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Abstract

Past research suggests revised parallel analysis (R-PA) tends to yield relatively accu-
rate results in determining the number of factors in exploratory factor analysis. R-PA
can be interpreted as a series of hypothesis tests. At each step in the series, a null
hypothesis is tested that an additional factor accounts for zero common variance
among measures in the population. Integration of an effect size statistic—the propor-
tion of common variance (PCV)—into this testing process should allow for a more
nuanced interpretation of R-PA results. In this article, we initially assessed the psycho-
metric qualities of three PCV statistics that can be used in conjunction with principal
axis factor analysis: the standard PCV statistic and two modifications of it. Based on
analyses of generated data, the modification that considered only positive eigenvalues

(p̂ + L̂
SMC : k0

) overall yielded the best results. Next, we examined PCV using minimum

rank factor analysis, a method that avoids the extraction of negative eigenvalues. PCV

with minimum rank factor analysis generally did not perform as well as p̂ + L̂
SMC : k0

, even

with a relatively large sample size of 5,000. Finally, we investigated the use of p̂ + L̂
SMC : k0

in combination with R-PA and concluded that practitioners can gain additional infor-

mation from p̂ + L̂
SMC : k0

and make more nuanced decision about the number of factors

when R-PA fails to retain the correct number of factors.
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A number of factor analytic experts (e.g., Fabrigar, Wegener, MacCallum, & Strahan,

1999; Schmitt, 2011) have recommended the use of parallel analysis (PA) to assess

the number of factors underlying measures in conducting exploratory factor analysis

(EFA). Traditional PA (T-PA) compares the eigenvalues for a sample correlation

matrix with the mean eigenvalues for correlation matrices for M (e.g., M = 100) paral-

lel datasets (PDs) generated such that the variables are independent. Despite the rela-

tive accuracy of PA, Harshman and Reddon (1983) and Turner (1998) believed T-PA

to be flawed. They argued against the use of a reference distribution of eigenvalues

for PDs with uncorrelated variables. They contended that the proper reference distri-

bution of eigenvalues to reach a conclusion about the kth factor should be based on

PDs with k21 underlying factors.

To address these concerns, Green, Levy, Thompson, Lu, and Lo (2012) suggested

revised PA (R-PA). When assessing whether at least k factors underlie a set of mea-

sures with R-PA, PDs are generated assuming measures are a function of k21 factors

rather than 0 factors. Ideally, PDs should be generated based on the population load-

ings of these k21 factors. In practice, the population factor loadings are unknown,

and factor loadings based on the sample dataset are used.

R-PA differs from T-PA in two other ways. First, R-PA uses principal axis factoring

(PAF) rather than principal components analysis (PCA) because unlike PCA, PAF

allows for measurement error and thus is more appropriate for educational/psychologi-

cal data (e.g., Ford, MacCallum, & Tait, 1986). A second difference is that the eigenva-

lues for the sample data are compared with the 95th percentile rather than the mean of

eigenvalues for the referent distribution (Buja & Eyuboglu, 1992; Glorfeld, 1995), such

that each step in R-PA is similar to the hypothesis testing with a nominal alpha of .05.

Results of Monte Carlo studies offer support for R-PA (Green et al., 2012; Green,

Redell, Thompson, & Levy, 2016; Green, Thompson, Levy, & Lo, 2015; Green, Xu,

& Thompson, 2018) relative to other PA methods. Ruscio and Roche (2012) also

offered a PA method that uses the proper referent distribution, but Green et al. (2017)

conducted a Monte Carlo study suggesting R-PA generally was preferable across the

examined conditions.

R-PA, Hypothesis Testing, and Effect Size

R-PA can be viewed as a sequential, hypothesis-testing process. At each step in the

process, the null hypothesis is assessed that k21 factors are sufficient to reproduce

the population correlation matrix. Alpha is set at .05 given the 95th percentile eigen-

value rule is applied. Rejection of the null hypothesis implies at least k factors under-

lie the population correlation matrix. Nonrejection is interpreted as k21 factors

underlie this matrix.
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Because R-PA is a series of hypothesis tests, it is open to the misinterpretations

that commonly occur with hypothesis testing. First, nonrejection of the null hypoth-

esis in R-PA should not necessarily imply acceptance of the null hypothesis.

Nonrejection can be due to a lack of power. In previous Monte Carlo studies (Green

et al., 2012; Green et al., 2015), R-PA underestimated the number of factors in con-

ditions that have low power (e.g., small sample size, lower factor loadings, and

strong factor correlations). Second, rejection of the null hypothesis conducting R-PA

does not necessarily imply that an additional factor is nontrivial. A number of psy-

chometricians have argued that a very large number of factors is likely to underlie

any set of measures (e.g., Cudeck & Browne, 1992; Tucker, Koopman, & Linn,

1969). Within this context, the researcher who is conducting EFA is attempting to

determine the number of major factors that comes ‘‘close’’ to reproducing the corre-

lations among them, and to ignore the trivial factors (Fabrigar et al., 1999).

By including an effect size statistic in the R-PA process, researchers must not

only consider the results of the hypothesis tests, but also address whether each addi-

tional factor is weak and should be ignored or sufficiently strong to have psycho-

metric meaning. In so doing, researchers must make more nuanced decisions about

the number of factors.

Purpose of Article

A number of researchers have suggested the proportion of common variance of indi-

cators explained by a factor (PCV) as an effect size index for that factor (e.g., Reise,

2012; Ten Berge & Sočan, 2004). The purpose of this article was to investigate the

choice of PCV statistics for use with R-PA. The results are presented in three studies.

In Study 1, we assessed the psychometric qualities of a frequently applied PCV index

using PAF. Due to problems with this statistic, we also evaluated two modifications

to this index. In Study 2, we assessed the quality of a PCV index that uses a lesser-

known factor extraction method, minimum rank factor analysis (MRFA; Lorenzo-

Seva, 2013; Shapiro & Ten Berge, 2002; Sočan, 2003; Ten Berge & Kiers 1991; Ten

Berge & Sočan, 2004). MRFA avoids the problem in the computation of PCV using

PAF, such that all factors have positive eigenvalues. In Study 3, we examined the use

of these effect size statistics in the application of R-PA.

Study 1

Definition of PCV as a Factor Effect Size Index

We begin by considering the PCV of a factor in the population. With factor analysis,

communalities for indicators (gp) are substituted along the diagonal of a correlation

matrix to yield a reduced correlation matrix, where a communality gives the propor-

tion of variance of an indicator explained by the underlying factors. Factors are then

extracted from this reduced correlation matrix. Each eigenvalue for an extracted fac-

tor gives the variance of the indicators accounted for by that factor and, thus, should
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be greater than or equal to zero. If we knew the underlying structure of a set of indi-

cators, we could compute correctly PCV for factor k0 in the population pk0ð Þ:

pk0 =
Lk0PK

k = 1

Lk

, ð1Þ

where Lk0 is the eigenvalue for the k
0
th factor, and

PK
k = 1

Lk is the sum of the eigenva-

lues for the reduced correlation matrix across the K indicators. Given the communal-

ities are correct and the number of factors is correctly specified (NF:Correct) and less

than K, the last K2NF:Correct eigenvalues must be zeros, and the denominator for

Equation 1 can be reexpressed as
PNF: Correct

k = 1

Lk .

There is an alternative computation of PCV if the correct model is unknown in calcu-

lating communalities for the reduced correlation matrix. Squared multiple correlations

(SMC, denoted as r2
p for any indicator p) between indicators and all other indicators can

be used as estimates of the correct communalities. We will focus on SMCs in this article

in order to be consistent with the choice of communality estimates for R-PA, although

corrected SMC (Cureton & D’Agostino, 2013) or quantities other than SMCs have been

suggested in the literature (Mulaik, 2009). It should be noted that a squared multiple cor-

relation gives the proportion of indicator variance attributable to other indicators rather

than the proportion of indictor variance attributable to the underlying factors. Thus,

although we are interested in pk0 , we may have to focus on the population PCV with

population squared multiple correlations (pSMC: k0) as rough estimates of the communal-

ities. Accordingly, pSMC: k0 is based on the eigenvalues LSMC: k0ð Þ of a reduced correla-

tion matrix with squared multiple correlations along the diagonal:

pSMC: k0 =
LSMC: k0PK

k = 1

LSMC: k

: ð2Þ

pSMC: k0 is a negatively biased estimator of pk0 at the population level (i.e.,

pSMC: k0 � pk0 \0) because r2
p is generally less than g2

p for any indicator p.

pk0 and pSMC: k0 are PCV parameters in the population. At the sample level, we do

not know the correct model and thus cannot estimate pk0 , but can estimate pSMC: k0 .

To obtain an estimate of pSMC: k0 , we substitute sample estimates for parameters on

the right side of Equation 2 to obtain

p̂SMC: k0 =
L̂SMC: k0PK

k = 1

L̂SMC: k

: ð3Þ
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A Problem With p̂SMC: k0

In computing PCV in a sample (i.e., Equation 3), we factor analyze a reduced correla-

tion matrix with SMCs along the diagonal to obtain eigenvalues. The numerator of

Equation 3 contains the eigenvalue for the k
0
th factor, an estimate of the common var-

iance of the indicators explained by the k
0
th factor. The denominator is the sum of

eigenvalues across all factors, a rough estimate of the common variance of the indica-

tors explained by all possible factors. A problem with this approach becomes appar-

ent in conducting a common factor analysis: the first number of eigenvalues

generally are positive, whereas the remaining eigenvalues are negative. Conceptually,

the results are nonsensical in that an eigenvalue is the variance of the indicators due

to any one factor, and a variance cannot have negative values.

It is crucial to assess the statistical properties of p̂SMC: k0 in that this index is

reported by popular statistical packages, including SAS and Stata. In the SAS

User’s Guide (SAS Institute Inc., 2009), an example (labeled Example 33.2

Principal Factor Analysis) is presented based on the factor analysis of five vari-

ables. Eigenvalues of the reduced correlations (with SMCs along the diagonal) as

well as proportions of common variance are presented; the first three eigenvalues

and proportions are positive in value, whereas the last two are negative. As

reported in the text in the SAS User’s Guide, the reported results are perplexing in

that the first two eigenvalues accounted for 101.31% of the common variance.

Appropriately, the SAS manual indicates that this out-of-bound estimate occurred

because the reduced correlation matrix was not positive definite and accordingly

yielded negative eigenvalues. A similar example is presented in the Stata User’s

Guide Release 13 (StataCorp, 2013) in discussing the output generated by the fac-

tor analysis procedure.

Alternative Estimators of PCVs

Given the problems with p̂SMC: k0 , we considered two adaptations of p̂SMC: k0 to assess

PCV. The first adaptation was to alter the denominator. We took a rather simple

approach to this adaptation: Negative eigenvalues are problematic so let us get rid of

them. In other words, rather than summing across all eigenvalues in the denominator,

we sum across only the positive eigenvalues. Thus, at the population level, we can

define an alternative PCV (p + L
SMC : k0),

p + L
SMC : k0 =

LSMC: k0

PN + L

k = 1

LSMC: k

; ð4Þ

where the denominator is the sum of the N + L positive eigenvalues.1 At the sample

level, we substitute the estimates on the right side of the equation:
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p̂ + L̂
SMC : k0 =

L̂SMC: k0

PN + L̂

k = 1

L̂SMC: k

: ð5Þ

It should be noted that
PN + L̂

k = 1

L̂SMC: k must be greater than or equal to
PK = p

k = 1

L̂SMC:k , and

thus p̂ + L̂
SMC : k0 must be less than or equal to p̂SMC: k0 .

A second adaptation is a corrected p̂SMC: k0 (denoted p̂Corrected
SMC: k0 ) that takes into

account our expectation that p̂SMC: k0 is an overestimate of pk0 . p̂SMC: k0 is corrected

by the mean eigenvalues for parallel samples. More specifically, for the kth factor,

the corrected effect size statistic involves (a) computing L̂SMC: k0 based on the reduced

correlation matrix; (b) calculating comparable eigenvalues for the parallel samples

generated assuming k21 factors, denoted as L̂m
SMC: k0 (m represents the mth parallel

dataset and M represents the total number of parallel datasets); (c) computing a mean

eigenvalue across the parallel datasets; (d) subtracting the quantity computed in

Step cK from the quantity determined in Step a; and (e) dividing the result of Step d

by
PK
k = 1

L̂SMC: k . The equation for p̂Corrected
SMC: k0 is thus

p̂Corrected
SMC: k0 =

L̂SMC: k0 �
PM

m = 1

L̂m
SMC: k0=M

� �

PK
k = 1

L̂SMC: k

: ð6Þ

The subtraction in Step (c) provides a downward correction of p̂SMC: k0 . In addition,

Step (c) ensures that when the number of factors is zero in the population (e.g., in a

null model with no common factor), p̂Corrected
SMC: k0 is 0 for all k under finite samples and

thus nonzero eigenvalues are avoided.

Purpose of Study 1

The objective of Study 1 was to assess the psychometric quality of the presented

PCV indices. Initially, we examined the bias of pSMC: k0 and p + L
SMC : k0 at the popula-

tion level. Bias is defined as the difference between either of these parameters and

pk0 . Note we did not assess p̂Corrected
SMC: k0 in that it is undefined in the population.

At the sample level, biases of these PCV indices were assessed by calculating

E(p̂SMC: k0 )� pk0 , E p̂ + L̂
SMC : k0

� �
� pk0 , and E p̂Corrected

SMC: k0
� �

� pk0 , where E() is an

expected value. As a byproduct of assessing the biases of these PCV indices, we

assessed whether the statistical properties of p̂SMC: k0 warrant its use in popular statis-

tical packages or whether one of the alternative investigated indices (i.e.,

p̂ + L̂
SMC : k0 and p̂Corrected

SMC: k0 ) has better statistical properties.
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Method
Design. We manipulated three dimensions to evaluate the bias of pSMC: k0 and

p + L
SMC : k0 in estimating pk0 at the population: factor-model type, magnitude of factor

loadings, and correlations between factors, where appropriate. At the sample level,

we manipulated the same three dimensions plus sample size to evaluate the psycho-

metric qualities of p̂SMC: k0 , p̂ + L̂
SMC : k0 , and p̂Corrected

SMC: k0 . We described these design

dimensions below:

� Factor-model types used to generate sample data are presented in Figure 1: (a)

an unidimensional model with all eight indicators loading on a single factor;

(b) a two-factor, perfect-cluster model with four indicators loading on each of

the two factors; (c) a three-factor, perfect-cluster model with four indicators

loading on each of the three factors; (d) a two-factor, bifactor model with all 8

indicators loading on a general factor and 4 indicators also loading on a group

factor; and (e) a three-factor, bifactor model with all 12 indicators loading on

a general factor and 4 indicators loading on each group factor.
� Factor loadings on unidimensional models were .5s or .7s for indicators that

were a function of a single factor. For the two-factor or three-factor perfect-

cluster models, the nonzero loadings on the factors were .5s or .7s. For the

bifactor models, the indicators on the general factor had loadings of .5s or .7s,

and the 4 indicators on the group factor(s) had loadings of .5s.
� Correlations between factors were .0, .4, or .8 for any two-factor or three-

factor perfect-cluster model.
� Number of observations was set at 200 or 400 for the sample-level simulation.

Data Generation and Analyses. At both the population and sample levels, we restricted

our presentation to the PCAs for the first three factors, given that the maximum cor-

rect number of factors manipulated in the population was three. PCAs for the rest of

the factors were in general close to 0 (or negative for pSMC: k0).

At the population level, we computed a reproduced correlation matrix based on

the parameters of the models for each combination of the manipulated dimensions.

Reduced correlation matrices were then created by substituting the correct gp or

SMCs along the diagonal of the generated correlation matrices. Note that the correct

gp was obtained by specifying the correct number of factors. In reality, the correct

number of factors is unknown, and thus gp is replaced by SMCs. Each of the reduced

correlation matrices was analyzed using PAF to obtain eigenvalues for the unrotated

factors. pSMC: k0 and p + L
SMC : k0 were computed according to Equations 2 and 4, respec-

tively, as well as pk0 using Equation 1.

At the sample level, 1,000 sample datasets were created for each combination of

the manipulated dimensions. The factors and errors in the model all follow N(0, 1).

Correlation matrices were computed for each sample dataset and analyzed using

PAF to obtain eigenvalues to compute p̂SMC: k0 and p̂ + L̂
SMC : k0 . In addition, to compute
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p̂Corrected
SMC: k0 , we generated 100 parallel datasets based on the estimated loadings given

0, 1, and 2 factors for each sample dataset to assess the PCVs for 1, 2, and 3 factors,

respectively.

All data generation and analyses were implemented in R (R Core Team, 2017).

Results

We considered the results of the PCV indices at the population level and then at the

sample level.

Bias at the Population Level. We present the results of pSMC: k0 , p + L
SMC : k0 , and pk0 for

the first three factors in Table 1. Bias at the population level was assessed by

pSMC: k0 � pk0 and p + L
SMC : k0 � pk0 . We considered a bias that was greater than or

equal to .10 as substantial and bolded these values in Table 1, as well as all Tables 2

through 5. Overall, pSMC: k0 performed poorly. pSMC: k0 was positively biased across

all conditions for the first factor. pSMC: k0 for the first factor was greater than its upper

bound of 1.0 in 10 of the 18 conditions and was higher than 1.20 in four of these 10

conditions. In the remaining 8 conditions, pSMC: k0 was .08 or greater relative to pk0 .

For the second factor, substantial positive bias for pSMC: k0 was observed for perfect-

cluster models with zero correlation among factor. The bias for pSMC: k0 decreased

rapidly with an increase in the correlation among factors. Minimal bias (not exceed-

ing .05) was observed for the remaining conditions. For the third factor, pSMC: k0 evi-

denced negative values when pk0 = 0. Considerable positive bias occurred with the

three-factor perfect-cluster model when the correlation among factors was 0, but this

bias was minimal when correlations among factors were large.

In comparison with pSMC: k0 , p + L
SMC : k0 showed much less bias in estimating pk0 :

We considered separately results when pk0 . 0 and results when pk0 = 0, aggregating

across the first, second, and third factors. In the conditions in which pk0 . 0, p + L
SMC : k0

was equal to pk0 for all 12 estimates with a single factor model and perfect-cluster

models with uncorrelated factors. For the remaining estimates in which pk0 . 0,

p + L
SMC : k0 was within .03 of pk0 28 times and between .04 and .05 of pk0 2 times.

When pk0 = 0, p + L
SMC : k0 was less than or equal to 0 in all 12 conditions; p + L

SMC : k0 was

between .00 and 2.05 for 10 of the estimates and was equal to 2.07 for the remain-

ing 2 estimates.

To explain the differences in results between pSMC : k0 and p + L
SMC : k0 , we examined

the eigenvalues for the extracted factors. In Figure 2, we present a graph of eigenva-

lues for the condition in which the reduced correlation matrix was based on a bifac-

tor model with one group factor having loadings of .5s. The pattern of eigenvalues

for this condition was similar to the patterns of eigenvalues for the other conditions.

It should be noted that (a) the eigenvalues based on SMCs as communality estimates

were positive when the eigenvalues based on correct communalities were positive,

(b) the eigenvalues based on SMCs as communality estimates were negative when

the eigenvalues based on correct communalities were zero, and (c) the eigenvalues
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were uniformly lower when the communality estimates were SMCs versus when they

were correct values.

Because pSMC : k0 and p + L
SMC : k0 have the same numerator, differences in these esti-

mates are due to differences in their denominators: the sum of all eigenvalues for

p + L
SMC : k0 versus the sum of only the positive eigenvalues for p + L

SMC : k0 .

Bias at the Sample Level. At the sample level, we considered not only PCV estimates

based on all eigenvalues and based on all positive eigenvalues, but also estimates that

are corrected using parallel datasets. The results of these analyses for the first, second,

and third factors are presented in Tables 2, 3, and 4, respectively. The population val-

ues for three of the PCVs also are included in these tables to assess bias.

We begin by describing the results in Table 2 for the first factor. p̂SMC: k0 was posi-

tively biased in all conditions, largely attributed to the bias at the population level.

Disturbingly, the mean of p̂SMC: k0 yielded out-of-bound values (i.e., greater than 1) in

17 of 36 conditions, and the bias was greater for the larger sample size. For p + L̂
SMC : k0 ,

the bias was minimal (within .03) in 22 conditions, moderate (between .04 and .07) in

Table 1. PCVs at the Population Level for One-, Two-, and Three-Factor Models.

PCV for first factor PCV for second factor PCV for third eigenvalue

rFF0 l pk0 pSMC : k0 p + L̂
SMC : k0 pk0 pSMC : k0 p + L̂

SMC : k0 pk0 pSMC : k0 p + L̂
SMC : k0

One-factor underlying all indicators
— .5 1.00 1.38 1.00 0 2.05 2.04 0 2.05 2.04
— .7 1.00 1.13 1.00 0 2.02 2.02 0 2.02 2.02
Two-factor, perfect-cluster model
0 .5 .50 .88 .50 .50 .88 .50 0 2.13 2.07

.7 .50 .63 .50 .50 .63 .50 0 2.04 2.03
.4 .5 .70 1.22 .73 .30 .46 .27 0 2.11 2.07

.7 .70 .89 .71 .30 .36 .29 0 2.04 2.03
.8 .5 .90 1.39 .94 .10 .08 .06 0 2.08 2.05

.7 .90 1.10 .92 .10 .09 .08 0 2.03 2.03
Three-factor, perfect-cluster model
0 .5 .33 .58 .33 .33 .58 .33 .33 .58 .33

.7 .33 .42 .33 .33 .42 .33 .33 .42 .33
.4 .5 .60 1.04 .63 .20 .30 .18 .20 .30 .18

.7 .60 .77 .62 .20 .24 .19 .20 .24 .19
.8 .5 .87 1.26 .92 .07 .06 .04 .07 .06 .04

.7 .87 1.04 .89 .07 .06 .05 .07 .06 .05
Bifactor model with one group factor
0 .5 .87 1.16 .90 .13 .13 .10 0 2.04 2.03

.7 .91 1.03 .93 .09 .08 .07 0 2.02 2.02
Bifactor model with two group factors
0 .5 .75 .95 .77 .20 .23 .19 .05 .05 .04

.7 .84 .92 .85 .13 .13 .12 .04 .03 .03

Note. PCV = proportion of common variance. Values that yielded � .10 bias were bolded.
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Table 2. PCVs at the Population Level and Mean Effect Sizes at the Sample Level for the First
Factor.

Population Sample with N = 200 Sample with N = 400

rFF0 l pk0 pSMC: k0 p + L̂
SMC : k0

�̂pSMC: k0
�̂p

+ L̂

SMC : k0
�̂p

Corrected
SMC: k0

�̂pSMC: k0
�̂p

+ L̂

SMC : k0
�̂p

Corrected
SMC: k0

One-factor underlying all indicators
— .5 1.00 1.38 1.00 1.22 .89 1.00 1.29 .95 1.14
— .7 1.00 1.13 1.00 1.09 .97 .99 1.11 .99 1.04
Two-factor, perfect-cluster model
0 .5 .50 .88 .50 .88 .55 .59 .90 .55 .69

.7 .50 .63 .50 .67 .54 .55 .66 .53 .58
.4 .5 .70 1.22 .73 1.06 .68 .78 1.13 .71 .93

.7 .70 .89 .71 .86 .71 .74 .87 .71 .79
.8 .5 .90 1.39 .94 1.22 .85 .97 1.30 .90 1.12

.7 .90 1.10 .92 1.05 .90 .95 1.08 .91 1.00
Three-factor, perfect-cluster model
0 .5 .33 .58 .33 .59 .38 .59 .61 .38 .43

.7 .33 .42 .33 .46 .38 .36 .46 .37 .38
.4 .5 .60 1.04 .63 .82 .56 .60 .92 .60 .74

.7 .60 .77 .62 .71 .60 .61 .74 .61 .67
.8 .5 .87 1.26 .92 1.02 .75 .83 1.13 .83 .98

.7 .87 1.04 .89 .97 .85 .88 1.01 .87 .94
Bifactor model with one group factor
0 .5 .87 1.16 .90 1.08 .86 .88 1.12 .88 1.01

.7 .91 1.03 .93 1.01 .91 .93 1.02 .92 .96
Bifactor model with two group factors
0 .5 .75 .95 .77 .87 .72 .76 .91 .75 .83

.7 .84 .92 .85 .90 .83 .83 .91 .84 .86

Note. PCV = proportion of common variance. Values that yielded � .10 bias were bolded.

Figure 2. Eigenvalues of reduced correlation matrices based on a bifactor model with one
group factor having factor loadings of .5s.
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12 conditions, and large ( . .07) in the remaining 2 conditions. p + L̂
SMC : k0 demon-

strated less bias than either of the other two estimates in 10 of the 18 conditions when

N was equal to 200, and p̂Corrected
SMC: k0 showed the least amount of bias in 7 of these condi-

tions (with 1 tie). p + L̂
SMC : k0 had the least bias in all 18 conditions when N was equal to

400.

The results for the second factor are shown in Table 3. p̂SMC: k0 yielded the least

bias in 7 conditions; p + L̂
SMC : k0 yielded the least biased in 18 conditions; and

p̂Corrected
SMC: k0 showed the least bias in 8 conditions (with ties between at least two of

the three estimators in the other 3 conditions). It should be noted that for the con-

ditions in which p̂SMC: k0 was least biased, the other estimates were generally only

slightly more biased. Also p̂Corrected
SMC: k0 performed best for models with one underly-

ing factor.

The results for the third factor are shown in Table 4. For the models with pk0 = 0,

p̂Corrected
SMC: k0 yielded the least biased estimates of pk0 for 15 out of the 20 conditions, but

Table 3. PCVs at the Population Level and Mean Effect Sizes at the Sample Level for the
Second Factor.

Population Sample with N = 200 Sample with N = 400

rFF0 l pk0 pSMC: k0 p + L̂
SMC : k0

�̂pSMC: k0
�̂p

+ L̂

SMC : k0
�̂p

Corrected
SMC: k0

�̂pSMC: k0
�̂p

+ L̂

SMC : k0
�̂p

Corrected
SMC: k0

One-factor underlying all indicators
— .5 0 2.05 2.04 .10 .07 .00 .06 .04 .00
— .7 0 2.02 2.02 .03 .02 .00 .01 .01 .00
Two-factor, perfect-cluster model
0 .5 .50 .88 .50 .64 .40 .46 .72 .44 .59

.7 .50 .63 .50 .55 .45 .49 .58 .47 .54
.4 .5 .30 .46 .27 .42 .27 .26 .44 .28 .34

.7 .30 .36 .29 .35 .29 .30 .35 .29 .33
.8 .5 .10 .08 .06 .16 .11 .03 .12 .08 .05

.7 .10 .09 .08 .10 .09 .07 .10 .08 .08
Three-factor, perfect-cluster model
0 .5 .33 .58 .33 .47 .30 .47 .52 .32 .38

.7 .33 .42 .33 .40 .33 .32 .41 .33 .36
.4 .5 .20 .30 .18 .32 .22 .16 .32 .21 .21

.7 .20 .24 .19 .26 .22 .20 .26 .21 .22
.8 .5 .07 .06 .04 .14 .10 .02 .11 .08 .03

.7 .07 .06 .05 .09 .08 .04 .08 .07 .05
Bifactor model with one group factor
0 .5 .13 .13 .10 .15 .12 .04 .14 .11 .10

.7 .09 .08 .07 .09 .08 .07 .09 .08 .07
Bifactor model with two group factors
0 .5 .20 .23 .19 .23 .19 .16 .23 .19 .19

.7 .13 .13 .12 .13 .12 .11 .13 .12 .12

Note. PCV = proportion of common variance. Values that yielded � .10 bias were bolded.
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the degree of bias was small in general. For the models with pk0 . 0, p̂SMC: k0 was the

least biased estimate of pk0 for 7 conditions; p + L̂
SMC : k0 for 3 conditions; and p̂Corrected

SMC: k0

for 1 condition (with ties between two estimates for the remaining 5 conditions).

However, the degree of bias was relatively similar across conditions relative to the

results for the first and second factors.

In summary, no single estimator performed consistently better than others across

all 54 conditions for the first, second, and third factors. However, p + L̂
SMC : k0 overall

tended to demonstrate less bias than the other two estimators. In addition, the stan-

dard deviations of the three estimates across replications (i.e., the empirical standard

errors) were very similar to each other, although they displayed a consistent pattern

across all conditions: p + L̂
SMC : k0 yielded the smallest standard deviation, followed by

p̂Corrected
SMC: k0 and then p̂SMC: k0 .

Table 4. PCVs at the Population Level and Mean Effect Sizes at the Sample Level for the
Third Factor.

Population Sample with N = 200 Sample with N = 400

rFF0 l pk0 pSMC: k0 p + L̂
SMC : k0

�̂pSMC: k0
�̂p

+ L̂

SMC : k0
�̂p

Corrected
SMC: k0

�̂pSMC: k0
�̂p

+ L̂

SMC : k0
�̂p

Corrected
SMC: k0

One-factor underlying all indicators
— .5 0 2.05 2.04 .04 .03 2.01 .02 .01 .00
— .7 0 2.02 2.02 .01 .01 .00 .00 .00 .00
Two-factor, perfect-cluster model
0 .5 0 2.13 2.07 .07 .04 .01 .03 .02 .01

.7 0 2.04 2.03 .01 .01 .00 .00 .00 .01
.4 .5 0 2.11 2.07 .07 .04 2.01 .03 .02 .00

.7 0 2.04 2.03 .01 .01 .00 .00 .00 .01
.8 .5 0 2.08 2.05 .06 .04 .00 .03 .02 .00

.7 0 2.03 2.03 .01 .01 .00 .00 .00 .00
Three-factor, perfect-cluster model
0 .5 .33 .58 .33 .36 .24 .36 .42 .26 .33

.7 .33 .42 .33 .33 .28 .29 .36 .29 .34
.4 .5 .20 .30 .18 .22 .15 .10 .24 .16 .16

.7 .20 .24 .19 .20 .17 .16 .21 .18 .19
.8 .5 .07 .06 .04 .01 .07 .00 .07 .05 .01

.7 .07 .06 .05 .06 .05 .03 .06 .05 .04
Bifactor model with one group factor
0 .5 0 2.04 2.03 .03 .02 2.03 .01 .01 .00

.7 0 2.02 2.02 .01 .01 .00 .09 .00 .00
Bifactor model with two group factors
0 .5 .05 .05 .04 .07 .06 .02 .06 .05 .03

.7 .04 .03 .03 .04 .04 .02 .04 .03 .02

Note. PCV = proportion of common variance. Values that yielded � .10 bias were bolded.
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Study 2

A major difficulty with the considered PCVs is that they are based on negative eigen-

values for later factors. These results are nonsensical in that eigenvalues represent

the variance accounted for by a factor, which should be greater than or equal to zero.

p̂ + L̂
SMC : k0 tended to produce less biased estimates of pk0 in comparison with p̂SMC : k0

and p̂Corrected
SMC: k0 ; however, p̂ + L̂

SMC : k0 is an ad hoc modification to p̂SMC : k0 .

A more elegant mathematical alternative is to use an EFA method that does not

allow for negative eigenvalues. There is such a method, minimum rank factor analy-

sis (MRFA; Lorenzo-Seva, 2013; Shapiro & Ten Berge, 2002; Sočan, 2003; Ten

Berge & Kiers 1991; Ten Berge & Sočan, 2004). MRFA yields optimal communal-

ities for an observed correlation matrix in the sense that the reduced correlation

matrix is positive semidefinite; that is, MRFA does not allow for negative eigenva-

lues. MRFA is not as well known as other EFA methods (e.g., PAF and maximum

likelihood) and is not part of major statistical packages. However, it is available as

Windows (Lorenzo-Seva & Ferrando, 2006) and R programs (Navarro-Gonzalez &

Lorenzo-Seva, 2017).

MRFA eliminates the problem with negative variances for factors and thus may

yield more accurate estimates at the population and sample levels (denoted pMRFA : k0

and p̂MRFA : k0 , respectively). Previous research indicates that MRFA yields positively

biased estimates for unexplained common variance after extracting a fixed number of

factors, particularly as a function of sample size (Shapiro & Ten Berge, 2002; Sočan,

2003). The implication is that p̂MRFA : k0 is likely to be biased, although the degree

and type of bias (i.e., negatively or positively biased) are likely to differ across the

extracted factors. Shapiro and Ten Berge (2002) offered a method to compute the

asymptotic bias of the unexplained variance, which is appropriate for the analysis of

covariance matrices, but not for correlation matrices.

A study by Timmerman and Lorenzo-Seva (2011) proposed a parallel analysis

approach that incorporates MRFA as the factor extraction method, and judgments

about the number of factors are made based on proportions of explained common

variance. The results of their Monte Carlo study indicated that, under a number of

conditions, the proposed method can yield relatively accurate conclusions in the

assessment of the number of factors for ordered polytomous items. Their study offers

some support for MRFA; however, they did not investigate the accuracy of MRFA

in estimating PCV, the focus of the current study. Thus, it is unknown based on their

results whether MRFA is a useful effect size statistic for parallel analysis.

Purpose of Study 2

The purpose of Study 2 is to explore the psychometric properties of pMRFA : k0 and

p̂MRFA : k0 and to compare their properties to those for p
SMC:k0 and p̂

SMC:k0 as well as

p + L
SMC : k0 and p̂ + L̂

SMC : k0 . We did not include p̂Corrected
SMC: k0 because the index is undefined in

the population, is not a standard estimate of PCV, and is less accurate than p̂ + L̂
SMC : k0 .
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Method

We used the same design in Study 2 as we employed in Study 1 with one exception.

We included sample sizes of 1,000, 2,000, and 5,000 besides 200 and 400 to explore

large-sample properties. We generated data and conducted analyses of these data

using comparable methods as used in Study 1.

Results
Bias at the Population Level. At the population level, pMRFA : k0 yielded the same values

as pk0 ; that is, pMRFA : k0 perfectly reproduced the proportion of common variance in

the population. Thus, pMRFA : k0 was superior to pSMC : k0 and p + L
SMC : k0 at the popula-

tion level.

Bias at the Sample Level. At the sample level, we present in Table 5 the results of

p̂MRFA : k0 for the first, second, and third extracted factor for sample sizes of 200 and

400. For the first extracted factor, p̂MRFA : k0 was consistently negatively biased.

p̂MRFA : k0 , on average, was .14 less than pk0 when N = 200 and .11 less than pk0 when

N = 400. p̂MRFA : k0 was a much less accurate estimator of pk0 in comparison with

p + L̂
SMC : k0 . The mean absolute differences between p + L̂

SMC : k0 and pk0 were .10 and .08

for sample sizes of 200 and 400, respectively. In comparison, the mean absolute dif-

ferences between p + L̂
SMC : k0 and pk0 were .04 and .02 for sample sizes of 200 and 400,

respectively.

For the second extracted factor, p̂MRFA : k0 was on average relatively unbiased.

Similar to the first extracted factor, p̂MRFA : k0 was a somewhat less accurate estimator

of pk0 than p̂ + L̂
SMC : k0 . The mean absolute differences between p̂MRFA : k0 and pk0 were

.05 and .04 for sample sizes of 200 and 400, respectively. In comparison, the mean

absolute differences between p̂ + L̂
SMC : k0 and pk0 were .03 and .02 for sample sizes of

200 and 400, respectively.

For the third extracted factor, p̂MRFA : k0 tended to be positively biased. p̂MRFA : k0 ,

on average, was .06 greater than pk0 when N = 200 and .05 greater than pk0 when N =

400. p̂MRFA : k0 was a somewhat less accurate estimator of pk0 than p̂ + L̂
SMC : k0 . The mean

absolute differences between p̂MRFA : k0 and pk0 were .06 and .05 for sample sizes of

200 and 400, respectively. In comparison, the mean absolute differences between

p̂ + L̂
SMC : k0 and pk0 were .03 and .02 for sample sizes of 200 and 400, respectively.

Based on these results, p̂ + L̂
SMC : k0 appeared to be a more accurate estimator of pk0

than p̂MRFA : k0 : Given that pMRFA : k0 = pk0 and p + L
SMC : k0 6¼ pk0 at the population level,

p̂MRFA : k0 should become a more accurate estimator of pk0 relative to p̂ + L̂
SMC : k0 as sam-

ple size increases. To assess whether p̂ + L̂
SMC : k0 continues to demonstrate more accu-

racy for large sample sizes, we included conditions with sample sizes of 1,000, 2,000,

and 5,000.

For the first extracted factor, p̂MRFA : k0 was generally negatively biased when N =

1,000, 2,000, and 5,000. p̂MRFA : k0 , on average, was .08 less than pk0 when N = 1,000,

.06 less than pk0 when N = 2,000, and .04 less than pk0 when N = 5,000. However,
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p̂MRFA : k0 was still a much less accurate estimator of pk0 than p̂ + L̂
SMC : k0 . In comparison,

p̂ + L̂
SMC : k0 tended to be positively biased; on average, it was .02 greater than pk0 for all

three sample sizes. The mean absolute differences between p̂MRFA : k0 and pk0 were .08,

.06, and .04 for sample sizes of 1,000, 2,000, and 5,000, respectively. In comparison,

the mean absolute differences between p̂MRFA : k0 and pk0 were .02 for all three sample

sizes.

For the second extracted factor, both p̂MRFA : k0 and p̂ + L̂
SMC : k0 were on average

slightly negatively biased; on average, the biases for both statistics were 2.01 across

different sample sizes. p̂MRFA : k0 and p̂ + L̂
SMC : k0 also displayed similar accuracies across

sample size; on average, the mean absolute differences between the two alternative

PCVs and pk0 were between .01 and .02 across sample sizes.

For the third extracted factor, p̂MRFA : k0 tended to be slightly positively biased,

with mean differences of + .01 across sample sizes. In contrast, p̂ + L̂
SMC : k0 demonstrated

Table 5. PCV at the Population Level and Mean Estimate of PCV Using MRFA at the Sample
Level for the First Three Factors.

Factor 1 Factor 2 Factor 3

pk0:correct

�̂pMRFA: k0

pk0:correct

�̂pMRFA: k0

pk0:correct

�̂pMRFA: k0

rFF0 l N = 200 N = 400 N = 200 N = 400 N = 200 N = 400

One-factor underlying all indicators
— .5 1.00 .68 .74 0 .12 .10 0 .09 .07
— .7 1.00 .85 .89 0 .06 .04 0 .04 .03
Two-factor, perfect-cluster model
0 .5 .50 .43 .44 .50 .34 .37 0 .11 .09

.7 .50 .48 .49 .50 .41 .43 0 .05 .04
.4 .5 .70 .51 .55 .30 .25 .26 0 .11 .09

.7 .70 .62 .64 .30 .28 .28 0 .05 .04
.8 .5 .90 .63 .69 .10 .15 .13 0 .10 .08

.7 .90 .78 .81 .10 .11 .11 0 .05 .04
Three-factor, perfect-cluster model
0 .5 .33 .28 .29 .33 .24 .25 .33 .19 .22

.7 .33 .33 .33 .33 .29 .30 .33 .24 .27
.4 .5 .60 .39 .43 .20 .19 .19 .20 .14 .15

.7 .60 .50 .52 .20 .20 .20 .20 .16 .17
.8 .5 .87 .53 .59 .07 .12 .10 .07 .09 .08

.7 .87 .71 .75 .07 .09 .08 .07 .07 .07
Bifactor model with one group factor
0 .5 .87 .71 .75 .13 .14 .14 0 .07 .05

.7 .91 .84 .86 .09 .10 .09 0 .03 .02
Bifactor model with two group factors
0 .5 .75 .58 .62 .20 .17 .18 .05 .08 .07

.7 .84 .75 .77 .13 .12 .12 .04 .05 .04

Note. PCV = proportion of common variance; MRFA = minimum rank factor analysis. Values that yielded

� .10 bias were bolded.
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a negative bias, with mean differences of 2.02 across sample sizes. p̂MRFA : k0 and

p̂ + L̂
SMC : k0 displayed similar accuracies across sample size; on average, the mean abso-

lute differences between the two alternative PCVs and pk0 were between .02 and .03

across sample sizes.

In addition, the standard deviations of p̂MRFA : k0 across replications were very sim-

ilar to those of p̂ + L̂
SMC : k0 . However, p̂ + L̂

SMC : k0 resulted in slightly smaller standard devia-

tions (.01 or .02 smaller) across all conditions.

Study 3

Based on the analyses of the generated data in the two previous studies, we found

p̂ + L̂
SMC : k0 to be the preferred PCV index. In Study 3, we focus on the usefulness of

p̂ + L̂
SMC : k0 in combination with R-PA.

Purpose of Study 3

The objective of Study 3 was to demonstrate how p̂ + L̂
SMC : k0 can be used to yield a more

nuanced interpretation of R-PA. We concentrate on two situations in which research-

ers may choose to make decisions that go counter to the standard interpretation of R-

PA after taking into account p̂ + L̂
SMC : k0 : (a) inclusion of a factor that was not significant

but has a nontrivial p̂ + L̂
SMC : k0 and (b) exclusion of a factor that was significant but has

a trivial p̂ + L̂
SMC : k0 .

Method
Design. In Study 3, we generated and analyzed data for two-factor and three-factor

perfect-cluster models as well as two-factor bifactor models. Because the interpreta-

tion of results for the perfect-cluster models is essentially the same as those for the

two-factor bifactor models, we present the results for only the latter models. The

bifactor models consisted of 8 indicators, with all indicators loading on the general

factor and 4 indicators loading on the group factor.

In Study 3, we manipulated the factor loadings and sample size. Factor loadings

on the general factor were .5s or .7s, whereas factor loadings on the group factor were

.3s, .4s, .5s, or .6s. The number of observations was set at 200, 500, or 800.

Data Generation and Analyses. As with the previous studies, the factor and error scores

for the model were generated to be normally distributed. One-thousand-sample data-

sets were created for each combination of the manipulated dimensions.

We conducted a series of hypothesis tests required in performing a revised paral-

lel analysis. Following the steps of R-PA, we initially evaluated the null hypothesis

that 0 factors underlie a correlation matrix. For all 1,000 replications in each condi-

tion, this hypothesis was rejected, implying that more than 0 factors were required.

Next, we tested the null hypothesis that 1 factor explains the correlation matrix. The

number of replications in which this hypothesis was not rejected and was rejected
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was recorded for each condition. Based on the standard use of R-PA, we reached one

of two conclusions: nonrejection of this null hypothesis suggests 1 factor is sufficient

to explain the correlation matrix, whereas rejection implies that 2 or more factors are

required. For replications in which this hypothesis was rejected, an additional

hypothesis test was conducted to evaluate the null hypothesis that 2 factors are nec-

essary to explain the correlation matrix. The number of replications in which this

hypothesis was not rejected and was rejected was recorded for each condition.

Nonrejection of this null hypothesis suggests 2 factors are sufficient to explain the

correlation matrix, whereas rejection implies that 3 or more factors are required.

Given the bifactor model used to generate the data included 2 factors, we stopped

testing and concluded that either the correct number of factors was determined if the

hypothesis was nonsignificant or the number of factors was overestimated if the

hypothesis was significant.

To assess whether the effect size statistic p̂ + L̂
SMC : k0 augments the interpretation of

R-PA, we report the mean of p̂ + L̂
SMC : k0 ( �̂p

+ L̂

SMC : k0) separately for nonsignificant and sig-

nificant results at each step in the R-PA process. The reported �̂p
+ L̂

SMC : k0 depended on

the hypothesis that was tested. More specifically, when the null hypothesis was

assessing k0 � 1 underlying factors, the effect size was computed for the k0 factor

�̂p
+ L̂

SMC : k0

� �
.

In interpreting the results, it is important to keep in mind two issues. First, hypoth-

esis test results are a function of sample size and effect size. Thus, for any one condi-

tion, the mean effect size value will be greater for significant versus nonsignificant

hypothesis tests. Second, the number of observations decreases as one proceeds

through the sequence of tests with R-PA in that R-PA does not proceed when a

hypothesis test is nonsignificant.

Results

In Table 6, we present �̂p
+ L̂

SMC : k0 within the sequence of steps of R-PA. In this table, we

focus on the types of outcomes with effect sizes that suggest an alternative estimate

of the number of factors relative to R-PA.

Nonsignificant Test and Nontrivial Effect Size. We first considered conditions when R-

PA failed to reach the correct number of factors due to small sample size and thus a

lack of power of the R-PA significance tests. This occurred most frequently with non-

significant tests assessing the null hypothesis of a single underlying factor, a sample

size of 200, and loadings on the general factor of .5s (e.g., 83.3% and 47.1% of the

replications when the loadings on the group factors were .3s and .4s, respectively). In

these conditions, �̂p
+ L̂

SMC : k0 = 2 were .07 or greater, indicating that approximately 7% of

the common variance is accounted for by the second factor. Given this effect size,

researchers might consider that a second factor underlies the variables rather than
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using the stopping rule of R-PA and reaching the conclusion that a single factor is

sufficient.

Although it may be tempting to suggest a cutoff criterion for p̂ + L̂
SMC : k0 (e.g., a factor

is defined as relevant if p̂ + L̂
SMC : k0 . :05), we believe that setting such a cutoff is coun-

terproductive. Rather, we believe researchers should consider the results of R-PA,

p̂ + L̂
SMC : k0 , and the rotated factor solutions in the context of the variables that are being

analyzed and what they are purported to measure. It is interesting to note that in the

same conditions �̂p
+ L̂

SMC : k0 = 3 (i.e., the effect size for the third factor) ranged in value

from .016 to .029 for nonsignificant results when evaluating the null hypothesis that 2

factors are sufficient. Thus, the mean effect sizes for the second factor were twice the

size, or greater, than the mean effect sizes for the third factor when data were gener-

ated with two underlying factors.

Significant Test and Trivial Effect Size. We next examined conditions when R-PA

reached nominally the correct number of factors, but one of the factors was suffi-

ciently weak that it might be evaluated as psychometrically inconsequential. This

result can occur if sample size is large, and thus the R-PA significance tests have

high power. To address this possibility, we key on the results for a sample size of

800, factor loadings on the general factor of .7s, and factor loadings on the group fac-

tor of .3s. For this condition, 99.4% of the replications yielded significant tests; how-

ever, the �̂p
+ L̂

SMC : k0 = 2 for the significant results was only .026. If researchers found

similar findings for their data, they might decide that a single factor is adequate to

explain the correlation among the variables. Before making a final decision, how-

ever, researchers should examine the one-factor solution as well as rotated factor

solutions (and in particular two-factor solutions) in the context of the analyzed vari-

ables and their purported meaning.

For our Monte Carlo study, we increased the loadings on the group factor from .3

to .6, in essence defining a stronger group factor. Appropriately the �̂p
+ L̂

SMC : k0 = 2

increased by .025 for each increase of .1 on the group factor loadings. Thus, research-

ers are less likely to call the second factor inconsequential as the group factor

increases in strength.

Conclusion

Initially, researchers who are conducting an exploratory factor analysis first must

determine the number of factors underlying the reduced correlation matrix among

variables. Methods like R-PA examine the eigenvalues associated with the extracted

factors; these eigenvalues give the common variance accounted for by a factor. It is

convenient to examine the eigenvalues relative to each other, more explicitly the

PCV accounted by a factor. Some major statistical packages compute p̂SMC: k0 by

dividing the eigenvalue for a factor by the sum of the eigenvalues. The problem with

this approach is that some eigenvalues are negative and thus nonsensical. We sug-

gested alternatives to this index, including p̂ + L̂
SMC : k0 , which is computed by excluding
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the negative eigenvalues. Based on Study 1, this index overall outperformed the

alternatives.

An extraction method, minimum rank factor analysis, obviates problems with

p̂SMC: k0 in that it does not allow for negative eigenvalues. The resulting index of

p̂MRFA : k0 worked optimally in Study 2 at the population level, but was outperformed

by p̂ + L̂
SMC : k0 for small to moderately large samples (i.e., sample sizes of 200 to 5,000).

Given that p̂ + L̂
SMC : k0 overall tended to produce better estimates than the investigated

alternatives, we explored in Study 3 the use of p̂ + L̂
SMC : k0 in combination with R-PA.

As described in this study, researchers are likely to seek a binary decision using a cut-

off criterion: unacceptable or acceptable. Accordingly, researchers may want a cutoff

criterion for p̂ + L̂
SMC : k0 to aid their decisions, such that when p̂ + L̂

SMC : k0 is above the cut-

off, they accept the next factor, and otherwise, reject the next factor. However, we

argue that researchers should resist the use of cutoffs. In making an interpretation

of p̂ + L̂
SMC : k0 , it is crucial to take into account that it is a ‘‘partialled’’ statistic; that is,

it examines the proportion of common variance accounted for by a factor after

partialling out previously extracted factors. Thus, the magnitude of p̂ + L̂
SMC : k0 can be

quite small for later extracted factors.

The decision about the number of factors is a complex one and should involve

multiple methods (Henson & Roberts, 2006; Velicer, Eaton, & Fava, 2000). In mak-

ing this decision, it is important not to dismiss the context of the study. Fabrigar et al.

(1999) made this point quite clearly,

Furthermore, it is important to remember that the decision of how many factors to include

in a model is a substantive issue as well as a statistical issue. A model that fails to produce

a rotated solution that is interpretable and theoretically sensible has little value. Therefore,

a researcher should always consider relevant theory and previous research when determin-

ing the appropriate number of factors to retain. (p. 281)

R-PA, as well as any other method to determine the number of factors, can be

inaccurate, particularly under conditions with small samples, measurement items that

have poor quality, and factors that are highly correlated. In such cases, researchers

should be aware of the fact that a single answer for the number of factors obtained

from R-PA can be misleading. An effect size statistic, in combination with substan-

tive considerations, can thus help researchers determine the number of factors in a

more nuanced way. For our Monte Carlo study, we illustrated how p̂ + L̂
SMC : k0 can aug-

ment the results of R-PA.

The simulation design in the present study can be extended in a couple of direc-

tions. First, we employed models that have simple or bifactor structures with less than

four factors. Psychology and educational research can involve many factors (e.g.,

eight factors) with complicated cross-loading structures. It would be useful to investi-

gate effects size statistics for parallel analyses with more complex structures. Second,

we assumed that factor, error, and observed scores all follow multivariate normal dis-

tributions. When nonnormality exists or when data are collected based on Likert-type
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scales, it remains a question as to whether our conclusions hold. Future studies are

needed to address these concerns.
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Note

1. The last few extracted factors are likely to have negative eigenvalues. We recommend not

computing p̂ + L̂
SMC : k0 for these factors and essentially considering PCVs for these factors to

be zero.
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