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ARTICLE

Prophage exotoxins enhance colonization fitness in
epidemic scarlet fever-causing Streptococcus
pyogenes

Stephan Brouwer1,15, Timothy C. Barnett 1,2,15, Diane Ly3,4, Katherine J. Kasper5, David M. P. De Oliveira 1,

Tania Rivera-Hernandez1, Amanda J. Cork1, Liam McIntyre6, Magnus G. Jespersen 6, Johanna Richter1,

Benjamin L. Schulz1, Gordon Dougan7,8, Victor Nizet 9, Kwok-Yung Yuen 10,11,12, Yuanhai You13,

John K. McCormick 5,14,16, Martina L. Sanderson-Smith 3,4,16, Mark R. Davies 1,6,16 &

Mark J. Walker 1,16✉

The re-emergence of scarlet fever poses a new global public health threat. The capacity of

North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS)

to cause scarlet fever has been linked epidemiologically to the presence of novel prophages,

including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the

DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins.

We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular

stores is a previously unappreciated GAS virulence mechanism that promotes SSA release

and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1

is required for resistance to neutrophil killing. Investigating single, double and triple isogenic

knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act

synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer

insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir

exotoxins.
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S
carlet fever is a superantigen-mediated acute infectious
disease caused by the human-adapted pathogen group A
Streptococcus (GAS). Scarlet fever was a leading cause of

death in children in the early 1900s, but its incidence steadily
declined during the 20th century1,2. Large regional outbreaks of
scarlet fever re-emerged in North-East Asia in 2011, and the
United Kingdom in 2014 (refs 3–10), with factors driving disease
resurgence remaining a mystery. Alarmingly, recent studies
report GAS outbreak strains in other countries11–13, heightening
the need for global surveillance14.

Potential triggers for these new scarlet fever epidemics remain
unclear, but accumulating epidemiological evidence indicates that
novel prophages and antibiotic resistance elements have played a
significant role in the evolution, virulence and diversification of
scarlet fever causing GAS strains in North-East Asia4,15–17.
Detailed phylogenetic analyses of GAS outbreak isolates from
mainland China and Hong Kong prove that the increase in scarlet
fever cases was neither emm-type specific nor caused by the
spread of a single scarlet fever producing clone. Instead, multi-
clonal scarlet fever outbreak strains are commonly associated
with the acquisition of related exotoxin-carrying mobile genetic
elements15,17. Prophages encoding combinations of the strepto-
coccal superantigens SSA and SpeC, and the DNase Spd1, appear
to play an important role in the evolutionary pathway that lead to
the emergence of more virulent strains, particularly in North-East
Asia4–6,15–18. However, robust evidence defining the mechanistic
contribution of prophage-encoded exotoxins to the pathogenesis
of scarlet fever is lacking.

A universal feature of superantigens is their ability to cross-link
major histocompatibility complex II molecules on antigen-
presenting cells and the variable region of the β-chain of T-cell
receptor (TCR). This cross-linkage results in TCR Vβ-specific
activation of large populations of human T cells, without prior
antigen processing, rendering superantigens the most potent T-
cell mitogens known to date19. Recent studies suggest that such
T-cell activation contributes to the establishment of GAS infec-
tion at mucosal surfaces20,21. Here, we investigate the regulation
of ΦHKU.vir encoded exotoxin genes ssa, speC and spd1, and
their impact on the virulence of scarlet fever-causing GAS.
Exotoxin-driven enhanced colonization provides an evidence-
based hypothesis for the reemergence of scarlet fever globally.

Results
Regulation of ΦHKU.vir exotoxins. The majority of GAS emm12
clones from scarlet fever outbreaks in North-East Asia carry
superantigens SSA and SpeC and the DNase Spd1, as well as
integrative and conjugative elements (ICE) encoding tetracycline
(tetM) and macrolide (ermB) resistance4,15,17. Penicillin remains the
treatment of choice for GAS pharyngitis. However, in many
countries macrolides are commonly used as first-line therapy for
upper respiratory tract infections in primary health-care settings22.
To investigate the possibility that antibiotic treatment stress may
influence regulation of prophage-encoded toxins, macrolide-
resistant GAS emm12 scarlet fever isolate HKU16 harboring
ΦHKU.vir and ICE–emm12 was grown in THY medium contain-
ing erythromycin (2 µgml−1), the recommended drug in patients
with penicillin hypersensitivity23. RNA-seq analysis showed that
erythromycin treatment did not affect the gene expression pattern
of ΦHKU.vir (Fig. 1a), whereas expression levels of ICE-emm12-
encoded ermB gene and the adjacent transposase gene were sig-
nificantly increased (Supplementary Fig. 1). This finding aligns with
previous observations that erythromycin induces ermB, facilitating
its mRNA stabilization and processing24. Mitomycin C, a DNA-
damaging agent known to induce GAS prophage25, effectively
induced ΦHKU.vir housekeeping and structural gene expression

(Fig. 1a, Supplementary Fig. 1). Similar to prophage-encoded
virulence factor cargo genes in emm3 GAS25, mitomycin C did not
induce expression of the virulence cargo genes ssa, speC and spd1,
pointing to differential control of exotoxin expression in ΦHKU.vir.

Thiol-mediated induction of SSA release. Neutralizing anti-
bodies against SSA and SpeC have been detected in human
serum26–28, suggesting that GAS expresses the two superantigens
during infection. While there is further experimental evidence
that phage-associated exotoxins SpeC and Spd1 are induced
during host–pathogen interactions29,30, comparatively less is
known about the control of SSA expression. The ssa gene is
frequently associated with scarlet fever isolates from North-East
Asia15,17. As SSA production is detectable upon growth in a
chemically defined medium16, we undertook a limited small
molecule screen that identified cysteine as a factor specifically
increasing abundance of the exotoxin SSA in culture supernatants
(Fig. 1b, Supplementary Fig. 2). Cysteine is uniquely chemically
reactive, due to its thiol (or “sulfhydryl”) group that is a major
target of reactive oxygen species and readily forms disulfide bonds
with itself. We therefore examined whether SSA production was
subject to thiol-mediated regulation. Both dithiothreitol (DTT)
and the reduced form of glutathione (GSH) increased SSA pro-
duction in GAS culture supernatants (Fig. 1b). By contrast, oxi-
dized glutathione (GSSG) did not enhance SSA levels. Higher SSA
production was also detected in GAS cultures treated with thiol-
free reducing agent tris(2-carboxyethyl)phosphine (TCEP), sug-
gesting that exposure to reducing conditions enhances SSA pro-
duction. The levels of secreted SpeC and Spd1 were unaffected by
any of these treatments (Fig. 1b). Quantitative real-time poly-
merase chain reaction (PCR) showed no increase in abundance of
the ssa and speC transcripts, suggesting that reducing agents act
as post-transcriptional enhancers of SSA release (Fig. 1c). To
validate the requirement for thiols (reducing conditions) in SSA
regulation, we also performed alkylation of cysteine with acryla-
mide prior to treatment to irreversibly block the free thiol group,
resulting in a clear reduction of SSA, but not SpeC, release
(Supplementary Fig. 3a).

SSA is a thiol-activated superantigen. SSA contains a surface-
exposed Cys-26 residue that, based on the crystal structure of the
homologous SpeA superantigen in complex with TCR Vβ31, is
predicted to lie within the TCR binding interface (Supplementary
Fig. 3b). Prior site-directed mutagenesis has revealed a role for
Cys-26 in the mitogenic activity of SSA on human T cells by
preventing disulphide-linked dimer formation between the
surface-exposed Cys-26 residues of SSA32. Although a SSA dimer
was not detectable in HKU16 culture supernatants (Supplemen-
tary Fig. 3c), possibly due to very low concentration levels pre-
venting dimerization as previously observed for other
streptococcal superantigens33,34, we detected dimer formation by
purified recombinant SSA (Supplementary Fig. 3d) which led us
to investigate possible redox sensitivity of SSA activity. GSH, the
major low-molecular-weight thiol in living cells, markedly
increased the mitogenic potency of recombinant SSA on human
T cells by ~10-fold as assessed by enhanced IL-2 production
(Fig. 1d). However, thiol activation by GSH was absent in SSA
carrying a cysteine-to-serine substitution at position 26 (SSAC26S),
underscoring a critical role for the Cys-26 residue in thiol-
mediated activation. In contrast to SSA, the activity of SpeC, one
of the most potent T-cell mitogens35, was unaffected by GSH
treatment (Fig. 1d). These data establish a unique role for thiols in
SSA regulation and support a model where reducing agents not
only increase levels of extracellular SSA monomer, but also
directly enhance SSA-mediated T cell stimulation. To our

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18700-5

2 NATURE COMMUNICATIONS |         (2020) 11:5018 | https://doi.org/10.1038/s41467-020-18700-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


knowledge, this is the first report of a thiol-activated
superantigen.

Streptolysin O mediates release of host GSH. Like other species
of pathogenic Gram-positive bacteria, GAS produces a
cholesterol-dependent cytolysin, streptolysin O (SLO), that per-
forates host cell membranes36. In contrast to plasma and other
extracellular fluids that are low in thiol-based antioxidants, the
cytosol of mammalian cells is a highly reducing compartment
where thiols are present at high concentration. The most abun-
dant non-protein thiol in mammalian cells is GSH, with intra-
cellular concentrations typically in the millimolar range (~1–11
mM), compared to extracellular concentrations in the low

micromolar range37. This GSH concentration differential across
the plasma membrane led us to speculate that host cell membrane
damage by SLO, itself subject to thiol activation38, could provide
extracellular GAS with access to the intracellular GSH pool,
altering the redox environment and supporting SSA activation.

To test this hypothesis, we first quantified GSH release after
treatment of whole human blood with increasing concentrations
of purified SLO. SLO lysed red blood cells (Fig. 2a), and both
hemoglobin and total GSH (GSH+GSSG) accumulated rapidly
in plasma in a dose-dependent manner (Fig. 2a). In the context of
live GAS, wild-type scarlet fever-associated strain HKU16 caused
significant red blood cell hemolysis after 4 h growth in human
blood (Fig. 2b), paralleled by a significant and substantial release
of GSH into plasma (Fig. 2c). By contrast, an isogenic GAS

a

b

c d

Φ

Fig. 1 Post-transcriptional thiol-based regulation of SSA. a RNAseq expression profile of ΦHKU.vir in the macrolide- and tetracycline-resistant GAS

emm12 isolate HKU16, grown in THY broth with sub-inhibitory concentrations of erythromycin (Erm) and mitomycin C (MitC). The plots illustrate the

overall coverage distribution displaying the total number of sequenced reads. The region that encodes exotoxin genes (ssa in yellow, speC in red, and spd1 in

blue) is indicated. b Immunoblot detection of SSA, SpeC, and Spd1 in culture supernatants of HKU16 grown in a chemically defined medium (CDM) in the

presence of various redox-active compounds. Western blot signal intensities were quantified with ImageJ. Data are presented as mean values ± SD.

Statistical significance was assessed using one-way ANOVA with Dunnett’s multiple comparisons post hoc test against the CDM control group (***p <

0.001 for CDM+ Cys, **p= 0.008 for CDM+DTT, **p= 0.006 for CDM+GSH, and **p= 0.01 for CDM+ TCEP) (n= 4). c Quantitative real-time PCR

of ssa and speC transcripts in HKU16 grown in CDM treated with 2mM of the indicated redox-active compounds. Data from three biological replicates are

presented as mean values ± SD. d Superantigen (SAg) activation of human T cells with SSA (circular), SSAC26S (square), and SpeC (triangular) at the

indicated concentrations in absence (black; dash-dot line) or presence of 2 mM of GSH (white; dotted line), using human IL-2 as a readout. Results are

expressed as the mean ± SEM from three independent experiments from one representative donor (out of three independent donors). Statistical

significance was assessed by two-tailed unpaired Student’s t test (**p= 0.0062 for SSA+GSH at a Sag concentration of 104 pgmL−1, and *p= 0.0306 for

SSA+GSH at a Sag concentration of 105 pg mL−1). Source data are provided as a Source Data file.
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HKU16∆slo mutant did not induce hemolysis and plasma levels
of GSH were unchanged (Fig. 2b, c).

GAS serotype M12 strains belong to emm pattern A–C and
have been designated as “throat specialists” (ref. 39). In this
context, we used human pharyngeal cells (Detroit 562) to study
the effect of SLO-induced pore formation on GSH release as a
pharyngitis-relevant cellular model. Lactate-dehydrogenase
(LDH) release into the media serves as a marker of host cell
membrane integrity. As expected, SLO caused a dose-dependent
release of LDH of ~50% at 6.25 µg ml−1, confirming disruption of
the cell membrane structure (Fig. 2d). Dose-dependent cell
membrane damage following SLO exposure was again associated
with a progressive increase in GSH level in the media (Fig. 2d),
indicating that SLO-induced membrane disruption was sufficient
to trigger extracellular release of host cytosolic GSH stores.

Next, levels of LDH and GSH released by pharyngeal cells
following infection with live GAS (multiplicity of infection= 20
bacterial colony forming units (CFUs):cell) were measured. At 2 h
post infection, wild-type GAS HKU16 but not the HKU16∆slo
mutant induced a significant increase in levels of secreted LDH
and GSH (Fig. 2e, f). The addition of purified pore-forming
protein toxin SLO (6.25 µg ml−1) to pharyngeal cells grown in the
presence of HKU16∆slo markedly elevated extracellular LDH and
GSH to wild-type HKU16 levels during co-culture. To examine
whether the lack of GSH release following infection with
HKU16∆slo (Fig. 2f) might impact other aspects of GAS biology,
we measured growth in cell-free medium with and without GSH
supplementation. Supplementation with GSH strongly promoted
growth of wildtype GAS HKU16 in cell-free medium (Fig. 2g),
showing that host-derived GSH is utilized by GAS for other

a b

d

g

e f

c

Fig. 2 The cytotoxic activity of SLO causes the release of host cytosolic glutathione. a Dose-dependent hemolytic activity of purified recombinant SLO

(rSLO) in whole human blood is accompanied by an extracellular accumulation of glutathione. Hemolysis is expressed as percentage ± SD with respect to

the positive control (cells treated with 0.1% Triton X-100 (TX-100)) (n= 4). b Hemolytic activity of indicated HKU16 strains is expressed as percentage ±

SD (n= 3) with respect to the positive control (cells treated with 0.1% TX-100). Blood treated with HBSS (mock) served as a negative control. Statistical

significance was assessed using one-way ANOVA with Dunnett’s multiple comparisons post hoc test against the mock control group (****p < 0.0001 for

HKU16). c Extracellular accumulation of glutathione in blood (n= 3) infected with indicated HKU16 strains. Blood treated with HBSS (mock) served as a

negative control. Statistical significance was assessed using one-way ANOVA with Dunnett’s multiple comparisons post hoc test against the mock control

group (****p < 0.0001 for HKU16). d Release of lactate dehydrogenase (LDH) (closed circles) and glutathione (open circles) by pharyngeal cells treated

with varying concentrations of recombinant SLO. The release of LDH and glutathione into the culture medium was assessed after 2 h of treatment. LDH

release is expressed as percentage ± SD with respect to the positive control (cells treated with 0.2% TX-100). Cells treated with growth medium (mock)

served as a negative control. Data shown are representative of three independent experiments. LDH (e) and glutathione (f) release by pharyngeal cells

challenged with indicated HKU16 strains at a multiplicity of infection of 20:1 (bacterial colony forming units (CFU):cells), assessed at 2 h post infection

(n= 3). Where indicated, rSLO was added to HKU16Δslo-infected cells at a concentration of 6.25 µg/ml. Statistical significance was assessed using one-

way ANOVA with Dunnett’s multiple comparisons post hoc test against the mock control group (e ***p= 0.0002 for HKU16, and **p= 0.0034 for

HKU16∆slo+ rSLO; f ****p < 0.0001 for HKU16, **p= 0.0049 for HKU16Δslo, and ****p < 0.0001 for HKU16∆slo+ rSLO). g Growth curves of HKU16 in

pharyngeal cell-free culture medium (EMEM+ 10% FBS) supplemented with 2mM of GSH (n= 3). All data are presented as mean values ± SD. Source

data are provided as a Source Data file.
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physiological pathways. Taken together, our data demonstrate
that SLO is highly effective at triggering the release of significant
amounts of GSH from host cells, which is utilized for extracellular
growth of GAS and likely provides a reducing extracellular
microenvironment required for efficient SSA activation in vivo.

DNase Spd1 enhances HKU16 resistance to neutrophil killing.
Horizontal transmission of bacteriophage encoding DNase Sda1/
SdaD2 has played a critical role in the emergence and global
dissemination of the highly virulent M1T1 clone40–42. The phage-
encoded DNase Spd1 is linked with the expansion of scarlet fever
GAS in North-East Asia15. In contrast to Sda1 (ref. 42), which is
also carried by >95% of the global GAS emm12 population
including HKU16 (refs 12,15), the contribution of Spd1 to GAS
pathogenesis remains largely unexplored, although this nuclease
has previously been shown to play a role in nasal shedding in
emm3 GAS43.

Unlike the knockout strains HKU16∆ssa and HKU16∆speC,
DNase knockout strain HKU16∆spd1 showed significantly
attenuated growth in human blood (Fig. 3a). Reinforcing these
results, complementation of HKU16∆spd1 with the wild-type
spd1 gene (HKU16∆spd1++) restored growth in human blood
(Fig. 3a). Neutrophils are the first immune cell responders to sites
of bacterial infection, and thus play a critical role in controlling
GAS infection. Examining the role of Spd1 in bacterial
susceptibility to human neutrophil killing, knockout strain
HKU16∆spd1 showed significantly reduced survival compared
to the wild-type and complemented HKU16 strains (Fig. 3b).
Formation of web-like lattices composed of chromatin and
granular proteins, known as neutrophil extracellular traps
(NETs), is a well-established antimicrobial mechanism44. Multi-
ple pathogenic microorganisms, including GAS, secrete DNases
that dissolve NETs and allow escape from neutrophil mediated
killing45. To determine the ability of Spd1 to facilitate NET
degradation, we used phorbol-myristate acetate (PMA) to induce
high levels of NETs from freshly isolated human neutrophils
(Fig. 3c) that are sensitive to bovine pancreatic DNase I (Fig. 3c,
d). We then incubated PMA-stimulated neutrophils with GFP-
expressing GAS for 30 min. NETs exposed to HKU16∆spd1
remained intact and covered a significantly greater area in the
absence of Spd1 (64.1 ± 3.3%) compared to NETs infected with
wildtype HKU16 (24.5 ± 4.1%) and HKU16∆spd1++ (21.9 ±
5.2%) (Fig. 3e, f). Similar levels of NET degradation were
displayed by wildtype HKU16 and HKU16∆spd1++ (Fig. 3e, f).
These findings demonstrate that Spd1 promotes growth of
HKU16 in whole blood, reduces susceptibility to neutrophil
mediated killing and facilitates NET degradation.

Role for ϕHKU.vir-encoded toxins in pharyngeal colonization.
Previous studies have shown that intranasal infection of mice
with GAS can serve as a model to study pharyngeal infection in
humans20,21,46,47. Humanized mice that express HLA-DR4 and
HLA-DQ8 are susceptible to acute nasopharyngeal infection by
SpeA-carrying emm18 GAS20,21. To evaluate the role of HKU16
exotoxins in nasopharyngeal infection, we investigated the ability
of wild-type and isogenic mutants to colonize the nasopharynx of
HLA-B6 mice transgenic for human CD4 and HLA-DR4-DQ8
genes48. The in vitro growth phenotype of all single, double and
triple HKU16 isogenic knockout mutants (Fig. 4a) was indis-
tinguishable from the parental strain (Fig. 4b) and all mutant
strains were defective for production of the targeted exotoxins
SSA, SpeC, Spd1, and SLO (Fig. 4c). HLA-B6 mice were infected
intranasally with wild-type HKU16 or isogenic mutants. At 48 h
post infection, significantly fewer bacterial CFUs were recovered
from the complete nasal turbinates of mice infected with

HKU16∆speC/spd1 compared to wild-type HKU16 (Fig. 4d).
Single isogenic mutant strains of ΦHKU.vir-encoded exotoxins
did not show reduced colonization efficiency suggesting that SpeC
and Spd1 act synergistically to enhance nasopharyngeal infection,
nor did the additional knockout of the ssa gene in the triple
mutant strain HKU16∆ssa/speC/spd1 further reduce colonization.
The attenuated virulence phenotype of HKU16∆ssa/speC/spd1
could be fully restored by genetic complementation with wild-
type ssa, speC, and spd1 genes (HKU16∆ssa/speC/spd1++)
(Fig. 4d). Significantly fewer bacterial CFUs were also recovered
from HKU16∆slo infected mice (Fig. 4d), confirming the
importance of SLO for GAS pathogenicity as demonstrated in
previous studies49–51. No additional virulence loss was observed
upon combining SLO and ΦHKU.vir-encoded exotoxin muta-
tions (Supplementary Fig. 5).

Discussion
Mainland China and Hong Kong have witnessed an ongoing
outbreak of scarlet fever with ~500,000 reported cases since
2011 (refs 4,14,15,17,52–55). Alarmingly, case numbers have again
significantly increased in recent years posing a heightened global
threat to public health12 (Supplementary Fig. 4). Previous epi-
demiological surveillance studies have shown that emm12 is the
most prevalent GAS emm genotype in clinical cases of scarlet
fever in this region4,15,17. In contrast with the United Kingdom
epidemic, the expansion of scarlet fever-associated emm12
lineages in North-East Asia has been directly linked to acquisition
of two genetic elements: the tetM- and ermB-carrying multidrug
resistance element ICE-emm12 (and its derivatives) and the
prophage ΦHKU.vir, encoding SSA, SpeC and the DNase
Spd1 (refs 4,15,56). Consistent with these prior studies, the results
presented here demonstrate a direct contribution of ΦHKU.vir
acquisition to virulence phenotypes of the scarlet fever-causing
emm12 reference strain HKU16. Using defined genetic knock-
outs, our data suggest that SpeC and the DNase Spd1 function
synergistically to mediate nasopharyngeal colonization, offering
an explanation as to why these genes form a conserved genetic
module in a variety of distinct GAS prophage30.

We also present new insight into the activation of the scarlet
fever-associated superantigen SSA, which we reveal as a thiol-
activated superantigen. By providing a mechanistic framework of
how extracellular GAS gains access to highly abundant intracel-
lular GSH in vivo, we highlight the relationship between SLO-
mediated membrane disruption and SSA activity (Fig. 5). Data
presented here extend previous studies showing that epithelial cell
damage by SLO augments superantigen penetration, which allows
for better interaction of superantigens with antigen presenting
cells in underlying tissues57. Together, these studies suggest that
SLO pore formation promotes SSA activation, which may be an
important driver in diseases associated with superantigen pro-
duction, including scarlet fever.

GAS encodes several GSH-dependent proteins, yet the bac-
terium lacks genes for de novo GSH synthesis. This paradox
raises the possibility that GAS may coordinate a range of viru-
lence factors through SLO-mediated GSH release. One such
factor is GSH peroxidase (GpoA)58, which plays a role in the
adaptation of GAS to oxidative stress during inflammation fol-
lowing systemic infection59. Microbial acquisition of nutrients
in vivo is a fundamental aspect of infectious disease pathogenesis,
and intracellular bacterial pathogens capitalize on the ubiquitous
and highly abundant cytosolic antioxidant GSH60,61. Our data
support a hypothesis in which extracellular bacterial pathogens
such as GAS may have evolved a mechanism to target and hijack
host cytosolic GSH, consistent with the absence of GSH biosyn-
thetic genes in the GAS genome. While a precise role for SSA in
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virulence was not conclusively established in the HLA-B6 mouse
model, this work exemplifies an interconnected action of GAS
virulence determinants such as SLO and SSA, opening new ave-
nues to understand the evolution and emergence of pathogenic
clones. As multiple bacterial pathogens encode functional
homologs of SLO36, GSH release by cholesterol-dependent
cytolysins may constitute a generalized mechanism used by
pathogenic bacteria to modulate their physiological response to
host cells, including through the post-transcriptional activation of
virulence-associated proteins.

Our findings show that GAS HKU16 requires the ΦHKU.vir-
encoded exotoxins SpeC and Spd1, and SLO, to efficiently
colonize the HLA-B6 mouse model. We hypothesize that
prophage-encoded exotoxin acquisition has enhanced colonization

fitness of scarlet fever-causing GAS emm12 clones in North-East
Asia. The atypical presence of genes encoding superantigens such
as SSA in emm12 isolates62 could provide a framework allowing
for clonal expansion of GAS in a naïve population. The spread of
such prophage-containing GAS is therefore of great public health
concern and heightened efforts are needed to instigate global
surveillance systems. Recent evidence of interspecies transfer of
speC- and spd1-containing prophage in the United States should
serve as a warning for the dissemination of these virulence-
enhancing genes into other pathogenic streptococci63.

Methods
Bacterial strains, growth conditions, and mutant construction. The emm12
GAS scarlet fever isolate HKU16 (ref. 4) and isogenic derivatives were routinely

a
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+DNase
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Fig. 3 The ΦHKU.vir-encoded DNase Spd1 promotes resistance to neutrophil killing. a Growth of indicated HKU16 strains in whole human blood.

Statistical significance was assessed using one-way ANOVA with Dunnett’s multiple comparisons post hoc test against the HKU16 control group (****p <

0.0001 for HKU16Δspd1). b Human neutrophil killing assay. The data represent the mean ± SEM of six independent experiments. Statistical significance

was assessed using one-way ANOVA with Dunnett’s multiple comparisons post hoc test against the HKU16 control group (**p= 0.0093 for

HKU16Δspd1). c Purified human neutrophils were stimulated with 25 nM PMA for 3 h to induce neutrophil extracellular traps (NETs). NETs were detected

using the extracellular DNA stain SYTOX Orange (red) and images captured using confocal microscopy. Panels show formation of NETs (left) and NET

degradation following incubation with bovine pancreatic DNase I as a positive control (right). d NET quantification of PMA-stimulated neutrophils in the

absence or presence of DNase I. Statistical significance was assessed by two-tailed unpaired Student’s t test (**p= 0.0016 for DNase treatment).

e Representative images of PMA-stimulated neutrophils following infection with GFP fluorescent GAS (green) for 30min at a multiplicity of infection of 10

(bacterial CFU:neutrophil). Scale bars represent 50 μm. f NET quantification of PMA-stimulated neutrophils following incubation with GAS. NET

quantification is expressed as a percentage of total SYTOX Orange stained area calculated from a minimum of five randomly selected microscopic fields.

Error bars represent the mean ± SEM from three independent experiments. Statistical significance was assessed using one-way ANOVA with Dunnett’s

multiple comparisons post hoc test against the HKU16-GFP control group (**p= 0.0041 for HKU16Δspd1-GFP). Source data are provided as a Source

Data file.
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Fig. 4 ΦHKU.vir-encoded exotoxins and SLO are critical for HKU16 nasopharyngeal infection. a Illustration of the genetic in-frame deletions of ΦHKU.

vir-encoded exotoxins in HKU16 as described in Materials and Methods. b Growth curves of indicated HKU16 strains in CDM from three independent

experiments. Data are presented as mean values ± SD. c Immunoblot detection of SSA, SpeC, Spd1, and SLO expression from indicated HKU16 strains. The

molecular mass of each protein (kDa) is indicated to the right. d Individual “humanized” B6 mice that express HLA-DR4, HLA-DQ8 and CD4 were nasally

inoculated with ∼1 × 108 bacterial colony forming units (CFU) with indicated HKU16 strains and nasopharyngeal CFUs were assessed at 48 h post infection.

Each symbol represents CFUs from an individual mouse (n≥ 12). Presented is the geometric mean with 95% confidence interval. Significance was assessed

using the Kruskal–Wallis test with the Dunn’s multiple comparisons post-hoc test against the HKU16 control group (**p= 0.0012 for HKU16ΔspeC/spd1,

**p= 0.0041 for HKU16Δssa/speC/spd1, and **p= 0.01 for HKU16Δslo). Source data are provided as a Source Data file.

Fig. 5 Proposed mechanistic model outlining inter-relationships between SLO mediated cytotoxicity towards epithelial cells and SSA superantigen

potency. (1) During initial bacterial colonization, GAS secretes the DNase Spd1 to escape neutrophil clearance, allowing GAS to establish infection. (2) As

infection progresses, SLO binds to host cell membranes and then oligomerizes to form large pores which induces the release of lactate dehydrogenase

(LDH) and GSH from perforated host cells as well as cation influx71, 72. Glutathione exists at a much higher concentration in the intracellular compartment

(GSHi) than the extracellular space (GSHe) (~1000-fold) causing a significant difference in redox potential across the plasma membrane of eukaryotic cells.

This gradient makes the extracellular and intracellular areas, respectively, oxidative and reductive. GSH efflux from perforated cells serves as a stimulus for

SSA release, reduces SSA dimers and activates SSA monomers. (3) Thiol-activated SSA, in conjunction with other superantigens like SpeC, then cross-links

major histocompatibility complex II molecules on antigen-presenting cells (APCs) and the variable region of the β-chain of T-cell receptor (TCR) to induce

an overwhelming T-cell response with uncontrolled cytokine release.
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grown at 37 °C on 5% horse blood agar or statically in Todd-Hewitt broth supple-
mented with 1% yeast extract (THY) or chemically defined medium (CDM; Gibco
RPMI 1640 with L-glutamine and phenol red (Life Technologies; 11875-093) sup-
plemented with 0.7% (w/v) D-Glucose, 1% (v/v) BME vitamins (Sigma; B6891), 0.15
mM nucleobases (adenine, guanine, and uracil), and 0.02mM HEPES, pH 7.4). To
facilitate fluorescent microscopy experiments, GAS strains were transformed with
GFP-expressing plasmid pLZ12Km2-P23R-TA:GFP (Supplementary Methods).
Escherichia coli (E. coli) strains MC1061 or XL1-blue, and BL21 (DE3), were used for
cloning and protein expression, respectively. E. coli was grown in Luria–Bertani
medium (LB). Where required, spectinomycin was used at 100 µgml−1 (both GAS
and E. coli), ampicillin was used at 100 µg ml−1 (E. coli), and kanamycin was used
at 50 µg ml−1 (E. coli). All bacterial strains and plasmids are listed in Supple-
mentary Table 1. Isogenic HKU16 mutants were generated using a highly efficient
plasmid (pLZts) for creating markerless isogenic mutants64. All PCR primer
sequences are provided in Supplementary Table 1. All gene deletions were con-
firmed by DNA sequence analysis (Australian Equine Genome Research Centre,
University of Queensland, Brisbane, Australia). To examine fitness of wild-type and
mutant strains, GAS were firstly grown overnight on horse blood agar. GAS were
then inoculated into CDM to an optical density at 600 nm (OD600) of 0.01. Late-
exponential phase GAS grown in CDM (OD600 of 0.4) were resuspended in ATCC
Eagle’s Minimum Essential Medium (EMEM; ATCC302003) supplemented with
10% heat-inactivated fetal bovine serum (FBS). Bacteria were then inoculated into
96-well microtiter plates and the growth curves measured using the FLUOstar
Omega Microplate Reader (BMG Labtech) at 37 °C.

Transcriptomic and quantitative gene expression analysis. Total RNA was
routinely isolated from bacterial cells as follows. Two volumes of RNAprotect
(Qiagen) was added to the cultures, and bacterial cells were collected by cen-
trifugation at 5000 × g for 25 min at 4 °C. The dry cell pellet was stored at −80 °C
overnight. Total RNA was extracted using the RNeasy minikit (Qiagen) with an
additional mechanical lysis step using lysing matrix B tubes (MP Biomedicals).
RNA samples were treated with Turbo DNase (Ambion) to eliminate con-
taminating genomic DNA and quantified using a NanoDrop instrument (Thermo
Scientific). One microgram of RNA was converted to cDNA using the SuperScript
VILO cDNA synthesis kit (Invitrogen). Resulting cDNA libraries were used for
downstream analyses. RNA sequencing samples were taken from bacterial cultures
grown in THY to late-exponential growth phase (OD600 of ~0.7–0.8). Ery-
thromycin was used at a concentration of 2 µg ml−1. Mitomycin C was added to
early-exponential cultures (OD600 of 0.25) at a concentration of 0.2 µg ml−1. RNA-
sequencing was performed from Ribo-zero (rRNA depleted) Illumina libraries on a
single Illumina HiSeq 2500 lane using v4 chemistry from 75 base pair paired-end
reads. Reads were mapped to the HKU16 reference genome (alternatively termed
HKU QMH11M0907901, GenBank accession number NZ_AFRY01000001) with
BWA MEM (version 0.7.16). Relative read counts (per gene) and differential
gene expression was determined using DESeq2 (v. 1.26.0)65 in R (v. 3.6.0).
Genes with less than ten reads across all conditions and samples were removed.
P values were calculated using Wald test and adjusted for multiple testing using
Benjamini–Hochberg/false-discovery rate. Read counts were visualized using the
Integrative Genomics Viewer (IGV) and volcano plots were constructed using
ggplot2 (v.3.2.1). To quantify gene expression, total RNA was isolated from bac-
terial cells harvested at late-exponential growth phase (OD600 of 0.4) in CDM
grown in the presence or absence of 2 mM redox-active compounds (L-Cysteine
(Cys), DTT, reduced GSH, oxidized GSH (GSSG), and tris(2-carboxyethyl)phos-
phine (TCEP). Reverse transcription-PCR (RT-PCR) was performed using the
primers specified in Supplementary Table 1, using SYBR green master mix
(Applied Biosystems) according to the manufacturer’s instructions. All data were
analyzed using QuantStudio Real-Time PCR software v1.1 (QuantStudio 6 Flex,
Life Technologies). Relative gene expression was calculated using the threshold
cycle (2−ΔΔCT) method with gyrA as the reference housekeeping gene66. All
reactions were performed in triplicate from three independently isolated RNA
samples.

Purification of antigens and polyclonal antiserum production. The gene
encoding for the DNase Spd1, including nucleotides encoding the predicted signal
peptide, was PCR amplified from genomic DNA of HKU16 and cloned into NdeI
and HindIII sites of pET-28a. Point mutation of the active site residue Asn145
(Asn145Ala)67 was introduced using the QuikChange II site-directed mutagenesis
kit (Agilent) to inactivate the Spd1 DNase (see Supplementary Table 1 for primer
sequences). Wildtype Spd1 and inactivated Spd1 were produced by 0.5 mM iso-
propyl β-D-1-thiogalactopyranoside (IPTG)-induced expression in E. coli BL21
(DE3), purified via nickel affinity chromatography, and His6 tags cleaved with
His6-tagged tobacco etch virus (TEV) protease. The expression plasmids for
wildtype SLO (pET-15b-SLO)49 and inactivated SLO carrying P427L and W535A
mutations (pET-15b-SLOmut)68 were used to produce recombinant protein in E.
coli BL21(DE3) following the same procedure as for Spd1. Recombinant proteins
were analyzed for purity on 12% separating sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE). Inactivated Spd1 and SLO were used to raise
antisera in mice. Briefly, 4- to 6-week-old BALB/c mice (n= 10) were immunized
subcutaneously on days 0, 14, 21, and 28 with 30 µg of total protein adjuvanted
with alum (Alhydrogel [2%]; Brenntag) at a 1:1 ratio. One week following the last

injection, mice were sacrificed and serum was collected for antibody titer analysis
using ELISA.

Detection of exotoxins in GAS supernatants. Bacteria were routinely grown to
late-exponential growth phase in CDM or THY where indicated. Filter-sterilized
culture supernatants were precipitated with 10% trichloroacetic acid (TCA). TCA
precipitates were resuspended in loading buffer (normalized to OD600) in the
presence or absence of 100 mM DTT. Samples were boiled for 10 min, subjected to
SDS-PAGE, and then transferred to polyvinylidene difluoride membranes for
detection of immuno-reactive bands using a LI-COR Odyssey Imaging System (LI-
COR Biosciences). The primary antibodies used for the detection of SpeC, SSA and
SpeB protein in GAS culture supernatants were rabbit antibody to SpeC (PCI333,
Toxin Technology; 1:1000 dilution), affinity-purified rabbit antibody to SSA
(produced by Mimotopes; 1:500 dilution)15 and affinity-purified rabbit antibody to
SpeB (PBI222, Toxin Technology; 1:1,000 dilution). The murine primary antibody
dilutions used for the detection of Spd1 and SLO were 1:1000 and 1:2000,
respectively. Anti-rabbit IgG (H+ L) (DyLight™ 800 4X PEG Conjugate, NEB,
5151P) or anti-mouse IgG (H+ L) (DyLight™ 800 4× PEG Conjugate, NEB, 5257S)
were used as the secondary antibodies (1:10,000).

Recombinant superantigen purification. The SSA gene, lacking nucleotides
encoding the predicted signal peptide, was PCR amplified from the S. pyogenes
HKU16 chromosome using primers listed in Supplementary Table 1 and cloned
into the NcoI and BamHI sites of a modified pET-41a protein expression vector
that encodes an engineered TEV protease site to remove purification tags69. The
C26S mutation was introduced into the ssa gene as above using primers listed in
Supplementary Table 1. Cloning of SpeC into the pET-41a vector was carried out
as previously described20. Briefly, the speC gene lacking the coding sequence for the
signal peptide was PCR amplified with primers NcoI_pET-41a_speC_F and Bam-
HI_pET-41a_speC_R (Supplementary Table 1) and cloned into the NcoI and
BamHI sites of pET-41a. Expression of the recombinant SSA and SpeC proteins
was induced with 0.2 mM IPTG in E. coli BL21(DE3) and purified as
described above.

Superantigen activity as assessed by T-cell activation assay. Human periph-
eral blood mononuclear cells (PBMCs) isolated from freshly drawn heparinized
venous blood from a healthy adult volunteer were resuspended in complete RPMI
(cRPMI; RPMI1640, 10% FBS, 0.1 mM minimal essential media nonessential
amino acids, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 Uml−1 penicillin,
100 µg ml−1 streptomycin) and seeded at 200,000 cells per well in a 96-well plate.
Sterile-filtered GSH dissolved in cRPMI (final concentration of 2 mM), or cRPMI
alone, were added to each well 30 min prior to the addition of 10-fold serial
dilutions of recombinant superantigens. Cells were incubated at 37 °C in 5% CO2

for 18 h. Spent cell culture supernatant was harvested and analyzed for human IL-2
by ELISA according to the manufacturer’s instructions (eBiosciences).

Ex vivo whole blood model. Freshly drawn heparinized venous blood from a
healthy adult volunteer was aliquoted (180 µl) into wells of a 96-well plate. To
validate hemolytic activity of SLO, increasing concentrations of recombinant wild-
type SLO were added to give a final volume of 200 µl per well and incubated at
37 °C for 2 h with 5% CO2. For bacterial infections, GAS strains were grown to late-
exponential growth phase in CDM (OD600 of 0.4), resuspended in Hanks Balanced
Salt Solution (HBSS) at ~1 × 108 CFUml−1, and then added to whole blood to give
a final volume of 200 µl (~2 × 106 CFU). Growth of GAS strains was assessed 2 h
post infection by plating serial dilutions for enumeration of CFUs. Plasma samples
for detection of hemolysis and GSH release were obtained 4 h post-infection by
centrifugation at 4800 × g for 15 min at 4 °C. Controls included for each experi-
ment were whole blood treated with HBSS (mock), or blood lyzed with 0.1% Triton
X-100.

Co-culture of S. pyogenes with human pharyngeal cells. Human nasopharyngeal
carcinoma epithelial cells Detroit 562 (ATCC CCL-138, Lot 70004014) were cul-
tured at 37 °C under a 5% CO2, 20% O2 atmosphere in EMEM supplemented with
10% FBS in tissue culture vessels (Greiner Bio-one). At 90% confluency, cells were
trypsinized and handled according to manufacturer’s instructions. Detroit 562 cells
were utilized for experiments at passage 8 and seeded at a density of ~1.2 × 105

viable cells per well in 24-well tissue culture plates, or ~2.5 × 105 viable cells per
well in 12-well plates 24 h prior to infection to allow the formation of confluent
monolayers. Cells were grown at 37 °C under 5% CO2 until they formed a con-
fluent monolayer. Immediately prior to infection, the cell culture medium was
removed, and replaced with fresh medium. Increasing concentrations of recom-
binant wild-type SLO were added to cell monolayers and incubated for 2 h. GAS
strains were grown to late-exponential growth phase in CDM (OD600 of 0.4),
resuspended in cell culture medium, and then added to cell monolayers at a
multiplicity of infection of 20. Controls included for each experiment were cells not
exposed to bacteria or SLO (mock), or cells lyzed with 0.2% Triton X-100. At 2 h
post-infection, plates were centrifuged at 500 × g for 5 min, then media was
aspirated and stored at −80 °C until further processing.
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Cell membrane damage and GSH release assessment. SLO-induced hemolysis
in whole blood was determined after collecting plasma samples and diluting 1:10 in
phosphate-buffered saline (PBS). The amount of hemoglobin was measured
spectrophotometrically at 405 nm. Pharyngeal cell membrane disruption was
quantified by measuring lactate dehydrogenase (LDH) release from cell super-
natants, using CytoTox96 Non-Radioactive Cytotoxicity Assay (Promega; G1781),
as per the manufacturer’s instructions. Sample absorbance was measured spec-
trophotometrically at 490 nm. GSH release was measured using the GSH-Glo GSH
assay (Promega; V6912), as per the manufacturer’s instructions, with the mod-
ification of mixing undiluted samples 1:1 with 2 mM TCEP in wells of a white 96-
well plate (Greiner Bio-one) prior to use. Luminescent intensity of each sample was
measured using a FLUOstar Omega Microplate Reader (BMG Labtech). Sample
readings were analyzed by Prism 8 software and divided by the positive control for
cell lysis to give a percentage of total hemolysis and cell membrane damage (LDH)
for each sample.

Neutrophil killing assay. Human neutrophils were isolated from fresh heparinized
whole blood using PolymorphPrep density gradient centrifugation (Axis-Shield) as
per manufacturer’s instructions. Following neutrophil harvest, hypotonic lysis was
performed to remove residual erythrocytes. Purified neutrophils were infected with
GAS at a multiplicity of infection of 0.1 (1 × 106 cells ml−1 neutrophils: 1 × 105

bacterial CFUml−1), centrifuged for 5 min at 370 × g to synchronize phagocytosis,
and then incubated for 30 min at 37 °C under 5% CO2. Control wells contained
bacteria only. Infected neutrophils were then lysed using 0.025% Triton X-100 and
serially diluted in sterile Milli-Q water, then plated on THY agar. Following
overnight incubation at 37 °C, bacterial survival was calculated as the average total
number of CFUs following incubation in the presence of neutrophils divided by
CFUs in control wells.

NETs degradation assay. Freshly isolated purified human neutrophils were see-
ded on 12 mm Poly-D-lysine-coated (0.01% solution overnight; Sigma-Aldrich;
P7405) coverslips at a concentration of 1 × 106 cells ml−1 (5 × 105 cells ml−1 per
well) in a 24-well tissue culture plate. Neutrophils were stimulated with 25 nM
phorbol 12-myristate 13-acetate (PMA) (Cayman Chemical; 10008014), cen-
trifuged for 5 min at 370 × g, and incubated for 3 h at 37 °C under 5% CO2 to
induce NET formation. Cell culture media was then removed, and the PMA-
stimulated neutrophils were infected with fluorescent GAS strains diluted in RPMI
media containing 2% heat inactivated autologous human plasma and 5mM MgCl2
at a multiplicity of infection of 10 (1 × 107 bacterial CFUml−1: 1 × 106 cells ml−1

PMN). Infected plates were centrifuged at 370 × g for 5 min to promote cell
interaction and then incubated for an additional 30 min at 37 °C under 5% CO2.
Bovine pancreas DNase I at 5 µg ml−1 (Sigma; D5025) was used as a positive
control to confirm NET degradation, while wells containing medium was used to
confirm the formation of NETs. Cells were washed once with PBS, followed by
fixation with 4% paraformaldehyde for 15 min at room temperature. After two
washes, cells were incubated with 1 mM SYTOX Orange Nucleic Acid Stain
(Molecular Probes; S11368) for 15 min in the dark at room temperature to stain for
NETs. After washing in 5% (v/v) PBS, coverslips were embedded in Fluorescent
Mounting medium (Dako; S30230) on microscopic glass slides and dried overnight
in the dark at room temperature. Slides were stored at 4 °C until images were
acquired. Samples were recorded using a Leica TCS SP8 Lightning confocal laser
scanning microscope (Leica Microsystems) with a 63× oil immersion objective.
GFP and SYTOX Orange were excited with 488 and 561 nm lasers, respectively,
with images captured using sequential scanning. For each sample, a minimum of
five randomly selected images per independent experiment performed in duplicate
were acquired. For figure production, images were processed using ImageJ software
(version 1.8.0) and the Enhance Local Contrast function was used to improve
images for better visualization. For quantification of NET DNA degradation, the
cell imaging analysis software CellProfiler (version 3.1.9) was employed. The
percentage area of NETs per image was calculated as the area of neutrophil nuclei
subtracted from the total area stained with SYTOX Orange. Images used for NET
quantification were unenhanced.

HLA-B6 murine nasopharyngeal colonization model. For nasopharyngeal
infection20,21, sex- and age-matched (9- to 13-week-old) transgenic C57BL/6J mice
expressing human major histocompatibility complex II molecules DR4/DQ8 and
human CD4 (HLA-B6)48 were infected with ~1 × 108 CFU per 15 µl using 7.5 µl to
inoculate each nostril under methoxyflurane inhalation anesthetic. For infection,
bacteria were cultured to late-exponential growth phase (OD600 of 0.4) in CDM
supplemented with 2 mM of L-Cys, washed and concentrated in CDM. Sham-
treated mice only received CDM. Mice were sacrificed 48 h post infection, and the
combined nasal turbinates, including the nasal associated lymphoid tissue and
nasal turbinates, were removed. Tissue was homogenized in HBSS in lysing matrix
F tubes (MP Biomedicals), serially diluted, and plated on horse blood agar for
enumeration of beta-hemolytic CFUs with a detection limit of 103 CFU per mouse.

Statistical analysis. All statistical analysis was completed using Prism software
(GraphPad; version 8.4.3). Significance was calculated using, where indicated, the
two-tailed unpaired Student’s t test, one-way analysis of variance with Dunnett’s

multiple comparisons post-hoc test, and the Kruskal–Wallis test with the Dunn’s
multiple comparisons post hoc test. A p value less than 0.05 was determined to be
statistically significant.

Ethics statement. The human ethics protocol for the isolation of human blood
from healthy volunteers for use in T-cell activation assays was approved by the
Health Sciences Research Ethics Board at Western University (Ontario, Canada)
(Protocol #110859). Human blood donation for use in whole blood proliferation
assays, neutrophil killing assays and NET degradation assays were conducted in
accordance with the Australian National statement on ethical conduct in human
research70, in compliance with the regulations governing experimentation on
humans, and was approved by the University of Queensland medical research ethics
committee (2010001586) and the University of Wollongong Human Research
Ethics Committee (HE08/250). Informed consent was obtained from all partici-
pants. Animal experiments were performed according to the Australian code of
practice for the care and use of animals for scientific purposes. Permission was
obtained from the University of Queensland ethics committee to undertake this
work (SCMB/140/16/NHMRC). Animal holding rooms were held at 22 °C (with a
range of 20–26 °C). Humidity was kept between ~50 and 70%. A 12 h light/dark
cycle (6 am–6 pm) was used. Temperature and light cycle were both monitored.
Humidity and temperature was recorded daily by animal holding room technicians.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The HKU16 reference genome (alternatively

termed HKU QMH11M0907901) is available on NCBI under the GenBank accession

number NZ_AFRY01000001. Illumina read data are available on NCBI under the sample

accession numbers relating to the three conditions (in triplicate): THY (ERS1091539,

ERS1091548, and ERS1091557); THY plus erythromycin (ERS1091542, ERS1091551, and

ERS1091560); THY plus mitomycin C (ERS1091545, ERS1091554, and ERS1091563).
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