
PROPhESY: A PRObabilistic ParamEter

SYnthesis Tool

Christian Dehnert(B), Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám

RWTH Aachen University, Aachen, Germany
dehnert@cs.rwth-aachen.de

Abstract. We present PROPhESY, a tool for analyzing parametric
Markov chains (MCs). It can compute a rational function (i.e., a frac-
tion of two polynomials in the model parameters) for reachability and
expected reward objectives. Our tool outperforms state-of-the-art tools
and supports the novel feature of conditional probabilities. PROPhESY
supports incremental automatic parameter synthesis (using SMT tech-
niques) to determine “safe” and “unsafe” regions of the parameter space.
All values in these regions give rise to instantiated MCs satisfying or
violating the (conditional) probability or expected reward objective.
PROPhESY features a web front-end supporting visualization and user-
guided parameter synthesis. Experimental results show that PROPhESY
scales to MCs with millions of states and several parameters.

1 Introduction

The mainstream model-checking methods so far focus on safety (is a “bad” state
reachable?) and liveness (is some progress made?) properties. For applications in
which randomization and uncertainty play an important role, probabilistic prop-
erties are of prime importance. These applications include randomized distrib-
uted algorithms (where randomization breaks the symmetry between processes),
security (e.g., key generation at encryption), systems biology (where species
randomly react depending on their concentration), embedded systems (inter-
acting with unknown and varying environments), and so forth. For instance,
the crowds protocol [1] employs random routing to ensure anonymity. Nodes
randomly choose to deliver a packet or to route it to another randomly picked
node. In the presence of “bad” nodes that eavesdrop, we could be interested in
analyzing probabilistic safety properties such as “the probability of a bad node
identifying the sender’s identity is less than 5%”.

This has led to the development of different automata- and tableau-based
probabilistic model-checking techniques to prove model properties specified by,
e.g., probabilistic ω-regular languages or probabilistic branching-time logics
such as pCTL and pCTL∗. Probabilistic model checking is applicable to a

This work was supported by the Excellence Initiative of the German federal and
state government and the EU FP7 projects SENSATION and CARP.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 214–231, 2015.
DOI: 10.1007/978-3-319-21690-4 13

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 215

plethora of probabilistic models, ranging from discrete-time Markov chains to
continuous-time Markov decision processes and probabilistic timed automata,
possibly extended with notions of resource consumption (such as memory foot-
print and energy usage) using rewards (or prices). PRISM [2], MRMC [3], CADP [4]
and iscasMc [5] are mature probabilistic model checkers and have been applied
successfully to a wide range of benchmarks. Recently, Alur et al. [6] identified
probabilistic model checking as a promising new direction as it establishes cor-
rectness and evaluates performance aspects; see also [7].

Model Checking

Rational Function

Sampling

GUI

- Plot of Regions
- User-defined Regions

Automatic Regions SMT Solver

pMC M (Parametric)
PRISM Model

Property

List of Safe/Un-
safe Regions

Fig. 1. The verification process of PROPhESY.

A major practical obstacle is that probabilistic model-checking techniques
and tools work under the assumption that all probabilities in models are a priori
known. However, at early development stages, certain system quantities such as
faultiness, reliability, reaction rates, packet loss ratios, etc. are often not—or at
the best partially—known. In such cases, parametric probabilistic models can be
used for specification, where transition probabilities are specified as arithmetic
expressions using real-valued parameters. In addition to checking instantiated
models for fixed parameter values, the important problem of parameter synthe-
sis arises, posing the question which parameter values lead to the satisfaction of
certain properties of interest. For the crowds protocol it is of interest to establish
for which routing probabilities the sender’s identity can be revealed in at most
5 % of all protocol runs. Similar questions arise in systems biology when deter-
mining the concentration of species such that, e.g., catalytic reactions diminish
other species within a given time frame with high likelihood. Parametric mod-
els are also quite natural in adaptive software where “continuous” verification
frequently amends system models during deployment [8] as well as in model
repair [9], where probabilities are tuned so as to satisfy a desired property. There

216 C. Dehnert et al.

is little work done on model checking of parametric probabilistic models, with
the notable exception of the PARAM tool [10] and recently also PRISM [2].

This paper presents the tool PROPhESY for the analysis of parametric
(discrete-time) Markov chains (pMCs). Inputs are a pMC (specified in the input
language of PRISM) together with a requirement imposing an upper bound on
the measure-of-interest, see Fig. 1 depicting the workflow of the tool. Transitions
in pMCs are labelled with rational functions, i.e., fractions of polynomials over
a set of parameters. These measures are (conditional) reachability probabilities
or expected costs to reach target states. Once the state space of a pMC is gener-
ated, the focus is on determining parameter valuations meeting the requirement,
e.g., values for which (a) bad states can be reached in at most 1 % of all runs,
(b) the expected resource consumption to reach a successful state is within a
given budget, or (c) the conditional probability to reach a good state given that
eventually a terminating state is reached is above 99 %. To do so, PROPhESY

supports a palette of advanced techniques relying on computing and efficient
manipulation of rational functions and incremental synthesis techniques (á la
CEGAR).

In the next section, we will elaborate on PROPhESY’s features and summarize
the contributions. Section 3 lays the formal background needed for the algorithms
and techniques presented in Sect. 4. In Sect. 5 we explain details on implemen-
tation issues and give a thorough experimental evaluation. Finally, in Sects. 6
and 7 we discuss the related work and conclude.

2 Features and Contributions

In this overview on PROPhESY’s workflow and contributions we emphasize all
steps as depicted in Fig. 1.

The Core Engine. The core model-checking engine of the tool determines and
returns a rational function in terms of the parameters of the (conditional) reach-
ability probability or expected cost. Daws [11] showed that these rational func-
tions can be obtained using state elimination in the pMC, a technique similar to
reducing finite-state automata to regular expressions. This was implemented in
PARAM [10] and PRISM [2]. Note that finding the minimal-sized regular expression
for an automaton is NP-complete; the efficiency of the construction strongly
depends on the order in which states are eliminated [12]. We employ several
dedicated heuristics in our algorithms. New techniques exploit SCC decomposi-
tion for state elimination together with advanced gcd-computations on rational
functions [13].

Apart from the these techniques, the PROPhESY tool supports new algorithms
dedicated to determine conditional probabilities, which are introduced in this
paper. Conditional probabilities are central in—amongst others—the field of
Bayesian programming.

Parameter Synthesis. In general, to determine whether the given requirement
is met, one has to consider all possible parameter valuations. For a feasible and

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 217

usable approach, we aim for an (approximate) partitioning of the parameter
space into safe and unsafe regions. Each parameter instantiation within a safe
region satisfies the requirement under consideration. These parameter synthesis
problems are challenging and substantially more complex than verifying standard
MCs—just checking whether a pMC is realizable (having a parameter evaluation
inducing a well-defined MC) is exponential in the number of parameters [14].

Incremental Parameter Synthesis. Our approach to parameter synthesis can be
summarized as follows. After the model checking engine has computed a ratio-
nal function for the property at hand, the first step is to sample the rational
function up to a user-adjustable degree. This amounts to instantiating parame-
ter values (determined by dedicated heuristics) over the entire parameter space.
This yields a coarse approximation of parts of the solution space that are safe or
unsafe and can be viewed as an abstraction of the true partitioning into safe or
unsafe parts. The goal is now to divide the parameter space into regions which
are certified to be safe or unsafe. This is done in an iterative CEGAR-like fash-
ion [15]. First, a region candidate assumed to be safe or unsafe is automatically
generated. An SMT solver is then used to verify the assumption. In case it was
wrong, a counterexample in the form of a contradicting sample point is provided
along which the abstraction/sampling is refined, giving a finer abstraction of the
solution space. Using this, new region candidates are generated.

Sensitivity Analysis. In addition to determining whether a property is satisfied,
the robustness of selected parameters which are subject to perturbation is of
utter importance, see [16]. That is, for a region of the parameter space, one
wants to certify that changing parameter values within certain “robust” bounds
has limited impact on the investigated property. A sensitivity analysis for para-
meters leads to obtaining such bounds. As an initial approach, we benefit from
computing the rational function for the measure-of-interest where we simply
compute the derivative of this function.

Visualization. The PROPhESY tool includes a web front-end as part of a service-
oriented architecture for visualization as well as steering and guiding the ver-
ification process. Concretely, the sampling result and the final or intermediate
regions can be visualized in the GUI. The user has the possibility to change the
properties dynamically such that the sample points are updated. This offers a
direct help to find good parameter evaluations, akin to fitting [17]. Regions in
the form of convex polygons can be manually specified and again be verified by
an SMT solver. At all times, intermediate results can be used by the automatic
CEGAR-like synthesis procedure.

Contributions. The main contribution of this paper is a tool offering a palette
of analysis techniques for parametric Markov chains. It significantly extends the
efficiency, functionality, and analysis techniques of the currently available tools
that can handle parameters, PRISM [2] and PARAM [10]:

218 C. Dehnert et al.

– An efficient core engine based on a dedicated library for the costly arithmetic
operations yielding a substantial speed up and improved scalability;

– The first algorithmic approach for computing conditional probabilities over
parametric MCs. Its instantiation to ordinary (i.e., non-parametric) MCs is
orders of magnitudes faster than reported in [18];

– Incremental parameter synthesis (á la CEGAR) exploiting advanced SMT
techniques. For many benchmarks, over 90% of the solution space can be
split into safe and unsafe regions within a minute.

– Initial support for sensitivity and perturbation analysis;
– A user-friendly GUI based on an integrated web-server for guiding the syn-

thesis process.

3 Formal Foundations

In order for this paper to be self-contained, we briefly introduce the formal mod-
els and properties we consider. Let in the following V be a finite set of variables
over the domain R. A valuation for V is a function u : V → R. Following [19], we
use rational functions f = g1/g2 over V to describe parameterized probabilities,
where g1 and g2 are (multivariate) polynomials over V with rational coefficients.
Let QV be the set of all rational functions over V . The evaluation g(u) of a
polynomial g under u replaces each x ∈ V by u(x). For f = g1/g2 ∈ QV and

evaluation u with g2(u) �= 0 we define f(u) = g1(u)
g2(u) ∈ R.

Definition 1 (pMC). A parametric discrete-time Markov chain (pMC) is a
tuple M = (S, V , sI , P) with a finite set of states S, a finite set of parameters
V = {x1, . . . , xn} with domain R, an initial state sI ∈ S, and a parametric
transition probability matrix P : S×S → QV . M is called a discrete-time Markov
chain (MC) if P : S ×S → R. Together with a (state) reward function rew: S →
R≥0, a pMC is called a parametric Markov reward model.

For a pMC M = (S, V , sI , P), the underlying graph of M is GM = (S,E) with
E =

{

(s, s′) ∈ S ×S | P (s, s′) �≡ 0
}

. Successor or predecessor states of s ∈ S are
succ(s) = {s′ ∈ S | (s, s′) ∈ E} and pred(s) = {s′ ∈ S | (s′, s) ∈ E}. We define
P (s, S′) =

∑

s′∈S′ P (s, s′) and S′ = S \S′. State s is absorbing iff succ(s) = {s}.
A path of M is a non-empty sequence π = s0s1 . . . of states si ∈ S such that

P (si, si+1) > 0 for i > 0. A state s′ ∈ S is reachable from s ∈ S, written s � s′,
iff there is a path leading from s to s′. The property ♦T is overloaded to describe
the set of paths finally reaching a set of target states T ⊆ S starting from sI .

For a pMC M = (S, V , sI , P) and a valuation u : V → R of V , the instan-
tiated pMC under u is given by the tuple Mu = (S, sI , Pu) with Pu(s, s′) =
P (s, s′)(u) for all s, s′ ∈ S. A valuation u is well-defined for the pMC M iff
Pu(s, s′) ∈ [0, 1] with

∑

s′′∈S Pu(s, s′′) = 1 for all s, s′ ∈ S and GM = GMu
. M is

called realizable iff there is a well-defined valuation for M. We assume all pMCs
to be realizable. The instantiated pMC Mu induced by a well-defined valuation
u is an MC, enabling to use all definitions and concepts for mere MCs also for
pMCs.

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 219

Example 1. Consider the pMC M with parameters V = {p, q} depicted in
Fig. 2a on Page 8. The valuation u(p) = u(q) = 0.25 is well-defined, while
u(p) = u(q) = 0.5 would induce probabilities larger than 1.

A unique probability measure PrM on sets of paths is defined via the usual cylin-
der set construction, see [20]. For instance, PrM(♦T) describes the probability
of reaching T ⊆ S states from sI in M. For a set of stochastically independent
paths, the individual probabilities of these paths can be summed.

The conditional probability for two reachability objectives is given by

PrM(♦T | ♦C) =
PrM(♦T ∩ ♦C)

PrM(♦C)

for PrM(♦C) > 0. Considering a (parametric) Markov reward model, the reward
rew(s) is earned upon leaving s. The expected reward ExpRewM(♦T) is the
expected amount of reward that has been accumulated until a set of target
states T ⊆ S is reached when starting in the initial state sI . We often omit the
superscript M if it is clear from the context. For more details on probability
measures and the considered properties we refer to [20].

Finally, we give a formal definition the model checking problems for pMCs.

Definition 2 (Parametric Probabilistic Model Checking). For a pMC
M = (S, V , sI , P) the parametric probabilistic model checking problem is to
find either

– fr ∈ QV for PrM(♦T) with T ⊆ S,
– fc ∈ QV for PrM(♦T | ♦C) with T,C ⊆ S,
– or fe ∈ QV for ExpRewM(♦T) with T ⊆ S

such that for all well-defined valuations u, the instantiated rational function fr,
fc, or fe, and the instantiated pMC Mu it holds that:

fr
u = PrMu(♦T), fc

u = PrMu(♦T | ♦C), fe
u = ExpRewMu(♦T).

4 Supported Techniques

In this section we briefly recall incorporated methods introduced in former works
and explain new methods and concepts in detail.

4.1 Model Checking

We start by briefly explaining how model checking for a pMC M = (S, V , sI , P)
and the different properties as in Definition 2 is performed.

220 C. Dehnert et al.

Reachability Probabilities and Expected Rewards. Let T ⊆ S be a set of target
states and assume w. l. o. g. that all states in T are absorbing and that sI �∈ T .
Let us briefly recall the concept of the state elimination [11,19] used to compute a
rational function describing reachability probabilities (eliminate state in Algo-
rithm 1). The basic idea is to “bypass” a state s by removing it from the model
and increasing the probabilities P (s1, s2) of the transitions from each predeces-
sors s1 to each successors s2 by the probability of moving from s1 to s2 via s, pos-
sibly including a self-loop on s. Note that it is well possible to eliminate a single
transition (s1, s2) by only calling the function eliminate transition(P, s1, s2).

The state elimination approach can also be adapted to compute expected
rewards [19] for Markov reward models. When eliminating a state s, in addition
to adjusting the probabilities of the transitions from all predecessors s1 of s to
all successors s2 of s, it is also necessary to “summarize” the reward that would
have been gained from s1 to s2 via s.

Algorithm 1. State elimination for pMCs

eliminate state(P, s ∈ S not absorbing)
for each s1 ∈ pred (s), s1 �= s do

eliminate transition(P, s1, s)

eliminate transition(P, s1 ∈ pred (s), s ∈ S not absorbing)
if s1 �= s then

for each s2 ∈ succ(s), s �= s2 do

P (s1, s2) := P (s1, s2) + P (s1,s)·P (s,s2)
1−P (s,s)

P (s1, s) := 0
else

for each s2 ∈ succ(s), s �= s2 do

P (s, s2) := P (s,s2)
1−P (s,s)

P (s, s) := 0

Example 2. Consider again the pMC from Example 1. Assume, state s3 is
to be eliminated. The states that are relevant for this procedure are the
only predecessor s0 and the successors s0 and s5. Applying the function
eliminate state(P, s3) of Algorithm 1 yields the model in Fig. 2(b).

Conditional Probabilities. The probability PrM(♦T | ♦C) measures the reach-
ability of T ⊆ S given that C is reached. We assume sI �∈ T ∪ C, because
otherwise the result is the constant one function or coincides with the proba-
bility of reaching T , respectively. We assume w. l. o. g. all states in T ∩ C to be
absorbing.

We will now show how to compute this function using the elimination frame-
work. Let Srest = (T ∩C)\{sI }. Consider the path fragment in M as illustrated

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 221

Fig. 2. pMC model checking.

the upper part of Fig. 2(c). It finally reaches T (s4) after visiting C (s2) and
intermediately visits only Srest. By eliminating the transitions to and from the
intermediate states in Srest, we essentially summarize the probability of mov-
ing from sI to T ∩ C and from there on to T ; see the second path fragment in
Fig. 2(c). Therefore, the conditional probability from sI remains the same.

We use this key insight to convert the shape of M to the one depicted in
Fig. 2(d). First, we bypass all non-absorbing intermediate states via state elimi-
nation and keep only the states that are relevant for the conditional probability
and the absorbing states in Srest. Then, we eliminate backward transitions from
all states s targeting the initial state sI by applying eliminate transition from
Algorithm 1. It remains to eliminate transitions between states in T ∩ C as well
as transitions between states in T ∩ C. After this final step, the shape of the
resulting system is the one depicted in Fig. 2(d). Note that the abstract states
and transitions in this pMC correspond to sets of states and sets of transitions,
respectively. We are interested in computing the fraction

PrM(♦T ∩ ♦C)

PrM(♦C)
=:

f1

f2
f1, f2 ∈ QV

For the sake of clarity, we label an (abstract) transition s → s′ with � if s′ ∈ T ,
and with � if s′ ∈ C. To this end, we notice that it suffices to consider path
fragments of length two, since we have either seen both � and � along such a
fragment (and it therefore contributes to f1 and f2), or we are in Srest. In the
latter case, we saw only � (contributing to f2), only �, or none of them and
there is no way of reaching any one of them in the future.

222 C. Dehnert et al.

The functions are computed as follows. f2 corresponds to the probability
mass of all paths along which � is seen. That is, we either (i) start with a �

and then see a �, (ii) directly see both a � and a �, or (iii) encounter only a
� along the first step. f1 corresponds to the probability mass of all paths along
which both � and � are seen. Such paths either (i) start with �, and require
a subsequent � (corresponding to the path from Fig. 2(c)), (ii) start with both
� and �, or (iii) start with �, and require a subsequent �. This directly leads
to the following equation, where the three cases for f1 and f2 correspond to the
three summands in the numerator and denominator in the order from left to
right.

PrM(♦T ∩ ♦C)

PrM(♦C)
=

∑

t∈T∩C

P (sI , t) · P (t, C) +
∑

t∈T∩C

P (sI , t) +
∑

t∈T∩C

P (sI , t) · P (t, T)

∑

t∈T∩C

P (sI , t) · P (t, C) +
∑

t∈T∩C

P (sI , t) +
∑

t∈T∩C

P (sI , t)

The pseudo code of the elimination algorithm is given in Algorithm 2.

Algorithm 2. Computing conditional probabilities for pMCs

conditional(pMC M = (S, V , sI , P), T ⊆ S, C ⊆ S)
while ∃s ∈ (T ∩ C) \ {sI }, s not absorbing do

eliminate state(P, s)
for each s1 with P (s1, sI) > 0 do

eliminate transition(P, s1, sI)
while ∃s1, s2 ∈ (T ∩ C) or ∃s1, s2 ∈ (T ∩ C) with P (s1, s2) > 0 do

eliminate transition(P, s1, s2)
g1 :=

∑
t∈T∩C

P (sI , t) · P (t, C) g2 :=
∑

t∈T∩C
P (sI , t)

g3 :=
∑

t∈T∩C
P (sI , t) · P (t, T) g4 :=

∑

t∈T∩C

P (sI , t)

return g1+g2+g3

g1+g2+g4

Theorem 1 (Correctness). For a given pMC M = (S, V , sI , P) and sets of
states T ⊆ S and C ⊆ S, the procedure conditional(M, T, C) computes the
rational function describing the conditional probability PrM(♦T | ♦C).

The proof relies on the fact that state elimination preserves reachability proba-
bilities [19]. As we obtain a structure as in Fig. 2, the summation over all path
fragments of length (at most) two that contribute to the conditioned probability
yields the same result as in the original system.

4.2 Parameter Synthesis

Instantiating the rational functions yields model checking probabilities for the
corresponding instantiated MCs. However, this only gives a very rough impres-
sion of the behavior of the pMC for different parameter values, which is unsat-
isfactory if one aims to certify expected behavior over a non-singular parameter

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 223

space. Instead we determine which parts of the parameter space give rise to a safe
system. As explained in Sect. 2, we do this in a CEGAR-like manner; consider
again Fig. 1. The underlying concepts are presented in the following.

We assume upper bounds1 λ ∈ [0, 1] for (conditional) reachability probabil-
ities and κ ∈ R≥0 for expected rewards. For all parameter valuations inside a
region the bound shall either be violated or met in the corresponding instantiated
MC. Typically, the parameter space consists of both safe and unsafe regions.

Formally, let a half-space for parameters V = {p1, . . . , pn} be given by the
linear inequality a1p1 + . . . + anpn ≤ b with a1, . . . , an, b ∈ Q. A region is a
convex polytope defined by m half-spaces, i. e., a system of linear inequalities
Ap ≤ b with A ∈ Qm×n, p = (p1 . . . pn)T ∈ V n×1 and b ∈ Qm×1. Assume a
rational function fr ∈ QV , fc ∈ QV , or fe ∈ QV according to Definition 2 to be
computed for a pMC M as explained in the previous section.

Definition 3 (Safe/Unsafe Region). A region is safe iff there is no valuation
u such that Au ≤ b with fr

u > λ, fc
u > λ, or fe

u > κ with λ ∈ [0, 1] and κ ∈ R≥0

where u = (u(p1) . . . u(pn))T . A region is unsafe iff there is no valuation such
that fr

u ≤ λ, fc
u ≤ λ, or fe

u ≤ κ. Otherwise, the region is called undetermined.

By safe, unsafe, or undetermined we also refer to the type of a region. Given a
region and a rational function together with a threshold, certifying the assumed
type boils down to checking satisfiability of a conjunction of

– linear inequalities encoding the candidate region,
– nonlinear inequalities ensuring well-definedness of valuations, and
– a nonlinear inequality stating that the bound is violated or satisfied,

using an SMT solver such as Z3 [21]. The solver can then determine whether there
exists a valuation inside the candidate region whose corresponding instantiated
MC exceeds the threshold on the probability or the expected reward. If so, we
obtain such a valuation from the solver and can conclude that the region is not
safe. The obtained valuation serves as a counterexample to this region candidate.

Fig. 3. Sampling and region analysis.

1 Note that all methods are equally well applicable to lower bounds.

224 C. Dehnert et al.

Sampling. As a guide for determining candidates for safe or unsafe regions, we
apply sampling w.r.t. the property. An initially coarse sampling is iteratively
refined by adding points based on the linear interpolation between samples from
a safe and an unsafe region. Sampling can either be performed by instantiating
a rational function describing these reachability probabilities or by instantiating
the pMC and performing (non-parametric) probabilistic model checking, e. g.,
via PRISM. The latter is faster for a moderate number of sample points because of
the costly computation of the rational function. However, the rational function
is needed for verifying the safety of a region as described above.

Figure 3(left) shows an example sampling of the Bounded Retransmission
Protocol (BRP) benchmark [22]. Red crosses indicate that λ is exceeded (i.e. the
instantiated pMC is unsafe) while green dots indicate a safe instantiation.

Finding Region Candidates. For the construction of region candidates based on
sample points, three methods are available. It is possible to generate half-spaces
separating safe from unsafe points, successively enlarge rectangles containing
only safe or only unsafe points, a technique that is commonly referred to as
growing rectangles, or recursively separate the search space in quadrants that
only contain either safe or unsafe points. In each iteration, the intermediate
regions are checked for either safety or unsafety, based on the information from
the sampling. The middle and right images in Fig. 3 show an example of region
generation in the BRP benchmark, based on the initial sampling in the first
figure. After 5 iterations, a large part of the solution space is already deter-
mined to be (un)safe. After 80 iterations, over 97% of the area was covered by
certified safe and unsafe regions, respectively. The remaining white space indi-
cates that not the whole parameter space could yet be categorized into safe or
unsafe points, but the approximation can be further refined in subsequent iter-
ations. Currently, only pMCs with at most two parameters are supported, but
all existing benchmark models satisfy this criterion. We plan to alleviate this
restriction by supporting multi-dimensional convex regions, which is a straight-
forward extension for the rectangle and quadrant approaches, but challenging
for the hyperplane approach.

Sensitivity Analysis. Besides analyzing in which regions the system behaves
correctly w. r. t. the specification, it is often desirable to perform a sensitivity
analysis [16], i. e., to determine in which regions of the parameter space a small
perturbation of the system leads to a relatively large change in the considered
measure. In our setting, such an analysis can be conducted with little additional
effort. Given a rational function for a measure of interest, its derivations w. r. t. all
parameters can be easily computed. Passing the derivations with user-specified
thresholds to the SMT solver then allows for finding parameter regions in which
the system behaves robustly. Adding the safety constraints described earlier, the
SMT solver can find regions that are both safe and robust.

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 225

5 Implementation and Experiments

The complete tool chain is available online2. We implemented the model check-
ing algorithms as described in Sect. 4 in the framework of a probabilistic model
checker that is a redevelopment of MRMC [3] in C++. As for PARAM and PRISM,
models are specified in a parametric version of PRISM’s input language. From
the model description, we construct the explicit transition matrix, which can
then be reduced w. r. t. both strong [23] and weak bisimulation [24] in order to
speed up the computation. As the state elimination process frequently deletes
old transitions and creates new ones, we chose not to represent the transition
matrix in the compressed row storage format [25], but rather implemented a
hybrid between a sparse and a dense representation that only stores non-zero
entries but does not store all rows consecutively in memory. Furthermore, for
the representation of rational functions, we employ the newly developed modular
arithmetic library CArL [26]. Since the simplification involves the costly compu-
tation of the greatest common divisor of polynomials, CArL tries to speed this up
by caching and refining a partial factorization of rational functions, optimizing
the ideas of [13].

The tool chain—integrating the model checking backend with the sampling
algorithms, region generation and the web service—is implemented in Python

using the SciPy packages [27] and the Shapely package. Currently supported
SMT-solvers are Z3 [21] and SMT-RAT [28]. They are interfaced via the standard
SMT-LIB format [29], in principle enabling to use all SMT solvers supporting non-
linear real arithmetic. Due to numerical instabilities when sampling the rational
function, we use exact arithmetics. As the performance of SciPy proved to be
insufficient in this regard, we use CArL as sampling backend.

Experimental Evaluation. We evaluated the performance of our model checking
backend on well-known benchmark models available on PRISM’s [30] and param’s
[31] website, respectively. We compared the running times of our tool with those
of PRISM and PARAM on reachability properties and expected reward properties.
We ran the experiments on an HP BL685C G7 machine with 48 cores clocked
with 2.0GHz each and possessing 192GB of RAM. However, we restricted the
available RAM to 12GB for all experiments. We briefly explain the benchmark
models, but refer to our website [32] for further details and a full list of bench-
mark results.

The first case study is the probabilistic Bounded Retransmission Protocol [22]
that tries to send a file via an unreliable network. This model has two parameters:
the reliability of each lossy channel. The Crowds Protocol [1] aims at anonymi-
zing the sender of a message by routing it probabilistically through a larger crowd
of communication parties. The parameters govern the probability that a message
is once more forwarded in the crowd as well as the probability that a member of
the crowd is not trustworthy. The Zeroconf Protocol [33] governs how hosts join-
ing a network are being assigned a network address by probabilistically choosing

2 http://moves.rwth-aachen.de/prophesy/.

http://moves.rwth-aachen.de/prophesy/

226 C. Dehnert et al.

one and then checking for possible collisions. This model is parametric in the
probability that a collision happens and the probability that this is successfully
detected. Probabilistic Contract Signing [34] tries to establish the commitment
of two parties to a contract where no one trusts each other. It does so by reveal-
ing secrets bit by bit with a certain probability that is the single parameter of
this model. Finally, NAND Multiplexing [35] describes fault-tolerant hardware
using unreliable hardware by having copies of a NAND unit all doing the same
job. Parameters are the probabilities of faultiness of the units and of erroneous
inputs.

Table 1 shows the runtimes (in seconds) of PRISM, PARAM and PROPhESY on the
selected benchmarks for different objectives where we chose the best-performing
settings for each tool and benchmark instance. These concrete settings are given
on our webpage to enable the reproducibility of our results. Note that to the
best of our knowledge, no symbolic representation of pMCs is available.

Table 1. Runtimes of model checking on different benchmark models.

PRISM PARAM PROPhESY

instance #states #trans verif. total verif. total verif. total

re
a
ch

a
b
il
it
y brp

(128, 5) 10376 13827 215 218 5 7 2 3

(256, 5) 20744 27651 1237 1242 32 33 8 10

crowds
(15, 5) 592060 1754860 TO TO 18∗ 48∗ 1 46

(20, 5) 2061951 7374951 TO TO 75∗ 194∗ 4 165

nand
(20, 2) 154942 239832 886 901 44 48 16 22

(20, 5) 384772 594792 TO TO 319 328 89 104

ex
p
.
re

w
a
rd

egl
(5, 4) 74750 75773 5 11 – – < 1 5

(8, 4) 7536638 7602173 543 910 – – 7 607

nand
(20, 2) 154942 239832 TO TO 264 2033 5 12

(20, 5) 384772 594792 TO TO TO TO 47 64

zconf
(10000) 10004 20005 TO TO TO∗ TO∗ 4 4

(100000) 100004 200005 TO TO TO∗ TO∗ 255 263

co
n
d
it

io
n
a
l

brp
(256, 2) 10757 13827 – – – – < 1 1
(256, 5) 20744 27651 – – – – 1 3

crowds
(15, 5) 592060 1754860 – – – – 5 50
(20, 5) 2061951 7374951 – – – – 14 174

PRISM Baier et al.[18] PROPhESY

instance #states #trans verif. total verif. total verif. total

co
n
d
it

io
n
a
l

brp
(256, 2) 10757 13827 6 10 13 16 < 1 < 1

(256, 5) 20744 27651 10 14 65 69 < 1 < 1

(256, 10) 37389 50691 16 20 325 328 < 1 1

crowds
(10, 5) 111294 261444 95 99 11 16 < 1 1

(15, 5) 592060 1754860 699 702 69 84 < 1 6

(20, 5) 2061951 7374951 TO TO 184 242 1 19

Besides the total time taken by the respective tool (columns “total”), we
list the verification time (columns “verif.”), i. e. the time needed to reduce the
model and compute the rational function. The total time also includes the time
needed to build the model. Each row of the table corresponds to one benchmark
instance. As we observed that PARAM produced wrong results on some case studies
when using specific settings, we list the times of the best setup that returned

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 227

the correct result and marked the entries with a little star. All experiments
marked with “TO” exceeded the time limit of one hour and the best total time
is boldfaced.

When computing the rational function representing the reachability proba-
bility, PROPhESY is faster than PARAM, whereas PRISM is significantly slower than
both its competitors. E. g. both PARAM and PROPhESY solve the larger crowds
instances within less than four minutes, while PRISM is unable to compute a
result within the time limit. Note that for the crowds case study, the raw veri-
fication times of PROPhESY are always strictly better than those of PARAM, even
though the total time is not (always), because PARAM employs an efficient model
building procedure that PROPhESY does not implement. Even without this tech-
nical advantage, PROPhESY beats PARAM on almost all instances. For the expected
reward benchmarks, we did not list the times for PARAM for the egl case study,
because the tool produced an incorrect rational function for the smaller instance
for all settings and was unable to build the model for the larger instance. Overall,
we observe that PROPhESY outperforms the other tools on all benchmark models.

The runtimes of PROPhESY on the case studies of the first “conditional”
section of the table illustrate that our elimination-based algorithm to compute
parametric conditional probabilities on pMCs is able to solve instances with mil-
lions of states and transitions. For instance, it takes only a few seconds longer
to compute the conditional probability rather than the reachability probability
on the largest crowds instance despite the more complicated objective.

Thanks to the authors of [18], we could compare the performance of our algo-
rithm for computing conditional probabilities on non-parametric models with
both (i) the “naive” quotient method available in PRISM and (ii) the prototyp-
ical implementation used in [18]. The second section “conditional” of Table 1
shows that we are able to compute the result at least one order of magnitude
faster than both PRISM and the prototypical tool of [18] for all benchmarks.

Fig. 4. The summarized results.

Figure 4 shows a scatter plot of all mere
verification times except for parametric con-
ditional probability. The data shows how
PROPhESY performs in comparison to the best
competitor on any given instance. All points
above the main diagonal indicate that our
tool could solve the instance faster than
the competitor, which is the case for all
larger benchmarks; above the dashed diago-
nal, PROPhESY is more than ten times faster.

Finally, recall Fig. 3 showing how growing
rectangles cover the parameter space start-
ing from a sampling. For a practical evalua-
tion, see Fig. 5 illustrating that large parts of
the solution space are covered quickly by the
growing rectangles or using quadrants, but covering more area is increasingly

228 C. Dehnert et al.

Fig. 5. Area of solution space covered.

costly. Moreover, it depends strongly on the benchmark which of the technique
performs best.

6 Related Work

Parameter synthesis for probabilistic models is a relatively new and challenging
field. Daws [11] proposed to represent reachability probabilities by means of ratio-
nal functions, which are obtained by state elimination (as for obtaining a regular
expression from automata). This technique has been improved by Hahn et al. [19]
bydirectly computing and simplifying intermediate functions, as amajor drawback
of these techniques is the rapid growth of functions. The simplification involves the
addition of functionswhere the costly operation of computing the greatest common
divisor (gcd) needs to be performed. Jansen et al. [13] further improved the state
elimination technique by combining it with SCC decomposition, and a dedicated
gcd-computation operating on partial factorizations of polynomials. State elimi-
nation is the core of the tool PARAM [10] and has recently been adopted in PRISM [2].
These are—to the best of our knowledge—the only available tools for computing
reachability probabilities and expected rewards of pMCs. Note that all these tools
just output the rational function—sometimes accompanied by constraints ensur-
ing well-definedness—while none of them directly addresses the synthesis problem.

Other works include parameter synthesis of timed reachability in parametric
CTMCs [36–38], synthesis for interval MCs and ω-regular properties [39].

Seshia et al. [40] investigate probabilities which are modeled as convex func-
tions over independent parameters. In model repair [9,41], models refuting a
given property are amended so as to satisfy this property. In this setting, para-
metric MCs are used as underlying model. The verification of MCs against
parametric LTL formulas has been considered in [42]. Improved methods for
single-parameter pMCs and nested reachability properties were presented in [43].
Finally, [16] presents several complexity results for perturbation analysis of
pMCs.

Computing conditional probabilities for MCs has been considered in [18,44].
Usually, conditional probabilities are computed by the so-called quotient method
involving verifying ω-regular properties. Baier et al. [18] presented an elegant

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 229

algorithm reducing the problem to compute reachability probabilities in the MC
and a copy of it and experimentally showed the superiority of this approach.

7 Conclusion and Future Work

We presented the new tool PROPhESY dedicated to parameter synthesis for pMCs.
Beyond the superior model checking times over existing tools, it offers automated
and user-guided methods for partitioning the parameter space into safe and
unsafe parts. The service oriented architecture and modularity allow for a high
usability. Future work will consider the extension to parametric Markov decision
processes as well as continuous-time MCs. A further important extension will be
parameter synthesis for a higher number of parameters.

Acknowledgements. We want to thank Ernst Moritz Hahn for valuable discussions
on computing conditional probabilities for parametric MCs.

References

1. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

2. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

3. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

4. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Softw. Tools Technol. Transf.
15(2), 89–107 (2013)

5. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based prob-
abilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)

6. Alur, R., Henzinger, T.A., Vardi, M.: Theory in practice for system design and
verification. ACM SIGLOG News 2(1), 46–51 (2015)

7. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

8. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9), 69–77
(2012)

9. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011)

10. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

11. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

230 C. Dehnert et al.

12. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using
communication complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol.
4962, pp. 273–286. Springer, Heidelberg (2008)

13. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P.,
Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G.,
Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg
(2014)

14. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Form. Asp. Comput. 19(1), 93–109 (2007)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

16. Chen, T., Feng, Y., Rosenblum, D.S., Su, G.: Perturbation analysis in verification
of discrete-time markov chains. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 218–233. Springer, Heidelberg (2014)

17. Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of per-
turbed probabilistic systems. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS,
vol. 8144, pp. 297–312. Springer, Heidelberg (2013)

18. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-
ities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)

19. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2010)

20. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

21. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

22. Helmink, L., Sellink, M., Vaandrager, F.: Proof-checking a data link protocol. In:
Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165.
Springer, Heidelberg (1994)

23. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proceedings of LICS, pp. 266–277, IEEE CS (1991)

24. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg
(1997)

25. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., Der Vorst, H.V.: Templates for the Solution of Lin-
ear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia
(1994)

26. CArL Website (2015). http://goo.gl/8QsVxv
27. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for

python (2001)
28. Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: an SMT-compliant

nonlinear real arithmetic toolbox. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012)

29. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-
LIB) (2010). www.SMT-LIB.org

30. PRISM website (2015). http://prismmodelchecker.org
31. PARAM website (2015). http://depend.cs.uni-sb.de/tools/param/

http://goo.gl/8QsVxv
www.SMT-LIB.org
http://prismmodelchecker.org
http://depend.cs.uni-sb.de/tools/param/

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 231

32. Prophesy website (2015). http://moves.rwth-aachen.de/prophesy/
33. Bohnenkamp, H., Stok, P.V.D., Hermanns, H., Vaandrager, F.: Cost-optimization

of the IPv4 zeroconf protocol. In: Proceedings of DSN, pp. 531–540, IEEE CS
(2003)

34. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

35. Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic
devices. IEEE Trans. Nanotechnol. 1, 201–208 (2002)

36. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for prob-
abilistic time-bounded reachability. In: Proceedings of RTSS, pp. 173–182, IEEE
CS (2008)

37. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of sto-
chastic biochemical systems using quantitative model checking. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg
(2013)

38. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter syn-
thesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone,
K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)

39. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 32–46. Springer, Heidelberg (2013)

40. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013)

41. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for Markov decision processes. In: Proceedings of TASE, pp. 85–92, IEEE CS (2013)

42. Chakraborty, S., Katoen, J.-P.: Parametric LTL on markov chains. In: Diaz, J.,
Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 207–221. Springer,
Heidelberg (2014)

43. Su, G., Rosenblum, D.S.: Nested reachability approximation for discrete-time
markov chains with univariate parameters. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 364–379. Springer, Heidelberg (2014)

44. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and
nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008)

http://moves.rwth-aachen.de/prophesy/

	PROPhESY: A PRObabilistic ParamEter SYnthesis Tool
	1 Introduction
	2 Features and Contributions
	3 Formal Foundations
	4 Supported Techniques
	4.1 Model Checking
	4.2 Parameter Synthesis

	5 Implementation and Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

