parameter estimates. In what follows
we use moment (for the Pareto distribution only) and maximum likelihood estimation.
The next step is to test whether the �t is adequate. This is usually done by com-
paring the �tted and empirical d.f.’s, more precisely, by checking whether values of
the �tted d.f. at sample points form a uniform distribution [11]. We applied the well-
and not-so-well-known non-parametric tests verifying the hypothesis of uniformity. The
critical values C� of the tests, given a signi�cance level � (e.g. �=0:05), can be easily
found in the literature [11,12].
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A very natural and well-known is the �2 statistics

�2
k = k

k∑
i=1

(ni − n=k)2

n
;

where n is the overall number of observations and ni is the number of observations
which fall into the interval [(i−1)=k; i=k]. �2

k has an approximate chi-squared distribution
with k − 1 degrees of freedom. In general, the better the �t, the smaller the �2

k . This
test becomes more discriminating as the sample size becomes larger.

Another classical measure of �t is the Kolmogorov–Smirnov statistics

Dn = sup
x∈R

|F̂(x) − F+(x)| ;

where the empirical d.f. is de�ned as F̂(x)=(1=n)
∑n

i=1 1{xi6x}. Statistics Dn measures
the distance between the empirical and �tted d.f. in the supremum norm.

The two other tests we apply are the Cramer–von Mises and Anderson–Darling tests
[11,5]. The former uses

Cn = n
∫ +∞

−∞
(F̂(x) − F+(x))2 dF+(x)

statistics while the latter (considered to be the best within the class of tests based on
empirical d.f.) uses

AD = n
∫ +∞

−∞

(F̂(x) − F+(x))2

F+(x)(1 − F+(x))
dF+(x) :

In order to interpret the results of the tests we compare with the corresponding
critical values C� (for the same signi�cance level �). When the value of the test is
less than the corresponding value C� we accept the �t as adequate (there is no reason to
reject the null hypothesis). A problem arises when there is more then one distribution
that �ts the sample data. We should somehow distinguish them. For this reason we
introduce the following test function [13]:

Z =
K∑
i=1

Ti
C�; i

; (1)

where K denotes the number of tests under consideration, Ti their values (e.g. T1 may
denote the value of the �2 test, T2 of the AD test etc.) and C�; i – the corresponding
critical values. The smallest value of such a function indicates the best �t (in the sense
of the l1 norm).

In the case when none of the distributions �ts the sample data or when we want to
improve the �t, we can take into consideration a mixture of distributions. A mixture
of two distributions can be written as

G(x) = aF1(x) + (1 − a)F2(x); a ∈ (0; 1) :

In this case testing the �t of the model requires estimating not only the parameters of
F1 and F2 but the coe�cient a as well.
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5. Empirical analysis

Empirical studies were conducted for the quarterly National PCS index. The National
index was chosen since it covers losses in the whole United States and thus has the
most non-zero values. Of the two available data sets – annual and quarterly– the latter
series was selected because of its length, see Fig. 3. Note, however, that the annual
index value does not necessarily equal the sum of the quarterly index values. This fact
is due to the rounding of the raw data in formulating the indices and to later revisions
of loss estimates performed by PCS.

At the beginning distributions were �tted using moments and maximum likelihood es-
timation. The results of parameter estimation and test statistics are presented in Table 1.
Only three distributions passed all tests and it is hard to judge which one is the best.
For this reason, in the next step we have conducted parameter estimation via

Fig. 3. Annual and quarterly National PCS indices since 1950.

Table 1
Parameter estimates and test statistics for the quarterly National PCS index. Parameter estimates were obtained
through moments (Pareto distribution only) or maximum likelihood estimation

Distributions Lognormal Pareto Burr Gamma

Parameters � = 1:5240 � = 2:7163 � = 1:0552 � = 0:78156
� = 1:2018 � = 16:8759 � = 9:1614 � = 12:5811

� = 1:4085

Test values (in parentheses: critical values for � = 0:05)
�2 (24:9958) 17.48235 14.47059 17.29412 19.55294
Dn (0:103138) 0.05916 0.06700 0.06873 0.09921
Cn (0:460636) 0.05028 0.09670 0.09017 0.58648
AD (2:49200) 0.30930 0.98915 0.57751 3.43060
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Table 2
Parameter estimates and test statistics for the quarterly National PCS index. Parameter estimates were obtained
through minimization of the test function Z (see Eq. (1))

Distributions Lognormal Pareto Burr Gamma

Parameters � = 1:4856 � = 2:798 � = 1:1718 � = 0:90443
� = 1:2377 � = 17:1001 � = 8:3050 � = 8:4846

� = 1:2817

Test values (in parentheses: critical values for � = 0:05)
�2 (24:9958) 3.74118 8.07059 5.24706 14.6588
Dn (0:103138) 0.04448 0.06845 0.04511 0.06792
Cn (0:460636) 0.04691 0.08632 0.07226 0.14116
AD (2:49200) 0.31697 0.95679 0.59704 1.91120

Fig. 4. Right tails of the quarterly National PCS index and two best approximating distributions on a
double-logarithmic paper: ln(1 − F(t)) is plotted against ln(t).

minimization of the test function Z , see Eq. (1) and Table 2. This time the lognormal
distribution came out as the winner (as it had the smallest values in all tests) with
the Burr distribution following closely. Both distributions are plotted in Fig. 4 on a
double-logarithmic paper.

Finally, after �tting distributions themselves we have estimated parameters of mix-
tures and tested the results using the four presented tests. As we can see in Table 3, we
have not been able to obtain a much better �t. The lognormal–lognormal mixture is the
best, but the test values are almost identical to the ones for the lognormal distribution
itself!
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Table 3
Parameter estimates of mixtures and test statistics for the quarterly National PCS index. Again parameter
estimates were obtained through minimization of the test function Z (see Eq. (1)). Ln means lognormal,
Pa – Pareto, Bu – Burr, Ga – Gamma

Mixtures Ln+Ln Ln+Pa Ln+Bu Ln+Ga Pa+Bu

Parameters �1 = 1:6988 � = 1:4193 � = 1:2657 � = 1:4105 �1 = 2:5842
�1 = 1:2332 � = 1:1756 � = 1:1650 � = 1:1560 �1 = 17:0442
�2 = 1:2888 � = 2:7891 � = 1:2065 � = 0:77057 �2 = 1:1487
�2 = 1:2075 � = 17:8431 � = 11:0105 � = 12:5486 �2 = 8:5787

� = 1:2185 � = 1:3829
a = 0:48599 a = 0:52536 a = 0:55139 a = 0:5472 a = 0:48223

Test values (in parentheses: critical values for � = 0:05)
�2 (24:9958) 3.74118 8.07059 3.74118 9.38824 12.2118
Dn (0:103138) 0.04439 0.04473 0.04663 0.04898 0.04992
Cn (0:460636) 0.04660 0.04906 0.05744 0.05145 0.05448
AD (2:49200) 0.31168 0.48146 0.43008 0.57705 0.55939

Fig. 5. Lagged autocorrelation function for log-returns of the quarterly National PCS index. Dashed horizontal
lines represent the 95% con�dence interval of a Gaussian random walk.

Seasonality of a time series of returns rt (logarithmic changes of the index) can be
demonstrated by plotting the autocorrelation function [14]

acf(r; k) =

∑N
t=k+1(rt − �r)(rt−k − �r)∑N

t=1(rt − �r)2
;

where N is the sample length and �r = (1=N )
∑N

t=1 rt , for di�erent time lags k as in
Fig. 5. For the annual National PCS index log-returns there is a strong anticorrelation
for lag k = 1 year (quarterly index values contained zeros making it impossible to
conduct the autocorrelation analysis). For almost all other lags the correlation falls
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into the con�dence interval for the Brownian motion, indicating no dependence. This
result is similar to that for electricity spot price returns [15,16], i.e., both processes are
mean-reverting, and unlike that for most �nancial data [17,18].
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