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With recent advances in electronic structure methods, first-principles calculations of electronic
response properties, such as linear and nonlinear polarizabilities, have become possible for
molecules with more than 100 atoms. Basis set incompleteness is typically the main source of error
in such calculations since traditional diffuse augmented basis sets are too costly to use or suffer from
near linear dependence. To address this problem, we construct the first comprehensive set of
property-optimized augmented basis sets for elements H–Rn except lanthanides. The new basis sets
build on the Karlsruhe segmented contracted basis sets of split-valence to quadruple-zeta valence
quality and add a small number of moderately diffuse basis functions. The exponents are determined
variationally by maximization of atomic Hartree–Fock polarizabilities using analytical derivative
methods. The performance of the resulting basis sets is assessed using a set of 313 molecular static
Hartree–Fock polarizabilities. The mean absolute basis set errors are 3.6%, 1.1%, and 0.3% for
property-optimized basis sets of split-valence, triple-zeta, and quadruple-zeta valence quality,
respectively. Density functional and second-order Møller–Plesset polarizabilities show similar basis
set convergence. We demonstrate the efficiency of our basis sets by computing static polarizabilities
of icosahedral fullerenes up to C720 using hybrid density functional theory. © 2010 American
Institute of Physics. �doi:10.1063/1.3484283�

I. INTRODUCTION

The prediction of molecular response properties from
first principles1–3 has become an integral part in the search
for novel materials for applications such as molecular elec-
tronics, light harvesting, and nonlinear optics. Accurate cal-
culations can identify new lead structures and predict sub-
stituent effects in a systematic and cost-efficient way. Time-
dependent density functional theory �TDDFT� �Ref. 4� has
emerged as a good compromise between accuracy and com-
putational cost and is widely used for computing linear and
nonlinear response properties of large molecules. In addition,
coupled-cluster response methods5,6 are available for accu-
rate calculations and as benchmarks for density functional
methods.

Perhaps surprisingly, incompleteness of the one-electron
basis set is a major cause of error in molecular response
calculations, particularly for systems with more than 20–50
atoms. In the vast majority of molecular calculations, atom-
centered basis functions �BFs� are used to represent molecu-
lar orbitals �MOs� and their response to external
perturbations.7 It has long been established that the basis set
requirements for an accurate description of the orbital re-
sponse are fundamentally different from that of the unper-
turbed MOs.8 In particular, diffuse, i.e., low-exponent BFs
are crucial for an adequate description of the orbital re-

sponse. However, the addition of a significant number of
diffuse BFs has an adverse effect on numerical stability of
both ground-state and response calculations.

With existing diffuse augmentation schemes, the balance
between improved response properties and numerical stabil-
ity is delicate and often difficult to achieve. In the early
1980s, Schleyer and co-workers9,10 were the first to use en-
ergy minimization of anions to construct diffuse augmented
basis sets on a larger scale. They were already aware of the
computational drawbacks of diffuse augmentation and noted
that their basis sets “may not be ideal”10 for properties such
as excitation energies of neutral systems. Later, Dunning and
co-workers constructed the augmented correlation-consistent
basis sets by energy minimization of atomic or molecular
anions11,12 or by extrapolation.13 Similarly, the augmented
polarization-consistent basis sets of Jensen14–17 were ob-
tained by extrapolation using the basis set convergence of
molecular electron affinities as a guiding principle. These
basis sets approach completeness in the diffuse region with
increasing basis set size18 and are highly useful for smaller
systems. However, they tend to include large numbers of
diffuse BFs and rapidly become impractical for larger mol-
ecules. An alternative are the basis sets developed by Sadlej
and co-workers, which are specially constructed for polariz-
ability calculations.19,20 The Sadlej basis sets often yield ex-
cellent response properties with a comparatively small va-
lence space, but their use for larger molecules can be affected
by near linear dependence. Recently, Benkova, Sadlej,
Oakes, and Bell published modified basis sets for first- and
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second-row atoms containing a smaller number of diffuse
functions.21,22

The aim of the present work is to develop hierarchical
basis sets that �i� reduce the basis set error in linear polariz-
abilities below typical errors of Hartree–Fock �HF� and den-
sity functional treatments, �ii� are applicable to systems with
more than 100 atoms, and �iii� yield systematic convergence
to the basis set limit. Already in 1976, Werner and Meyer
pointed out23 that the Hylleraas variational principle8,24 can
be used to construct basis sets for molecular properties. This
principle implies that optimal values of parameters, such as
basis function exponents entering the first-order wave func-
tion, maximize the electronic polarizability. Here we use ana-
lytical derivative techniques based on Lagrangian polariz-
ability theory25 to implement Werner’s and Meyer’s strategy.
We start from polarized Karlsruhe def2 basis sets,26 describ-
ing the core and valence electrons. These segmented con-
tracted basis sets developed by Ahlrichs and co-workers over
the past two decades27–29 are well-known for their robustness
and their excellent cost-to-performance ratio in large-scale
HF and density functional theory �DFT� calculations. We
augment the Karlsruhe def2 basis sets with a small number
of diffuse BFs determined by maximization of isotropic
static HF polarizabilities of atoms. The variational principle
guarantees that the chosen augmentation is optimal and leads
to compact basis sets with few diffuse functions. We report
on the first comprehensive set of property-optimized diffuse
augmented basis sets across the Periodic Table, which sheds
light on the general requirements for an efficient representa-
tion of molecular response in Gaussian basis sets and may
also be used for constructing other diffuse basis set hierar-
chies.

This paper is structured as follows. We show how to use
the polarizability variational principle for basis set optimiza-
tion in Sec. II. Section III summarizes the implementation of
analytical basis set gradients of the HF polarizability. The
basis set convergence as a function of the number of primi-
tives and their l quantum number is investigated in detail for
fluorine atom in Sec. IV. This leads to the design of aug-
mented basis sets of split-valence, triple-zeta, and quadruple-
zeta valence quality for elements H–Rn �except lanthanides�
presented in Sec. V. The quality of the property-optimized
basis sets is assessed using atomic polarizabilities and a large
molecular test set in Sec. VI, followed by recommendations.
Some applications using density functional and second-order
Møller–Plesset �MP2� theory are presented in Sec. VII.

II. VARIATIONAL OPTIMIZATION OF BASIS SETS FOR
RESPONSE PROPERTIES

Most quantum chemistry codes employ contracted Car-
tesian Gaussian-type orbitals �CGTOs� as BFs,

���r�R,l� = �x − X�lx�y − Y�ly�z − Z�lz�
d

c�de−��d�r − R�2
,

�1�

where R= �X ,Y ,Z� denotes the center of the BF and l
= �lx , ly , lz� is the l-quantum number vector. In analogy to
hydrogenic orbitals, CGTOs with l= lx+ ly + lz=0,1 ,2 ,3 , . . .

are denoted by s , p ,d , f , . . . orbitals, respectively. CGTOs are
usually grouped in shells containing all BFs of a given
angular-momentum quantum number l. Optimization of the
basis set parameters ��d and c�d requires a variational prin-
ciple for some target functional, which ensures convergence
toward the complete basis set limit. The deviation of the
target functional from the basis set limit is a quality measure
for the basis set at hand, and quasi-Newton optimization
algorithms30 can be used to minimize the basis set error.
Basis set optimizations for ground-state wave functions are
based on the variational principle for the ground-state energy
and are often performed in the framework of HF approxima-
tion �see, e.g., Refs. 26–29�. Although most molecular prop-
erties can be obtained from the response of the total energy
to a suitably chosen perturbation, basis sets are usually opti-
mized in the absence of such external perturbations. Thus,
energy-optimized basis sets perform poorly for many re-
sponse properties.

There are two systematic solutions to this dilemma.
First, explicitly perturbation dependent basis sets can be
used. The most successful example of this strategy are
gauge-including atomic orbital basis sets,31 which explicitly
depend on a static magnetic field. For electric perturbations,
a balanced description of first- and higher-order response
properties is difficult to achieve,32 and electric-field-variant
basis sets33–35 are rarely used.

The second strategy is to augment energy-optimized ba-
sis sets by a few additional functions to improve the descrip-
tion of response properties. This method is conceptually
simple and efficient if the additional functions can be deter-
mined by a variational procedure guaranteeing quadratic
convergence of the desired properties. Such a procedure
starts from Hylleraas’ variational principle.8,24 The functional

G���1�� = 1
2 ���1��Ĥ�0� − E�0����1�	 − ���1��Ĥ�1����0�	 �2�

is minimized by the exact first-order wave function ��1�. Ĥ�0�

and Ĥ�1� denote the zero- and first-order Hamiltonians, and
E�0� and ��0� denote the zero-order energy and wave function,
respectively; the variation of G is restricted to ��1� orthogo-
nal to ��0�. For an electric dipole perturbation,

Ĥ�1� = − �̂ · E , �3�

where E is a uniform static electric field, the minimum of G
equals the negative polarizability. Thus, basis sets for electric
response properties may be optimized by maximizing the
molecular polarizability. As a result of the variational prin-
ciple, the basis set error in the polarizability is quadratic in
the basis set error in ��1�. Thus, it should be possible to
achieve high accuracy in electric response properties by add-
ing a few polarization functions if their exponents are fully
optimized. This method is analogous to the optimization of
polarization functions by maximization of the MP2 energy.

G is not variational with respect to changes in the zero-
order wave function. Thus, a rigorous lower bound for G
exists only if the basis set for ��0� is entirely fixed, which
may be achieved, e.g., by dual basis set methods. In practice,
keeping the valence basis set fixed and optimizing only the
diffuse augmentation was found to be stable in all cases.
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However, for certain metal atoms, small valence basis sets
can lead to spuriously large polarizabilities, as discussed in
detail in Sec. VI A.

A crucial advantage of our approach is that basis sets for
molecular property calculations are determined directly by
optimization of response properties rather than by energy
optimization of negative ions, which has been a common
practice so far. The ground-state wave function of negative
ions has a much slower exponential decay than the ground-
state wave function of the corresponding neutral atom. Thus,
basis set augmentations optimized using negative ions typi-
cally contain very diffuse functions. �Additional complica-
tions arise for atoms whose negative ions are unbound.� For
molecules with more than a few atoms, such augmentations
become impractical, causing near linear dependence and in-
efficiency of integral prescreening. This is undesirable, espe-
cially because highly diffuse basis functions may not even be
necessary for accurate response property calculations. The
first-order wave function ��1� generally has the same expo-
nential decay as the zero-order wave function ��0�. Thus,
adding more and more diffuse functions will not improve
��1� significantly once the exponents drop below a certain
threshold determined by ��0�.

We illustrate this argument for the 1s ground state of
hydrogen atom with zero-order wave function

��0��r� =
1


�
e−r. �4�

It is well-known that for a dipole perturbation by a uniform
electric field E=Eez, the first-order wave function is

��1��r� = − zE�1 +
r

2
���0��r� . �5�

Obviously, ��1� has the same exponential decay as ��0�,
whereas augmentation optimized for negative ions or excited
states will exhibit a spuriously slow exponential decay.
Equation �5� also shows that basis sets for first-order electric
dipole perturbed wave functions must span products of the
occupied MOs and the monomials x ,y ,z, which is achieved
by polarization functions with angular momentum �1 �+1
for s functions�. A qualitative description of the radial factor
�1+r /2� by nodeless Gaussians requires at least two primi-
tive polarization functions with different exponents.

III. ANALYTICAL BASIS SET GRADIENTS OF
ELECTRONIC POLARIZABILITIES

Analytical basis set derivatives are a crucial prerequisite
for efficient basis set optimization. Analytical polarizability
gradients are conveniently derived and implemented using
polarizability Lagrangian theory.25 First, a polarizability La-
grangian L is constructed, which is stable with respect to all
parameters, including ground-state MO coefficients. L equals
the negative polarizability at its minimum. After L has been
minimized, analytical polarizability gradients are obtained
from the Hellmann–Feynman theorem. The static HF polar-
izability basis set gradients considered here are a special case
of the analytical polarizability derivative methods developed
in Ref. 25, to which the reader is referred for details. The

only difference of the present work from Ref. 25 is that in
the present work derivatives are taken with respect to basis
set exponents rather than nuclear coordinates. The basis set
gradients of polarizabilities were implemented in the EGRAD

module36,37 of the TURBOMOLE program package.38,39

IV. CASE STUDY: FLUORINE ATOM

We begin by investigating the effect of diffuse basis
functions on the static polarizability of fluorine atom in the
spin-unrestricted HF �UHF� approximation. Sets of primitive
diffuse functions were added to Karlsruhe def2 ground-state
basis sets and fully optimized by maximizing the atomic po-
larizability. Thus, the maximum polarizability achievable by
a given diffuse augmentation is obtained. This procedure al-
lows us to assess the relative contributions of individual BF
shells to polarizabilities and to select the BFs yielding the
largest increase in polarizability. In addition, we can map out
the range of Gaussian exponents important for first-order re-
sponse.

The effect of a successive augmentation of the def2 basis
sets for the fluorine atom is shown in Fig. 1. The split-
valence plus polarization �def2-SVP� basis set underesti-
mates the basis set limit for the static polarizability by as
much as 65%. The basis set limit is 3.30 a.u. in the UHF
approximation, while the restricted open-shell HF method
yields 3.28 a.u.40 The largest improvement in polarizability is
obtained by adding a BF shell of d symmetry �1d augmen-
tation�. The resulting basis set, denoted by SVP+1d, has
23% basis set error. Further 1s augmentation and reoptimi-
zation of all additional BF exponents �yielding the SVP
+1s1d basis set� reduces the basis set error to 14%. These
results are not surprising since the polarization of the fluorine
atom is dominated by the deformation of the highest-lying
occupied p orbitals �l=1�, whose first-order electric dipole
response has s and d symmetry. The case of the fluorine atom
also illustrates the need to balance diffuse polarization and
diffuse valence BFs. The largest improvement relative to the
SVP+1s1d basis set for fluorine is achieved by an additional
shell of diffuse p functions. After reoptimization of BF ex-
ponents �resulting in the SVP+1s1p1d basis set� the basis set
error is reduced to less than 3%. The additional diffuse p BF
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FIG. 1. Effect of incremental augmentation of SVP, TZVPP, and QZVPP
basis sets on the isotropic static HF polarizability of fluorine atom.
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shell polarizes the 2s valence shell and improves the outer
region of the occupied p orbitals, but contributes little to the
ground-state energy.

A similar picture emerges for triple- and quadruple-zeta
basis sets of fluorine �see Fig. 1�. The unaugmented triple-
zeta valence basis set with two sets of polarization functions
�def2-TZVPP� and the corresponding quadruple-zeta basis
set �def2-QZVPP� are far from the basis set limit for the
static polarizability, having 45% and 33% basis set error,
respectively. This sharply contrasts with the relative error of
def2-QZVPP for the fluorine HF ground-state energy, which
is approximately 3 ppm.26 The largest improvements of the
atomic polarizability are again obtained by 1d augmentation,
with TZVPP+1d and QZVPP+1d basis sets reducing the
basis set errors to 9% and 8%, respectively. Augmented
TZVPP+1s1p1d and QZVPP+1s1p1d basis sets are already
close to the basis set limit, with errors of 0.8% and 0.5%,
respectively. Thus, 1s1p1d augmentation is adequate irre-
spective of the orbital basis set size.

The effect of multiple augmentation with diffuse polar-
ization functions is illustrated in Fig. 2. Starting with the
unpolarized split-valence �SV�, triple-zeta valence �TZV�,
and quadruple-zeta valence �QZV� basis sets for fluorine,26

we successively added primitive d functions. All d BF expo-
nents were reoptimized in each step. As is seen from Fig. 2,
the polarizability increment �	n of the n-fold augmented
basis set relative to the n−1 augmentation decreases expo-
nentially with n. Therefore, each additional d function yields
an improvement about one order of magnitude smaller than
the previous BF. The observed strong decrease of the polar-
izability increment suggests that a large number of diffuse
BFs are unnecessary if optimized exponents are used. The
polarizability increment is virtually independent of the initial
basis set here since d orbitals have no significant occupation
in the UHF ground state of fluorine atom.

V. BASIS SET DESIGN

Augmented Gaussian basis sets were constructed for the
elements H–Rn �except lanthanides� by diffuse augmentation
of the Karlsruhe def2-SVP, def2-TZVPP, and def2-QZVPP
basis sets.26 Stuttgart effective core potentials �ECPs� were
used41,42 for the elements Rb–Rn. All basis set optimizations

were performed for isotropic static UHF polarizabilities of
the atoms in their ground states. The starting def2 basis sets
were successively augmented with uncontracted diffuse BFs,
with a reoptimization of all diffuse basis set exponents per-
formed in each augmentation step. The target accuracy for
the augmented SVP basis sets, denoted by SVPD in the fol-
lowing, was 6%–8% basis set error for atomic polarizabil-
ities. Augmented TZVPP basis sets �TZVPPD� were required
to have no more than 2% basis set error, and augmented
QZVPP basis sets �QZVPPD� were required to be within 1%
of the atomic basis set limits.

The resulting augmentation is shown in Table I. The aug-
mentation patterns for the individual elements are deter-
mined by the angular momentum of the highest occupied
orbital. Augmentation with one set of diffuse p functions
�1p� is used for s- and d-block elements. 1s1d augmentation
is employed for early p-block elements �groups 13–15�,
while late p-block elements �groups 16–18� require addi-
tional diffuse valence p functions, corresponding to a 1s1p1d
augmentation. As in the case of fluorine atom, there is no
need to increase the diffuse augmentation with the size of the
initial basis set to achieve the target accuracy. For s- and
d-block metals, we even observe the opposite trend, i.e.,
fewer additional functions are needed because the def2-
TZVPP and def2-QZVPP basis sets for these elements al-
ready include fairly diffuse valence and polarization BFs. As
a result, the def2-QZVPP basis sets of 2s, 3s, and 4d ele-
ments as well as the def2-TZVPP and def2-QZVPP basis sets
of most 4s–6s and 5d elements meet our accuracy criteria
without further augmentation. Exceptions are def2-TZVPP
basis sets of K, Au, and Hg and def2-QZVPP basis sets of
Hf–Re, which require an additional p function in the polar-
ization �rather than diffuse� subset. def2-SVP basis sets of 4d
and 5d elements were also augmented using an additional p
polarization function per basis set. The exponents of the ad-
ditional polarization functions were obtained by geometric
interpolation of the neighboring BF exponents. These addi-
tional polarization functions have little effect on atomic
ground-state energies but appear to be essential for a correct
description of first-order response. The exponents of diffuse
basis functions follow the general trend of the lowest expo-
nents of unaugmented basis sets and differ from the latter by
factors of 0.2–0.6. The ratio depends on the position in the
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FIG. 2. Incremental contributions of d basis functions to the isotropic static
HF polarizability of fluorine atom with SV, TZV, and QZV basis sets.

TABLE I. Augmentation for def2 basis sets.

Groups �block�

Augmentation

SVP TZVP/TZVPP QZVP/QZVPP

1–2 �s� 1p 1p a,b 1p c

3–12 �d� 1p d 1p e,f 1pg

13–15 �p� 1s1d 1s1d 1s1d
16–18 �p� 1s1p1d 1s1p1d 1s1p1d

aAugmentation only for TZVPP basis sets of H, He, Li, Be, Na, and Mg.
b2p polarization set from Ref. 43 was used for K instead of 1p.
cAugmentation only for QZVPP basis sets of H and He.
d1p was inserted in the SVP polarization basis sets of Y–Cd, La, and Hf–Hg.
eAugmentation only for TZVPP basis sets of Sc–Zn, La, and Hf–Hg.
f1p was inserted in the TZVPP polarization basis sets of Au and Hg.
gAugmentation only for QZVPP basis sets of Hf–Re.
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Periodic Table and the size of the underlying orbital basis set.
The diffuse augmentation developed for def2-TZVPP and
def2-QZVPP basis sets may also be combined with the
smaller def2-TZVP and def2-QZVP basis sets,26 yielding the
TZVPD and QZVPD basis sets, respectively. Further details
of the basis set construction and the final optimized basis sets
are available as supplementary information.44 The new basis
sets are also available for free download from http://
www.turbomole.com and from EMSL basis set exchange.45

VI. ASSESSMENT

A. Atomic polarizabilities

Table II summarizes statistical error measures for aug-
mented and unaugmented Karlsruhe def2 basis sets. �A com-
plete list of results for atomic polarizabilities is provided as
supplementary information.� The relative basis set errors of
isotropic static polarizabilities of the atoms H–Rn �except
lanthanides� in the UHF approximation are shown. The ref-
erence atomic polarizability values, which estimate the HF
basis set limits, were computed using extended def2-QZVPP
basis sets constructed by downward extrapolation from def2-
QZVPP basis sets26 �1s1p1d1f extrapolation for the elements
H–Be and 1s1p1d1f1g extrapolation for all others�. These
basis sets yield results within 1% of the published basis set
limits for atomic HF polarizabilities.40 Mean errors, mean
unsigned errors, as well as the largest positive and negative
deviations are given for each basis set. Positive basis set
errors are mostly due to the effect of diffuse augmentation on
ground-state wave functions and are discussed below. The
addition of optimized diffuse basis functions strongly im-
proves atomic polarizabilities, reducing both mean unsigned
errors and maximal errors. For instance, a mean unsigned
error of 33.1% with def2-SVP basis sets is reduced to 3.8%
for SVPD, which perform better than the unaugmented def2-
QZVPP basis sets �8.1% mean unsigned error�. Augmented
triple-zeta basis sets TZVPPD have 1.5% mean unsigned er-
ror for the atoms, while QZVPPD results are within 1% of
the basis set limit �0.4% mean unsigned error relative to the
reference basis sets�. TZVPD and QZVPD basis sets perform
well for atomic polarizabilities, with mean unsigned errors of
2.3% and 0.5%, respectively. The largest negative deviations
are found for the 3p elements Al–P and their 4p congeners.
The addition of a diffuse 1p basis set would not only reduce
the basis set errors further but would also affect occupied
ground-state orbitals and was thus not implemented.

Due to the maximum property of the polarizability �see
Sec. II�, one might expect that all deviations from the basis
set limits would be negative. While this is true for most
atoms, some elements �in particular, metals� show substantial
positive deviations with small basis sets, exceeding the basis
set limit by as much as 10%, e.g., for Li with the SVPD basis
set. This deviation from the variational property of static
polarizabilities can have two causes. Besides the incomplete-
ness of reference basis sets, which can account for up to 1%
positive error, the large positive deviations seen in metal at-
oms result from the ground-state bias introduced to some
extent by diffuse augmentation, leading to a partial break-
down of the polarizability variational principle.

The balance between the valence, polarization, and dif-
fuse subsets is crucial for accurate molecular properties. This
balance is particularly important for atoms with relatively
low-lying diffuse excited states such as alkali metals. For
example, the polarizability of Li atom is underestimated by
38.6% using the def2-SVP basis set. However, upon 1p aug-
mentation �SVPD basis set�, the atomic polarizability is
overestimated by 10.6%. Using triple-zeta basis sets strongly
reduces the ground-state bias: the TZVPPD polarizability of
Li atom is 1.7% smaller than the basis set limit, in accord
with the variational principle. We conclude that the ground-
state bias and the resulting relative overestimation of polar-
izabilities may lead to fortuitous error cancellation if small
basis sets with extensive augmentation are used, but it also
produces numerical instability in larger molecular applica-
tions and a strongly system-dependent tendency to over-
polarize. Our strategy to minimize this imbalance is to start
from fully optimized valence basis sets and add the smallest
possible number of diffuse functions necessary to obtain ac-
curate polarizabilities.

B. Molecular tests of augmented basis sets

We used a set of 313 small molecules including the ele-
ments H–At �except lanthanides and noble gases� to assess
the quality of the optimized augmented basis sets across a
broad range of bonding situations and oxidation states. The
test set employed here is based on the compilation of
Weigend and Ahlrichs,26 with a few substitutions.46 Mean
errors, mean unsigned errors, and maximal negative and
positive deviations are presented in Table III for SVPD, TZ-
VPD, TZVPPD, QZVPD, and QZVPPD basis sets. The re-
sults for the def2-SVP, def2-TZVPP, and def2-QZVPP basis

TABLE II. Basis set errors of isotropic static HF polarizabilities of neutral atoms H–Rn �except lanthanides�
with def2 basis sets and augmented def2 basis sets in %. Mean errors, mean unsigned �mean uns.� errors, and
maximum negative �max. neg.� and positive �max. pos.� deviations relative to the extended def2-QZVPP basis
sets. See text and Table I for the basis set definitions.

SVP SVPD TZVPP TZVPD TZVPPD QZVPP QZVPD QZVPPD

Mean 
33.1 
2.4 
20.2 
2.2 
1.4 
8.1 
0.3 
0.2
Mean uns. 33.1 3.8 20.2 2.3 1.5 8.1 0.5 0.4
Max. neg. 
88.3 
10.8 
57.8 
15.8 
6.1 
38.4 
2.2 
1.8

�H� �Al� �H� �Ti� �Ga� �H� �Pt� �Nb�
Max. pos. 3.5 10.6 ¯ 1.0 1.0 0.0 1.3 1.3

�La� �Li� ¯ �Na� �Na� �Cs� �Ne� �Ne�
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TABLE III. Basis set errors of isotropic static HF polarizabilities of 313 small molecules with def2 basis sets
and augmented def2 basis sets in %. Mean errors, mean unsigned �mean uns.� errors, and maximum negative
�max. neg.� and positive �max. pos.� deviations relative to the extended def2-QZVPP basis sets. See text and
Table I for the basis set definitions.

SVP SVPD TZVPP TZVPD TZVPPD QZVPP QZVPD QZVPPD

1s, 2p elements �40 molecules�
Mean 
26.0 
3.1 
10.8 
0.6 
0.4 
5.8 
0.1 
0.1

Mean uns. 26.0 3.1 10.8 0.6 0.4 5.8 0.1 0.1

Max. neg. 
49.8 
5.9 
27.3 
2.2 
1.2 
17.4 
0.3 
0.3

�HF� �N2� �HF� �H2� �C2H2� �HF� �N2H2� �N2H2�
Max. pos. ¯ ¯ ¯ 0.2 0.4 ¯ 0.6 0.6

¯ ¯ ¯ �F2� �H2� ¯ �HF� �HF�

3p elements �31 molecules�
Mean 
29.2 
2.5 
13.6 
0.3 
0.3 
5.7 
0.0 
0.0

Mean uns. 29.2 2.5 13.6 0.3 0.3 5.7 0.1 0.1

Max. neg. 
50.4 
9.3 
30.0 
1.9 
1.9 
14.4 
0.5 
0.5

�HCl� �P2� �HCl� �P2� �P2� �HCl� �P2� �P2�
Max. pos. ¯ ¯ ¯ 0.3 0.3 ¯ 0.4 0.4

¯ ¯ ¯ �Cl2� �Cl2� ¯ �HCl� �HCl�

4p elements �26 molecules�
Mean 
24.7 
1.7 
11.6 
0.3 
0.3 
6.8 
0.1 0.0

Mean uns. 24.7 1.9 11.6 0.4 0.4 6.8 0.2 0.1

Max. neg. 
41.1 
3.5 
22.3 
1.2 
1.1 
18.2 
0.5 
0.1

�HBr� �GaF2� �HBr� �AsH3� �AsH3� �HBr� �GeF4� �GaF2�
Max. pos. ¯ 1.4 ¯ 0.3 0.3 ¯ 0.3 0.3

¯ �GaO� ¯ �SeH2� �SeH2� ¯ �SeH2� �SeH2�

5p elements �22 molecules�
Mean 
25.8 
1.7 
12.6 
0.2 
0.2 
4.4 
0.0 
0.0

Mean uns. 25.8 1.7 12.6 0.2 0.2 4.4 0.1 0.1

Max. neg. 
41.5 
3.8 
22.3 
0.7 
0.7 
8.3 
0.2 
0.2

�HI� �InCl3� �HI� �SbF� �SbF� �HI� �SbF� �SbF�
Max. pos. ¯ ¯ ¯ 0.1 0.1 ¯ 0.1 0.1

¯ ¯ ¯ �SbO2� �SbO2� ¯ �SbCl6
−� �SbCl6

−�

6p elements �18 molecules�
Mean 
23.5 
2.0 
11.7 
0.2 
0.1 
4.1 
0.0 
0.0

Mean uns. 23.5 2.0 11.7 0.3 0.2 4.1 0.1 0.1

Max. neg. 
38.6 
3.7 
24.5 
0.9 
0.9 
8.2 
0.3 
0.3

�BiF� �TlCl3� �BiF� �BiF� �BiF� �BiF� �BiF� �BiF�
Max. pos. ¯ 0.0 ¯ 0.4 0.4 ¯ 0.1 0.1

¯ �At2� ¯ �PbF3� �PbF3� ¯ �At2� �At2�

2–6s elements �58 molecules�
Mean 
18.1 
3.3 
10.6 
1.3 
1.2 
3.8 
0.4 
0.3

Mean uns. 18.3 3.9 10.6 1.3 1.3 3.8 0.5 0.5

Max. neg. 
40.9 
12.4 
24.8 
7.0 
5.4 
10.1 
2.1 
2.4

�LiCl� �Li2O� �LiF� �Li2O� �Na2O� �NaF� �BaF� �Na2O�
Max. pos. 5.6 4.3 ¯ 1.7 1.7 ¯ 0.6 0.7

�Na2O� �K3P� ¯ �K3P� �K3P� ¯ �MgF2� �NaF�

3d elements �50 molecules�
Mean 
29.8 
4.4 
10.4 
1.5 
1.1 
3.0 
0.6 
0.2

Mean uns. 29.8 5.0 10.4 1.6 1.2 3.0 0.7 0.3

Max. neg. 
53.7 
29.5 
21.9 
9.9 
9.1 
7.3 
6.5 
3.7

�NiO� �FeO� �NiO� �FeO� �FeO� �ZnF2� �FeO� �TiO�
Max. pos. ¯ 4.4 ¯ 2.1 1.1 ¯ 0.3 0.4

¯ �CrO3� ¯ �ZnO� �ZnO� ¯ �MnO4
−� �MnO�
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sets are shown for comparison. Extended def2-QZVPP basis
sets �see Sec. V for definition� were used as a reference. The
geometric structures and electronic occupations of all mol-
ecules in the test set are provided as supplementary informa-
tion.

The test set is divided into subsets corresponding to dif-
ferent blocks of the Periodic Table in order to analyze the
consistency of the basis set construction. The 1s, 2p subset
includes compounds consisting of the elements H and B–F.
Unaugmented basis sets show rather slow convergence to-
ward the basis set limit. Even with extensive def2-QZVPP
basis sets, which are virtually at the basis set limit for HF
ground-state energies,26,29 the mean unsigned error is 5.8%
for polarizabilities, while the maximal deviation is 
17.4%.
On the other hand, SVPD basis sets are already of fair accu-
racy �3.1% mean unsigned error and 
5.9% maximum er-
ror�. TZVPD and TZVPPD results are more accurate and
very similar to each other, with mean unsigned errors of less
than 1%. QZVPD and QZVPPD results are essentially at the
basis sets limit for polarizabilities, featuring less than 0.5%
residual basis set error.

Results for compounds of 3p �Al–Cl� and 4p �Ga–Br�
elements are similar to those for 2p elements. SVPD basis
sets make for a reasonable accuracy with less than 3% mean
unsigned error. Polarizabilities computed with TZVPD and
TZVPPD basis sets are accurate to within 1% relative to the
reference, while QZVPD and QZVPPD basis sets are again
very close to �occasionally above� the reference value. The
use of ECPs for core electrons in the heavier 5p �In–I� and

6p �Tl–At� elements has little impact on polarizabilities and
does not alter the basis set convergence. SVPD basis sets are
accurate to within 2%, while the augmented triple- and
quadruple-zeta basis sets are within 0.5% of the reference
value for compounds of 5p and 6p elements.

Alkali and alkali earth metals form strongly ionic com-
pounds, which pose a challenge for any basis set optimiza-
tion method based on neutral atoms. High electron densities
on the electronegative counterions slow down the basis set
convergence of polarizabilities, especially in fluorides and
oxides, and lead to large basis set errors for unaugmented
basis sets. In addition, positive deviations from the basis set
limit are observed for small metal clusters such as Mg4 and
Li8 and the phosphides Na3P and K3P. The positive devia-
tions are largest for SVPD basis sets and become smaller for
TZVPPD and QZVPPD basis sets, which indicate that they
are caused by an imbalance between the valence/polarization
and diffuse parts of the basis sets, similar to the parent metal
atoms �see Sec. VI A�. The mean unsigned errors for the
s-block compounds are 3.9% with SVPD basis sets, 1.3%
with TZVPD and TZVPPD basis sets, and 0.5% with QZ-
VPD and QZVPPD basis sets, respectively.

Many transition metal compounds exhibit significant
multireference character, i.e., multiple determinants contrib-
ute strongly to the ground-state wave function. Frequently,
the multireference character manifests itself as an instability
of the HF ground-state solution,47–49 leading in extreme
cases even to negative static HF polarizabilities, e.g., 
250.8
a.u. for ZrF with def2-SVP basis sets. The basis set conver-

TABLE III. �Continued.�

SVP SVPD TZVPP TZVPD TZVPPD QZVPP QZVPD QZVPPD

4d elements �35 moleculesa�
Mean 
13.8 
3.3 
7.6 
2.3 
2.0 
2.5 
0.9 
0.3

Mean uns. 16.8 4.7 7.6 3.0 2.2 2.5 0.9 0.3

Max. neg. 
30.8 
15.1 
19.2 
12.5 
10.1 
6.9 
5.8 
1.4

�PdF� �PdF� �PdF� �PdF� �PdF� �CdF2� �PdF� �MoH�
Max. pos. 40.7 23.1 0.3 6.0 3.4 ¯ 0.6 0.2

�RhF4� �RhF4� �RhF4� �RhF4� �RhF4� ¯ �RhF4� �RhF4�

5d elements �33 molecules�
Mean 
14.9 
3.5 
8.3 
2.4 
2.1 
2.9 
1.1 
0.7

Mean uns. 15.9 5.0 8.3 3.2 2.5 2.9 1.5 1.1

Max. neg. 
28.8 
17.8 
25.2 
17.8 
14.1 
12.9 
11.4 
11.5

�HfF3� �WO� �ReH� �TaF� �WO� �WO� �WO� �WO�
Max. pos. 16.5 8.1 ¯ 6.2 6.0 ¯ 5.9 5.9

�ReO2� �AuCl3� ¯ �OsOF5� �OsOF5� ¯ �OsOF5� �OsOF5�

Total �313 moleculesb�
Mean 
22.7 
3.1 
10.6 
1.1 
1.0 
4.2 
0.4 
0.2

Mean uns. 23.2 3.6 10.6 1.4 1.1 4.2 0.5 0.3

Max. neg. 
53.7 
29.5 
30.0 
17.8 
14.1 
18.2 
11.4 
11.5

�NiO� �FeO� �HCl� �TaF� �WO� �HBr� �WO� �WO�
Max. pos. 40.7 23.1 0.3 6.2 6.0 ¯ 5.9 5.9

�RhF4� �RhF4� �RhF4� �OsOF5� �OsOF5� ¯ �OsOF5� �OsOF5�
a34 molecules for SVP basis sets �ZrF excluded�.
b312 molecules for SVP basis sets �ZrF excluded�.
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gence is generally slower in these molecules compared to
compounds with stable HF ground states, with larger devia-
tions, both positive and negative, occurring for small basis
sets. Typical examples are the low-valent metal oxides, e.g.,
FeO and TiO, and fluorides, e.g., PdF and HfF.

The basis set convergence of 3d transition metal com-
pounds is affected both by stability issues and in part by
ionic character. Polarizabilities are underestimated by 29.8%
on average with def2-SVP basis sets; the maximum deviation
is 
53.7% for NiO. Diffuse 1p augmentation reduces the
mean unsigned error to 5.0%, while the largest negative and
positive deviations are 
29.5% for FeO and 4.4% for CrO3,
respectively. Mean unsigned errors of augmented basis sets
decrease to 1.2% and 0.3% for the TZVPPD and QZVPPD
basis sets, respectively. However, maximum deviations can
still be significant with augmented basis sets in the presence
of HF ground-state instabilities. For example, the deviation
is as large as 
3.7% for TiO with the QZVPPD basis set.

Similarly, larger maximum deviations are seen for the 4d
transition metal compounds, particularly with small basis
sets. def2-SVP basis sets show a maximum negative devia-
tion of 
30.8% for PdF and a maximum positive deviation
of 40.7% for RhF4. The mean unsigned error is 16.8%. Aug-
mentation with a 1p set reduces the maximum errors to

15.1% and 23.1%, respectively, while the mean unsigned
error decreases to 4.7%. Both the mean error and the spread
are reduced with TZVPPD and QZVPPD basis sets com-
pared to their unaugmented counterparts. Mean unsigned er-
rors are 2.2% and 0.3% with TZVPPD and QZVPPD basis
sets, respectively. Maximum positive deviations are 3.4%
and 0.2% with TZVPPD and QZVPPD basis sets, respec-
tively. The basis set convergence of 5d element compounds
shows complications similar to that with 4d metal com-
pounds. While large deviations persist in problematic cases,
such as WO and OsOF5, even with large augmented QZVPD
and QZVPPD basis sets, the mean unsigned errors show sat-
isfactory convergence in the sequence of augmented basis
sets. SVPD basis sets have a mean unsigned error of 5.0%,
TZVPPD basis sets show 2.9% basis set error, while QZ-
VPPD basis sets are off the reference by 1.1%.

C. Summary and recommendations

SVPD basis sets exhibit a mean unsigned error of 3.6%
across the entire test set and are thus sufficiently accurate for
polarizability estimates and for exploratory calculations.
With mean unsigned errors of 1.4% and 1.1%, respectively,
TZVPD and TZVPPD basis sets may be recommended for
accurate routine calculations. They might also be preferable
for exploratory calculations in problematic cases such as
metal compounds. QZVPD and QZVPPD polarizabilities are
essentially at the basis set limit, with 0.5% and 0.3% mean
unsigned errors, respectively. Nevertheless, basis set conver-
gence may be severely impacted by ground-state instability
problems. In addition, the moderate augmentation developed
in this work is likely to be insufficient for notoriously diffi-
cult cases such as �small� anions,50,51 which require multiple
sets of diffuse BFs.

VII. APPLICATIONS

A. Basis set convergence of polarizabilities with
density functional and second-order Møller–Plesset
methods

The basis set convergence of static polarizabilities of
HCN and SO2 using HF, density functional, and MP2 theory
is displayed in Fig. 3. Approximate exchange-correlation
functionals include the local spin density approximation
�LSDA� of Perdew and Wang,52 the gradient-corrected func-
tional of Becke and Perdew �BP�,53,54 and the hybrid func-
tional of Perdew, Burke, and Ernzerhof �PBE0�.55 In addi-
tion, the effect of the resolution-of-the-identity
approximation �RI-J� for the Coulomb operator56–60 is inves-
tigated for the BP functional �BP/RI�. The RI-J approxima-
tion yields speedups of 10–100 for density functional calcu-
lations of ground-state energies58,60 and response
properties61,62 with nonhybrid exchange-correlation function-
als.

All polarizabilities were computed at the experimental
structures from Ref. 63 for HCN and from Ref. 64 for SO2,
respectively. HF and density functional results were obtained
by static linear-response calculations, while static MP2 po-
larizabilities were computed by finite-field methods. For
comparison, the experimental static polarizabilities of HCN
and SO2 are 17.5 a.u. �Ref. 65� and 23.45 a.u,66 respectively.
HF theory is known to underestimate molecular
polarizabilities,67–69 while LSDA and gradient-corrected
functionals tend to overestimate polarizabilities.68,70 Hybrid
functionals yield quite accurate polarizabilities and are con-
sidered a good compromise between accuracy and computa-
tional cost.71,72 The MP2 method significantly improves
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FIG. 3. Basis set convergence of isotropic static polarizabilities of HCN
�upper panel� and SO2 �lower panel� at experimental equilibrium geometries
with HF, density functional, and MP2 methods. See text for computational
details.

134105-8 D. Rappoport and F. Furche J. Chem. Phys. 133, 134105 �2010�



upon HF for static polarizabilities and compares well to
higher-level correlation methods.67,69 However, all computed
polarizabilities exhibit slow convergence toward basis set
limit with unaugmented basis sets. In fact, as seen from Fig.
3, the basis set errors outweigh the differences between all
methods for def2-SVP basis sets and are larger than or com-
parable to method errors if def2-TZVPP basis sets are used.
Even with def2-QZVPP, the polarizabilities are not con-
verged with respect to the basis set, as indicated by the slope
of polarizability curves in Fig. 3, in agreement with the HF
results of Sec. VI B.

Our property-optimized augmented basis sets improve
basis set convergence significantly for all methods consid-
ered here; note the different scales for augmented basis sets
in Fig. 3. The basis set errors are clearly smaller than the
method errors if TZVPPD or QZVPPD basis sets are used.
The residual error of TZVPPD basis sets compared to QZ-
VPPD is less than 1% for HF and density functional methods
and for MP2. Thus, the performance of the augmented basis
sets developed here appears to be transferable to density
functional and correlated wave function methods. More ex-
tensive tests involving the 1s, 2p, and 3p subsets of the mo-
lecular test set from Sec. VI B show that SVPD basis sets are
within 4% of the basis sets limit for the BP and PBE0 func-
tionals, while TVZPPD and QZVPPD basis sets are within
1% and 0.5% of the reference values, respectively. �See
supplementary information for the complete results.� The
RI-J errors are small even though unaugmented auxiliary
basis sets59 were used. The effect of the RI-J approximation
is 0.1% and thus well below the atomic orbital basis set
error. Full statistical information on the molecular test calcu-
lations with BP and PBE0 functionals is available as supple-
mentary information.

B. Polarizabilities of icosahedral fullerenes

The static polarizability of fullerene C60 is of fundamen-
tal and technological importance and has repeatedly trig-
gered theoretical studies,73,74 most recently a massively par-
allel coupled-cluster singles doubles calculation on 1024

CPUs.75 Table IV displays the performance of the basis sets
developed here along with previous theoretical and experi-
mental results. The structures for the present calculations
were optimized at the BP/SVP level; quadrature grids were
of size m4.

The SVPD, TZVPPD, and QZVPPD basis results show
rapid, monotonous basis set convergence of the isotropic po-
larizability. Taking the QZVPPD result as a reference, the
SVPD basis set error is already below 1%. This rapid con-
vergence is in part due to the size of C60, making basis set
convergence less critical than in smaller systems. The aug-
cc-pVDZ basis set performs slightly worse than SVPD even
though it contains an extra p shell and considerably more
diffuse exponents. The aug-cc-pVDZ, Sadlej, and QZVPPD
basis sets required tighter integral neglect thresholds to con-
verge the ground-state energy to 10−7 hartree. Thus, while
the Sadlej result is appealingly close to the basis set limit, the
use of this basis set comes at a high cost and may not be
practical for larger or less symmetric systems.

Although the agreement of the converged PBE0 result of
555.9 a.u. with the CCSD result of 554.4 a.u. is somewhat
fortuitous, Table IV is strong evidence for the excellent price
to performance ratio of PBE0/SVPD. In contrast, the PBE0/
SVP result is off by 50.1 a.u., approximately five times the
difference between the converged HF and the CCSD results.
This once more underlines the importance of basis set error
versus method error in polarizability calculations, especially
in larger systems, where augmented basis sets were previ-
ously prohibitive.

The numerical difficulties, which are frequently encoun-
tered with diffuse augmented basis sets, can be traced back
to the condition of the overlap matrix. The presence of very
low basis function exponents in augmented basis sets in-
creases the condition number by several orders of magnitude,
resulting in slow convergence of iterative procedures and a
significant accumulation of round-off errors in finite-
precision arithmetic. In Table V, we illustrate the evolution
of the lowest Gaussian exponents and overlap condition
numbers of fullerene C60 with increasing basis set size. As
expected, condition numbers increase with growing basis set
size for all basis set hierarchies. However, the SVPD, TZ-

TABLE IV. Static isotropic polarizability 	iso �in a.u.� of fullerene C60.

Method Basis set 	iso

PBE0 SVP 505.8
PBE0 SVPD 551.1
PBE0 TZVPPD 555.5
PBE0 QZVPPD 555.9
PBE0 aug-cc-pVDZ 544.2
PBE0 Sadlej 556.0
HF QZVPPD 543.6
HF 6-31++G 507.0a

CC2 aug-cc-pVDZ 623.7b

CCSD ZPolX 554.7c

Expt. 516�54,d 533�27e

aReference 73.
bReference 74.
cReference 75.
dMolecular beam deflection �Ref. 76�.
eMass spectrometry �Ref. 77�.

TABLE V. Lowest Gaussian exponents �min of s, p, and d basis functions
and overlap condition numbers � of fullerene C60 with various diffuse aug-
mented basis sets.

Basis set �min�s� �min�p� �min�d� �

SVPD 0.067 0.153 0.117 4.1�107

TZVPPD 0.048 0.101 0.091 4.8�109

QZVPPD 0.045 0.076 0.077 6.8�1011

aug-cc-pVDZa 0.047 0.040 0.151 3.8�109

aug-cc-pVTZa 0.044 0.036 0.100 4.8�1010

aug-cc-pVQZa 0.041 0.032 0.077 5.4�1011

aug-pc-1b 0.045 0.034 0.101 4.9�1010

aug-pc-2b 0.037 0.026 0.079 2.1�1012

aug-pc-3b 0.032 0.019 0.057 3.3�1015

Sadlejc 0.048 0.039 0.039 5.7�109

aReference 11.
bReference 17.
cReferences 19 and 20.
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VPPD, and QZVPPD basis sets show condition numbers one
to two orders of magnitude smaller than the corresponding
aug-cc-pVXZ basis sets11 and about three orders of magni-
tude smaller than the aug-pc-n basis set hierarchy17 for C60.
The main difference stems from the fact that energy minimi-
zations performed on anions yield diffuse p functions for
carbon, which have relatively small contributions to polariz-
abilities and are not included in property-optimized aug-
mented basis sets �see Sec. V and Table I�. The exponents of
s functions are somewhat higher, while exponents of d func-
tions are slightly lower for property-optimized basis sets
compared to the aug-cc-pVXZ hierarchy. These results show
that while higher overlap condition numbers due to diffuse
augmentation cannot generally be avoided, full optimization
of diffuse basis functions appears to result in the smallest
increase in overlap numbers for a given level of accuracy.

Table VI compares PBE0/SVPD isotropic polarizabil-
ities of icosahedral fullerenes with 60, 240, 540, and 720
carbon atoms to previous results. In view of its performance
for C60, the PBE0/SVPD method should be accurate to
within few percent for higher fullerenes and will be used as a
reference. For C60 and C240, the PBE /5s3p1d finite-field re-
sults by Zope and co-workers79 agree well with PBE0/
SVPD; there is a significant 4% deviation for C540, how-
ever. The sum-over-states analytic DFT results with
semiempirical screening correction by the same authors
agree well with PBE0/SVPD for C240 and C720 but are sig-
nificantly too small for C60 and C540. The semiempirical
Pariser–Parr–Pople method78 is very accurate for C240 but
underestimates the PBE0/SVPD polarizability of C720 by
23%. Clearly, the basis sets developed here make it possible
to compute polarizabilities of molecules in the 100–1000 at-
oms regime at a level of theory that was too costly in the
past.

The isotropic polarizability per atom �see Fig. 4� exhibits
a minimum for C240 for all methods considered here. Re-
markably, this trend does not correlate with the energy dif-
ference between the highest occupied and the lowest unoc-
cupied MO, which is the largest for C60, but is in line with
strain arguments,80 suggesting that C240 is the most inert
fullerene. The PBE0/SVPD curve differs from the others by
exhibiting a negative curvature for larger fullerene sizes,
possibly indicating a saturation of the polarizability per atom
for large icosahedral fullerenes.

VIII. CONCLUSIONS

Bigger is not necessarily better for diffuse basis set aug-
mentation. The balance between improved response proper-

ties and stability of the ground state can be delicate, espe-
cially for smaller valence basis sets. Excessive diffuse
augmentation leads to spurious overpolarization, ill-
conditioned overlap matrices, and a breakdown of integral
prescreening and other low-order scaling methods. Thus, it
has been very challenging to compute converged polarizabil-
ities and other response properties for molecules with more
than 50 atoms in the past.

The basis sets developed here effectively address these
problems for most density functional and low-cost correlated
wave function treatments. The central ideas underlying our
basis sets are as follows: �i� basis sets for molecular response
calculations must be optimal for response properties rather
than ground-state energies of atomic anions and �ii� the
smallest possible number of diffuse functions should be em-
ployed. This strategy is implemented by variational maximi-
zation of atomic HF polarizabilities using analytical deriva-
tive methods. The resulting property-optimized basis sets are
smaller and less diffuse than augmented Dunning or Sadlej
basis sets, yet their accuracy for molecular polarizabilities is
similar. The numerical stability and computational efficiency
of the present basis sets makes it possible to compute near
basis set limit polarizabilities for systems in the 100–1000
atoms regime. This eliminates a major source of error in
computed polarizabilities of large systems since method er-
rors of hybrid density functionals are typically a few percent,
while basis set error using conventional nonaugmented basis
sets can easily exceed 10%.

The basis sets developed here were optimized for dipole
polarizabilities. Preliminary results indicate that they are also
viable for transition dipole moments, Raman intensities, op-
tical rotations, and up to third-order nonlinear-response prop-
erties. Further work along these lines is in progress.
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TABLE VI. Static isotropic polarizability of icosahedral fullerenes �in a.u.�.

PPPa ADFTb PBE /5s3p1d c PBE0/SVPD

C60 526.3 533.1 553.4 551.1
C240 2017.8 2 024.5 1990.8 2 017.8
C540 6222.0 7 794.3 8050.8 8 395.4
C720 9494.9 12 470.9 N/A 12 342.9

aPariser–Parr–Pople theory �Ref. 78�.
bSum-over-states analytic DFT with screening correction �Ref. 79�.
cFinite-field PBE calculations �Ref. 79�.
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