Tôhoku Math. Journ. 31 (1979), 491-494.

PROPERTY L AND W-* ALGEBRAS OF TYPE I^1

EDWARD SARIAN

(Received September 29, 1978, revised March 10, 1979)

Abstract. Type I W-* algebras do not have property L.

Let \mathscr{M} be a W-* algebra acting in separable Hilbert space h and let $\mathscr{M}(\mathscr{M})$ denote the unitary operators in \mathscr{M} . Corollary I.5.10 of [3] states that \mathscr{M} has direct integral decomposition into factors given by $\mathscr{M} = \int_{A} \bigoplus \mathscr{M}(\lambda) \mu(d\lambda)$. This paper assumes the reader is familiar with [4] and Chapter I of [3].

DEFINITION. \mathscr{A} has property L if there is a sequence $\{U_n\}$ contained in $\mathscr{U}(\mathscr{A})$ such that $\{U_n\} \to 0$ weakly and such that $\{U_nAU_n^*\} \to A$ strongly for each $A \in \mathscr{A}$.

Property L is a partial form of commutivity that was introduced by Pukánszky in [2]. We shall use direct integral theory to show that no type I W-* algebra has property L.

We establish some notation before proving two essential lemmas. \mathscr{N}' denotes the commutant of \mathscr{N} and is also a W-* algebra. By the center of \mathscr{N} , we mean the abelian W-* algebra $\mathscr{X}(\mathscr{M}) = \mathscr{M} \cap \mathscr{M}'$. \mathscr{M}_1 represents the unit ball of \mathscr{M} and h_{∞} denotes the underlying Hilbert space of h, i.e., $h = \int_{\mathscr{M}} \bigoplus h_{\infty} \mu(d\lambda)$ (cf. [3] Definition I.2.4).

LEMMA 1. Let $\mathscr{A} = \int_{\Lambda} \bigoplus \mathscr{A}(\lambda) \mu(d\lambda)$ be a W-* algebra acting in h and let S denote $B(h_{\infty})_1$ taken with the strong-* operator topology. Then if N is a Borel subset of Λ , the set $F = \{(\lambda, T) | \lambda \in N, T \in \mathscr{A}(\lambda) \cap S\}$ is a Borel subset of $\Lambda \times S$.

PROOF. By [3] Lemma I.4.11, S is a complete separable metric space. Let d denote the metric which defines the topology on S. By [4] Lemma 1.5(a, c), there is a countable sequence of disjoint closed subsets e_i of Λ such that if $e = \Lambda - \bigcup_{i=1}^{\infty} e_i$, then $\mu(e) = 0$ and there is

AMS (MOS) subject classifications (1970). Primary 46L10.

Key Words and Phrases. Type I W-* algebra, property L.

¹ This paper is part of the author's doctoral dissertation which was completed at Stevens Institute of Technology under the direction of Dr. Paul Willig.

a countable sequence of operators $\{A_n\}$ contained in \mathscr{A} such that $\{A_n(\lambda)\}$ is strong-* dense in $\mathscr{M}(\lambda)_1 \mu$ -a.e., and each $A_n(\lambda)$ is strong-* continuous on each set e_i .

Define subsets F(i, j, m) of $A \times S$ as sets of all pairs (λ, T) satisfying the following conditions:

a) $\lambda \in N \cap e_i$,

b) $d(T, A_m(\lambda)) \leq 1/j$.

Condition (a) defines a Borel set. Condition (b) defines a closed set. Thus F(i, j, m) is a Borel subset of $A \times S$ and so is $F = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{m=1}^{\infty} F(i, j, m)$. q.e.d.

LEMMA 2. Let \mathscr{A} be a type I W-* algebra acting in h. Let $\{V_n\}$ be a sequence contained in $\mathscr{U}(\mathscr{A})$ such that $\{V_n^*AV_n - A\} \to 0$ strongly for each $A \in \mathscr{A}$. Then $\{V_n\}$ has a subsequence that converges strongly to a unitary $V \in \mathscr{X}(\mathscr{A})$.

PROOF. Let $\mathscr{N} = \int_{A} \bigoplus \mathscr{N}(\lambda)\mu(d\lambda)$ be the direct integral decomposition of \mathscr{N} into factors. Since \mathscr{N} is of type I, $\mathscr{M}(\lambda)$ is a type I factor μ -a.e. For each $x \in h$ and $A \in \mathscr{N}, |(AV_n - V_nA)x| = |V_n(V_n^*AV_n - A)x| \leq |V_n||(V_n^*AV_n - A)x| = |(V_n^*AV_n - A)x| \to 0 \ (n \to \infty)$. Thus $|AV_n - V_nA \to 0$ strongly for each $A \in \mathscr{M}$. By weak compactness of $B(h)_1$, $\{V_n\}$ has a subsequence, again called $\{V_n\}$, that converges weakly to some operator V. Thus $|V| \leq 1$. Since \mathscr{M} is weakly closed, $V \in \mathscr{M}$ and we may write $V = \int_A \bigoplus V(\lambda)\mu(d\lambda)$ by [3] Lemma I.5.2. Also $|V| = \mu - ess. \sup. |V(\lambda)|$ by [3] Lemma I.3.1. We shall show that $|V(\lambda)| \geq 1$ μ -a.e. so that $|V| \geq 1$ also, and it follows that |V| = 1.

To prove our assertion we argue as follows. Let $\{x_i\}$ be an orthonormal basis for h_{∞} such that $\{x_1\}$ is a basis for h_1 , $\{x_1, x_2\}$ is a basis for h_2 , etc., where $\{h_i\}$ is an increasing sequence of finite dimensional Hilbert spaces generating h_{∞} (cf. [3] Definition I.2.4).

Let S, e and the e_i be as in Lemma 1 and define subsets E(i) of $\Lambda \times S$ as sets of all pairs (λ, T) satisfying the following conditions:

- a) $\lambda \in e_i$,
- b) $T \in \mathscr{M}(\lambda) \cap S$,

c) $Tx_1 = x_1$, $Tx_j = 0$ for j > 1.

Condition (a) defines a closed set. By Lemma 1, conditions (a) and (b) define a Borel set. Condition (c) defines a closed set and shows that T is an operator belonging to S. Thus E(i) is a Borel subset of $\Lambda \times S$ and so is $E = \bigcup_{i=1}^{\infty} E(i)$. By [3] Lemma I.4.3, E is analytic.

If Π is the projection of $\Lambda \times S$ onto Λ , then $F = \Pi(E)$ is contained

492

in $\Lambda - e$ and by [3] Lemmas I.4.4 and I.4.6, F is analytic and μ measurable. Since $\mathscr{N}(\lambda)$ is a type I factor μ -a.e., we know that $T \in \mathscr{N}(\lambda)$ μ -a.e., and it follows that F differs from Λ by a μ -null set. By [3] Lemma I.4.7, there exists a Borel subset F_1 of F with positive measure and a μ -measurable mapping g of F_1 into S such that $(\lambda, g(\lambda)) \in E$ for each $\lambda \in F_1$. Put $g(\lambda) = 0$ for $\lambda \notin F_1$ and define μ measurable operator valued function $B(\lambda)$ by $B(\lambda) = g(\lambda)$. Then by [3] Definition I.2.5, we may write $B = \int_{\Lambda} \bigoplus B(\lambda)\mu(d\lambda)$ and $B \in \mathscr{N}$ by [3] Lemma I.5.2. By hypothesis, $\{V_n^*BV_n\}$ converges strongly and hence weakly to B.

Since \mathscr{H} is decomposable, V_n is decomposable for each n and we may write $V_n = \int_A \bigoplus V_n(\lambda)\mu(d\lambda)$. By [4] Lemma 1.7, $([V_n(\lambda)^*B(\lambda)V_n(\lambda) - B(\lambda)]x, y) \to 0$ in μ -measure for each $x, y \in h_\infty$ and in particular for $x = y = x_1$. Since $\{V_n\} \to V$ weakly, the same reasoning shows that $(V_n(\lambda)x_1, x_1) \to (V(\lambda)x_1, x_1)$ in μ -measure. Since μ is a finite measure it follows that $|(V_n(\lambda)x_1, x_1)|^2 - 1 \to |(V(\lambda)x_1, x_1)|^2 - 1$ in μ -measure also (cf. [1] Section 3.20).

We have

$$\begin{split} &([V_n(\lambda)^*B(\lambda)V_n(\lambda) - B(\lambda)]x_1, x_1) \\ &= (V_n(\lambda)^*B(\lambda)V_n(\lambda)x_1, x_1) - (B(\lambda)x_1, x_1) \\ &= (B(\lambda)V_n(\lambda)x_1, V_n(\lambda)x_1) - (x_1, x_1) \\ &= ((V_n(\lambda)x_1, x_1)x_1, V_n(\lambda)x_1) - 1 \\ &= (V_n(\lambda)x_1, x_1)(x_1, V_n(\lambda)x_1) - 1 \\ &= (V_n(\lambda)x_1, x_1)\overline{(V_n(\lambda)x_1, x_1)} - 1 \\ &= |(V_n(\lambda)x_1, x_1)\overline{(V_n(\lambda)x_1, x_1)} - 1 \\ &= |(V_n(\lambda)x_1, x_1)|^2 - 1 . \end{split}$$

That $B(\lambda) V_n(\lambda) x_1 = (V_n(\lambda) x_1, x_1) x_1$ can be obtained as follows. Let $V_n(\lambda) x_1 = \sum_{i=1}^{\infty} c_i(\lambda) x_i$. Then $B(\lambda) V_n(\lambda) x_1 = c_1(\lambda) x_1 = (V_n(\lambda) x_1, x_1) x_1$. Thus $|(V_n(\lambda) x_1, x_1)|^2 - 1 \rightarrow 0$ in μ -measure and it follows that $|(V(\lambda) x_1, x_1)| = 1 \mu$ -a.e. (cf. [1] Section 3.20 Theorem 3). Now $|(V(\lambda) x_1, x_1)| \leq |V(\lambda)| |x_1|^2 = |V(\lambda)|$ by the Schwarz inequality; thus $1 \leq |V(\lambda)| \mu$ -a.e. Then by the last sentence of the first paragraph of the present proof, we have |V| = 1.

We shall show next that $V \in \mathscr{Z}(\mathscr{M})$ and that V is unitary. Since strong convergence implies weak convergence, we know that $\{AV_n - V_nA\} \rightarrow 0$ weakly for each $A \in \mathscr{M}$ and since $\{V_n\} \rightarrow V$ weakly, it follows that $\{AV_n - V_nA\} \rightarrow AV - VA$ weakly for all $A \in \mathscr{M}$. Thus AV - VA = 0 or, equivalently, $V \in \mathscr{M}'$ so that $V \in \mathscr{Z}(\mathscr{M})$. By [3] Theorem 1.5.9, V is a diagonal operator. Thus for μ -a.a. λ , $V(\lambda)$ is a bounded Borel measurable scalar valued function by [3] Definition I.2.5. Then if we apply [3] Lemma I.3.1 to VV^* , we have $VV^* = \int_A \bigoplus V(\lambda) V(\lambda)^* \mu(d\lambda) = \int_A \bigoplus V(\lambda) \overline{V(\lambda)} \mu(d\lambda) = \int_A \bigoplus |V(\lambda)|^2 I \mu(d\lambda) = \int_A \bigoplus I \mu(d\lambda) = I$ and we can show $V^*V = I$ similarly.

Finally, the strong convergence of $\{V_n\}$ to V is an immediate consequence of the weak convergence, the identity $|(V_n - V)x|^2 = ([V_n - V]x, [V_n - V]x) = (V_n x, V_n x) - (V x, V_n x) - (V_n x, V x) + (V x, V x)$ and the fact that $(V_n x, V_n x) = (x, x) = (V x, V x)$. q.e.d.

THEOREM 3. Type I W-* algebras do not have property L.

PROOF. If $\{U_n\}$ is a sequence of unitaries demonstrating property L, then by putting $V_n = U_n^*$ and applying Lemma 2, we arrive at a contradiction. q.e.d.

References

- [1] S. K. BERBERIAN, Measure and Integration, The Macmillan Co., New York, 1965.
- [2] L. PUKÁNSZKY, Some examples of factors, Publ. Math. Debrecen, 4 (1956), 135-156.
- [3] J. T. SCHWARTZ, W-* algebras, Gordon and Breach, New York, 1967.
- [4] P. WILLIG, Trace norms, global properties, and direct integral decompositions of W-* algebras, Comm. Pure Appl. Math., 22 (1969), 839-862.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE NEW JERSEY INSTITUTE OF TECHNOLOGY NEWARK, NEW JERSEY 07102 U.S.A.