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Abstract A control using Proportional and/or Deriv-

ative feedback (PD-control) is applied on a piecewise

linear beam system with a flushing one-sided spring

element for steady-state vibration amplitude mitiga-

tion. Two control objectives are formulated: (1) min-

imize the transversal vibration amplitude of the mid-

point of the beam at the frequency where the first har-

monic resonance occurs, (2) achieve this in a larger

(low) excitation frequency range, where the lowest

nonlinear normal mode dominates the response. Ex-

perimentally realizable combinations of PD-control

are evaluated for both control objectives. Eventually

objective (1) is realized by applying proportional con-

trol only, whereas derivative control is selected to

realize objective (2). The vibration reduction that is

achieved in simulations and validated by experiments

is very significant for both objectives. Current results

obtained with active PD-control are compared with
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1 Introduction

In many situations in structural dynamics, avoidance

of resonances is required to prevent malfunctioning,

fatigue, or direct breakdown of the structure. First of

all, the mechanical design of the structure should be

optimized in order to avoid resonances. However, de-

spite high efforts in the design stage, the occurrence

of resonances cannot always be avoided, or the level

of the occurring vibration amplitudes still may be too

high. In these cases, depending on the specific require-

ments for the problem under consideration, passive,

semiactive, or active control may be applied to miti-

gate the vibration levels. Passive control in general is

robust and is achieved by adding mechanical elements

to the structure. Examples are dynamic vibration ab-

sorbers and constrained layer dampers [1–4]. In semi-

active control, the parameter values of certain struc-

tural elements are controlled as a function of time [5].

In active control [6–9], actuators are used to apply time

dependent loads on the structure to attenuate the vibra-

tion levels. The references mentioned above focus on

linear structures with linear control.

mailto:R.H.B.Fey@tue.nl
mailto:H.Nijmeijer@tue.nl
mailto:Ron.Wouters@yacht.nl


536 R.H.B. Fey et al.

This paper focuses on active control for steady-

state vibration mitigation of a periodically excited,

archetype piecewise linear system, consisting of a lin-

ear beam, which is supported by a one-sided linear

elastic spring. The uncontrolled steady-state behavior

of this type of system was studied numerically as well

as experimentally in [10]. The steady-state behavior

observed in this system is representative for the be-

havior observed in many piecewise linear systems met

in engineering practice, which shows the relevance of

this work. Five practical examples of these systems

are: (1) a mooring buoy near an oil platform, to which

a ship is attached via a cable, which periodically slack-

ens due to sea wave excitation [11], (2) folded solar

array panels, which are attached to a satellite during

launch, and which are separated from each other by

one-sided spring elements [12], (3) bridge hangers in

a suspension bridge [13], (4) a piecewise linear pan-

tograph current collector suspension system [14, 15],

and (5) a bump stop in a wheel suspension system [16].

Depending on the amount of nonlinearity and

damping, the steady-state behavior of controlled and

uncontrolled piecewise linear systems may be highly

varying [10, 11, 17–22]. In general, next to harmonic

resonances, also super and subharmonic resonances

may occur. Moreover, in usually small excitation fre-

quency intervals, also quasi-periodic or chaotic re-

sponses/resonances may exist. Resonance peaks are

straight up for the case, that the one-sided spring

flushes to the remainder of the system in the static

equilibrium position [10, 11, 17, 18]. However, in

piecewise linear systems, resonance peaks may also

show hardening behavior [12, 23, 24], due to bridg-

ing of the backlash between system and the one-sided

spring, or softening behavior [12, 23], due to loss of

initial pretension between the system and the one-

sided spring.

The objective of this paper is to investigate, to what

extent relatively simple Proportional and/or Deriva-

tive feedback control (PD-control) can be applied, in

order to reduce steady-state vibrations/resonances in

a piecewise linear beam system, where a one-sided

spring flushes to a linear beam in the static equilibrium

position. In this paper, the steady-state vibrations in

the uncontrolled system will be caused by a disturbing

harmonic excitation force. Two different control ob-

jectives will be considered. The first objective will be

to suppress the 1st harmonic resonance peak at the cor-

responding resonance frequency. The second objective

will be to reduce the vibration levels of the system in

a wider frequency range. In this frequency range, the

first nonlinear normal mode should still be dominant,

however. This requirement in fact justifies attempting

the PD-control approach. The two control objectives

will be formulated in more detail later. The same two

control objectives were also posed in [25] with respect

to the same piecewise linear beam system. In [25], the

objectives were successfully realized by means of a

passive linear Dynamic Vibration Absorber (DVA).

Obviously, application of more advanced (nonlin-

ear) controllers and observers may result in increased

vibration reduction, but may also result in increased

costs, increased complexity, and lower reliability. In

[26, 27], for a similar piecewise linear system, reso-

nance/vibration attenuation is realized in a wider fre-

quency band, using an observer-based state feedback

controller. In [28, 29], again for a similar, periodically

excited, piecewise linear beam system, partial feed-

back linearization was used. However, in [28, 29], the

control objective was different compared to the con-

trol objectives of the current paper. For a specific ex-

citation frequency, the uncontrolled piecewise linear

system shows a stable 1/2 subharmonic resonance co-

existing with an unstable harmonic solution with low

amplitude. In [28, 29], the control objective was to

control the 1/2 subharmonic solution to the harmonic

solution and to stabilize this solution.

This paper is organized as follows. First, in the next

section, the experimental setup of the piecewise linear

beam system will be introduced. The steady-state be-

havior of the uncontrolled system will be discussed in

Sect. 3. In Sect. 4, the motivation to use PD-control

will be discussed further, two control objectives will

be formulated, PD-controller constraints will be dis-

cussed, and the PD controller design approach will be

presented. Section 5 will discuss the simulation model

of the system. In Sect. 6, first the separate effect of pro-

portional feedback, and secondly the separate effect of

derivative feedback on the steady-state behavior of the

closed loop system will be investigated. Experimental

and numerical results will be compared. Based on the

insights obtained, in Sect. 7, two PD-control settings

will be determined in order to realize the two control

objectives as good as possible. In Sect. 8, results ob-

tained in this paper and results obtained in [25] using

a DVA will be compared. Finally, in Sect. 9, conclu-

sions will be drawn and recommendations for future

research will be given.



Proportional and derivative control for steady-state vibration mitigation in a piecewise linear beam 537

2 Experimental setup

Figure 1 shows the schematic representation of the ex-

perimental setup of the system in the horizontal plane.

The influence of gravity is negligible. The setup ex-

ists of a steel main beam (a), which is supported at

each end by a leaf spring (b). In the middle of the

beam, a one-sided leaf spring (c) is placed flushing to

the main beam (a) making the system piecewise lin-

ear. This means that the one-sided spring neither in-

troduces backlash nor pretension in the static equilib-

rium situation. The backlash, which is seen in Fig. 1, is

shown for sketching purposes only, to make clear that

the leaf spring is indeed a one-sided spring. The con-

tact force between spring (c) and the main beam will

become nonzero for a displacement of the midpoint of

beam (a) in the negative y-direction; see Fig. 1. The

amount of nonlinearity in the piecewise linear system

may be indicated by the ratio of the stiffness of the

one-sided spring and the transversal linear stiffness of

the main beam (a), halfway its length. Here, this ratio

equals α = 2.7 [–].

The system is transversally excited by a disturbing

harmonic force generated by an eccentrically rotating

mass mechanism, which is attached to the middle of

beam (a) and driven by an electric synchronous motor.

The excitation frequency f = ω/(2π) will be varied

between 10 and 60 [Hz].

The actuator, which exerts the PD-control force to

the system, is placed as near as possible (0.2 m) to

the midpoint of the beam. The operation of this actua-

tor is based on the principle that a force is generated,

when a current flows through a coil, which is placed in

a permanent magnetic field. The midpoint transversal

displacement and acceleration are measured using an

LVDT and an accelerometer, respectively. The mea-

sured signals are processed by a data acquisition sys-

tem, which determines an appropriate current ampli-

fier input. Subsequently, the amplified input is offered

to the digital PD-controller. In order to determine the

PD control force of the actuator, next to the displace-

ment signal, actually the velocity signal is needed. The

velocity signal is obtained by filtering the measured

acceleration signal by a first order, high pass, analog

filter (filter frequency: 7.2 Hz), and subsequent ana-

log integration of the filtered acceleration signal over

time. This high pass filter is used to avoid drift. Then

the analog velocity signal is digitized and a second

order, low pass, Butterworth filter (filter frequency:

170 Hz) is applied to suppress high-frequency noise.

As a side-effect, this will also delete deterministic

high-frequency components in the velocity signal.

3 Steady-state behavior of the uncontrolled system

In Fig. 2, the steady-state response of the uncon-

trolled system is shown. In this figure, the quantity

“max disp” of a steady-state solution of the transversal

displacement of the beam midpoint ymid(t), defined by

max disp = maxymid(t) − minymid(t), (1)

is determined for excitation frequencies f ranging

from 10 to 60 [Hz]. Note that a value of max disp close

Fig. 1 Schematic

representation of the

experimental setup
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Fig. 2 Response of the uncontrolled system

to zero does not necessarily mean that the overall vi-

bration level of the beam is close to zero, because the

beam may be vibrating in a shape with a node near or

in the midpoint of the beam.

Figure 2 shows both simulation results and exper-

imental results. Simulation results are based on a nu-

merical model, which will be introduced in Sect. 5,

and are given for the uncontrolled system without ac-

tuator as well as the uncontrolled system with pas-

sive actuator dynamics. In the former case, stable pe-

riodic solutions are indicated with dashed lines. In the

latter case, the stable periodic solutions are indicated

with solid lines. In both cases, unstable periodic so-

lutions are indicated with black dots. For clarity, the

uncontrolled system with passive actuator dynamics is

the system including the inertia, damping, and elastic

properties of the actuator. The actuator control force,

however, is still equal to zero.

Calculation of branches of periodic solutions and

their stability and detection of bifurcation points on

these branches is based on theory and numerical meth-

ods described in, for example [17, 30, 31]. Although

the forces occurring in the system are continuous, the

current system has a discontinuity in the stiffness. In

numerical simulations, this should be accounted for,

for example, by means of event detection, to guaran-

tee accurate dynamic responses [32, 33].

Experimental results, indicated by circles, are only

included for the uncontrolled system with passive ac-

tuator dynamics. A good correspondence can be ob-

served between experimental and simulation results.

Figure 2 shows that for the case with as well as

for the case without passive actuator dynamics, a

harmonic resonance peak occurs near 20 [Hz], and

a related 1/2 subharmonic resonance near the dou-

ble of this frequency. For the case without actuator

also a related 1/3 subharmonic resonance is visible

near 56 [Hz]. This 1/3 subharmonic resonance oc-

curs above 60 [Hz] for the case with passive actu-

ator dynamics. Thus, by adding the passive actuator

dynamics, the global dynamic behavior of the uncon-

trolled system does not change. Resonance peaks shift

to somewhat higher excitation frequencies.

4 PD-control: motivation, control objectives,

constraints, and design

Apart from the fact that it is easy to implement, the

motivation to attempt a PD-control approach to miti-

gate the vibration level in this piecewise linear system

originates from the observation that, in the frequency

range of interest (10–60 [Hz]), actually only the low-

est nonlinear normal mode [19, 34, 35] is dominant.

It is important to realize this. Namely, for linear mul-

tidegree of freedom systems, it is well known that a

single PD-controller in principle is capable of control-

ling only one single normal mode. Therefore, in the

case of the current piecewise linear system, the best

one may hope for is that the PD-controller can control,

more or less, one single nonlinear normal mode. In

[25], a passive linear dynamic vibration absorber was

capable to mitigate the vibration level in this piecewise

linear system in the frequency range 10–60 [Hz], be-

ing the dominant frequency range of the first nonlinear

normal mode. This may be seen as an indication that

the PD-controller can be successfully applied here too.

In Sect. 5, the eigenmode of the system without the

one-sided spring, which is closely related to the first

nonlinear normal mode will be shown.

As announced in the Introduction already, now two

separate control objectives are formulated:

Control objective 1 Minimize “max disp” defined

by (1) at the first harmonic resonance frequency of

21.2 [Hz] of the uncontrolled piecewise linear beam

system with passive actuator dynamics; see Fig. 2.

Control objective 2 Reduce “max disp” defined by (1)

in the frequency range 10–60 [Hz]. No mathematical

optimization criterion will be used to realize this ob-

jective. Here, the performance of the PD-control ac-
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tion is evaluated by visual inspection (tuning) of multi-

ple amplitude-frequency plots such as Fig. 2. In this vi-

sual inspection, the focus will mainly be on the success

of the suppression of the harmonic and subharmonic

resonance peaks, which are present in the uncontrolled

situation. Obviously, simultaneously the appearance

of new resonance peaks in the frequency range 10–

60 [Hz] is prohibited. This visual inspection will be

carried out for all experimentally realizable settings of

the two PD control parameters kp and kd, which will

be introduced later.

It is emphasized again that vibration reduction of

the midpoint of the beam does not guarantee overall

vibration reduction of the beam because for the con-

trolled situation this midpoint may behave as a node,

while the rest of the beam is still vibrating at high vi-

bration levels. For every combination of the control

parameters, kp and kd, it will be checked afterwards,

if the latter situation, which obviously is undesirable

with respect to overall vibration reduction, does not

occur.

Obviously, the beam midpoint would have been the

ideal controller position, because this is the position:

(1) where the disturbing harmonic excitation of the

system takes place,

(2) for which the control objectives are formulated,

(3) where the one-sided spring exerts its force to the

beam, and

(4) where the dominant nonlinear normal mode shows

a maximal transversal displacement.

Actually, a controller located at the beam midpoint po-

sition, which could counterbalance the harmonic exci-

tation force, would cancel all beam vibrations. How-

ever, in many practical situations, it is not possible

to apply the control force on the ideal location. This

is also the case in our experimental set-up, where the

control force is applied 0.2 [m] from the midpoint of

the beam, which is the position as near as possible to

the beam midpoint from a practical point of view.

The digital PD-controller, which makes use of

the measured transversal displacement and the mea-

sured transversal acceleration of the midpoint of the

beam (recall that the acceleration is filtered and in-

tegrated over time), determines the magnitude of the

PD-control force Fc, which should be equal to:

Fc = −kpymid − kdẏmid (2)

where ymid and ẏmid are respectively the beam’s mid-

point transversal displacement and velocity. The PD-

controller set-point consists of the corresponding two

gains, kp and kd, respectively. In the experimental set-

up, the following constraints apply to kp and kd:

−6 × 104 ≤ kp ≤ 2.5 × 104 [N/m],

0 ≤ kd ≤ 600 [Ns/m]. (3)

A negative value of kp will decrease the resonance fre-

quencies, because the effective stiffness of the con-

trolled system will decrease. The lower bound on the

proportional gain kp is set to −6 × 104 N/m, because

lower values will result in negative effective stiff-

ness, and consequently unstable behavior. The upper

bound on the proportional gain kp is +2.5 × 104 N/m.

A higher value of kp will make the system unstable

due to unacceptable measurement noise amplification

in the feedback loop. The derivative gain kd influ-

ences the effective damping in the system. The struc-

tural damping in the uncontrolled system is very low.

Therefore, the lower bound on the derivative gain kd

is set to 0 Ns/m, because negative values of kd will

quickly make the system unstable when the effective

damping becomes negative. The upper bound on the

derivative gain is 600 Ns/m. A higher value again will

cause unacceptable measurement noise amplification.

Larger values of kd experimentally do not result in

vibration reduction and lead to increased deviations

between experimental and theoretical response ampli-

tudes.

To realize each separate control objective, in Sect. 7,

two different set-points of the PD-controller will be

determined by evaluating the steady-state response for

a large number of PD-controller set-points satisfying

the constraints given by (3). Prior to this, first the sim-

ulation model of the system with and without control

will be discussed in the next section and the effects

of separate P-action and separate D-action on the sys-

tem’s behavior will be determined in Sect. 6.

5 Simulation model

In order to avoid unacceptably high CPU-times, a re-

duced 4 degrees of freedom model has been derived,

which accurately approximates the dynamic behavior

of the piecewise linear system with PD-control in the

frequency interval of interest (10–60 [Hz]):

Mẍ + Dẋ + K(ymid)x = F, (4)
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where:

x =
[

ymid yact p2 p3

]T
, (5)

M = T T MoT , D = T T DoT ,

Kl = T T KoT , F = T T Fo, (6)

K(ymid) =
{

Kl if ymid > 0

Kl + Kos if ymid ≤ 0
, and (7)

F =
[

meω
2re cos(ωt) kmGau 0 0

]T
. (8)

Matrices M , D, and Kl represent respectively the re-

duced mass, reduced damping, and reduced stiffness

matrix, derived by dynamic reduction of the original

linear finite element model. Matrices Mo, Do, and Ko

are respectively the mass, damping, and stiffness ma-

trix of the original finite element model, containing the

inertial, damping, and elastic properties of the main

beam plus end supports, the passive actuator dynam-

ics, and the periodic excitation mechanism. Columns

F and Fo are respectively the reduced column and the

original column with external forces. Both columns

contain two nonzero elements representing the har-

monic excitation force and the control force.

The original displacement field q of the unreduced

finite element model is related to the column with re-

duced degrees of freedom x by means of the following

approximation based on the Ritz reduction matrix T :

q = T x. (9)

The Ritz reduction matrix T is based on 4 modes,

which are derived from the original undamped finite

element model without the one-sided spring, namely:

the 2nd eigenmode ϕ2 and the 3rd eigenmode ϕ3, and

two residual flexibility modes [17, 36], which are de-

fined for ymid and yact, the transversal displacements

of respectively the beam midpoint and the actuator

position. The 2nd eigenmode ϕ2, with corresponding

eigenfrequency f2 = 16.2 [Hz] and generalized degree

of freedom p2, and the 3rd eigenmode, with corre-

sponding eigenfrequency f3 = 54 [Hz] and general-

ized degree of freedom p3, are solutions of the un-

damped eigenvalue problem:

(

−(2πfk)
2Mo + Ko

)

ϕk = 0. (10)

The two residual flexibility modes are static correction

modes, which guarantee unaffected static load behav-

ior for the reduced model.

Figure 3 shows the lowest four eigenmodes ϕ1, ϕ2,

ϕ3, ϕ4 of the undamped eigenvalue problem, given by

(10), with the corresponding eigenfrequencies. In the

experimental set-up, the 1st eigenmode is suppressed

by the drive shaft of the excitation mechanism, so it

does not need to be included in the reduced model.

The 4th eigenfrequency exceeds the frequency range

of interest to a large extent. Note that the passive ac-

tuator dynamics slightly disturb the (anti)symmetry of

eigenmodes with respect to the beam midpoint.

The lowest eigenfrequency of the one-sided spring

(see Fig. 1) is much higher than the frequency range

Fig. 3 First 4 eigenmodes

(black solid lines) following

from (10). Dashed lines

indicate the undeformed

structure. The midpoint

position is indicated by �;

the actuator position is

indicated by △. For

presentational reasons,

horizontal and vertical

directions are sometimes

scaled differently
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of interest (10–60 [Hz]). Therefore, the inertia of the

one-sided spring may be neglected. In (7), the stiffness

of the one-sided spring is represented by matrix Kos

containing one nonzero entry (1,1) equal to kos.

Damping matrix Do is based on approximately 2%

modal damping for each mode and additionally con-

tains the discrete viscous damping constant of the ac-

tuator. The 2% modal damping among others accounts

for energy losses due to impacts and results in a good

match between measured and calculated resonance

amplitudes.

In (8), entries 1 and 2 of column F contain respec-

tively the harmonic excitation force and the control

force Fc. In the harmonic excitation force, me is the ro-

tating eccentric mass, re its eccentricity, and ω = 2πf

its angular frequency, where f is the excitation fre-

quency in [Hz]. In the actuation force, km is the motor

constant, Ga the gain of the current amplifier, and u the

applied voltage. This voltage is chosen in such a man-

ner that control force Fc according to (2) is realized.

The uncontrolled situation is represented by u = 0 [V].

In the numerical analysis, the transversal velocity

signal of the midpoint of the beam is directly available

in contrast to the experimental situation. The low-pass

Butterworth filter, which is used in the experiments in

order to reduce high frequency noise (see the end of

Sect. 2) is also applied to this velocity signal in the

simulations. As a result, also in the numerical analy-

sis the deterministic high-frequency components in the

velocity signal are removed to mimic the experimental

situation.

Note that the nonlinear normal mode, closely re-

lated to the second eigenmode of the linear system

with eigenfrequency f2 = 16.2 [Hz], dominates the

response near the first harmonic resonance peak at

21.2 [Hz] in Fig. 2. In fact, it dominates almost the

whole frequency range of 10–60 Hz. This peak oc-

curs at 21.2 [Hz] instead of 16.2 [Hz] due to the pres-

ence of the one-sided spring. The value of 21.2 [Hz]

can be checked in good approximation by using the

following expression for the resonance frequency of

an undamped, piecewise linear, single degree of free-

dom system, which is derived in [18] for the case of

flush:

fpwl =
2
√

1 + α

1 +
√

1 + α
flin. (11)

ln (11), α is the ratio between the stiffness of the

one-sided spring and the stiffness of the linear spring

and flin is the eigenfrequency of the linear, single de-

gree of freedom, mass-spring system. As stated be-

fore, in our case, the ratio between the stiffness of

the one-sided spring and the transversal stiffness of

the beam, halfway the length of the beam, is α =
2.7 [–]. Substituting this value and the value of flin =
f2 = 16.2 [Hz] in (11) results in fpwl = 21.3 [Hz],

which is, as expected, slightly above the experimen-

tally observed resonance frequency of 21.2 [Hz] for

our weakly damped beam system.

6 Effects of separate P-action and separate

D-action

In this section, the effects of separate P-control and

separate D-control on the steady-state behavior of the

piecewise linear beam system will be investigated.

With the insights obtained in this way, combined PD-

control in Sect. 7 can be understood better.

First, the effect of P-action on the response of

the piecewise linear system is investigated (kd =
0 [Ns/m]). Figure 4 shows max disp (see (1)) in the ex-

citation frequency range 10–60 [Hz] for several values

of kp. Stable simulation results are validated by experi-

mental results (circles). For larger gains, discrepancies

between numerical and experimental results increase

somewhat because the influence of the measurement

noise in the feed-back loop increases. Increasing kp

shifts the resonances to higher frequencies because

“stiffness” is added to the system.

Obviously, the 1/2 subharmonic resonance near

42 [Hz] shifts approximately twice as much as the re-

lated harmonic resonance near 21 [Hz]. In Fig. 4, only

positive values of kp are considered. However, nega-

tive values may also be applied and in fact will be used

in Sect. 7.

Figure 5 shows the effect of only D-action (kp =
0 [N/m]). Again the experimental and simulation re-

sults match well. Derivative feedback significantly

suppresses both the harmonic and 1/2 subharmonic

resonances near respectively 21 [Hz] and 42 [Hz].

In the experiments, which were all started from rest,

a slow frequency sweep up did not reveal other sta-

ble steady-state solutions than a slow frequency sweep

down, for the considered frequency range. Obviously,
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Fig. 4 Max disp in the

range 10–60 [Hz] for

varying kp [N/m]. Surface:

simulation results, unstable

numerical solutions are

indicated by black dots.

Circles: experimental

results

Fig. 5 Max disp in the range 10–60 Hz for varying kd [Ns/m]. Surface: simulation results, unstable numerical solutions are indicated

by black dots. Circles: experimental results

this does not mean that other stable steady-state so-

lutions, which may have a periodic, quasi-periodic,

or chaotic nature, may not (co)exist. For example, by

using other initial conditions, or by applying a sud-

den disturbance to the system, other coexisting stable

steady-state solutions may be found.

7 PD-control: results

In this section, keeping in mind the effects of using

separate P-action and separate D-action, as discussed

in Sect. 6, the effect of combined P- and D-action on

the system’s steady-state behavior will be studied. Ob-
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Fig. 6 max disp in [mm]

for kp, kd combinations

viously, the control objectives will be subjected to the

constraints given by (3). The results for control ob-

jective 1 and control objective 2 will be discussed in

respectively Sects. 7.1 and 7.2. In addition, Sect. 7.3

will discuss some numerical results for the case of col-

located control: the control force will be exerted in

the middle of the beam. This is done in order to in-

vestigate, for both control objectives, how the results

will change, if the location of the controller force is

changed somewhat.

7.1 Control objective 1

Figure 6 shows a contour plot of max disp in [mm] (see

(1)) of simulated stable periodic solutions, for all pos-

sible kp, kd combinations, at an excitation frequency of

21.2 [Hz]. The contours in the white area refer to sta-

ble harmonic solutions. The contours in the grey area

refer to stable 1/2 subharmonic solutions. The bound-

ary between the white area and the grey area consists

of period doubling bifurcation points. Set-point M2

(kp = −4.6 × 104 [N/m], kd = 0 [Ns/m]) is chosen to

fulfill control objective 1 because then neither kp nor

kd needs to be to set to its limit value. Compared to

set-points M1 and M3, only a slightly higher max disp

value (0.57 mm) is found in set-point M2. This value

is still much lower compared to the value in the uncon-

trolled situation (about 10 [mm]).

Figure 7 shows the results for set-point M2 in a

wider frequency range. The controlled response shows

that, due to the negative proportional feedback, the

first harmonic and 1/2 subharmonic resonances are

shifted to lower frequencies in such a way, that a local

minimum of the maximum displacement of the stable

solutions occurs in between at 21.2 [Hz], at the period

doubling bifurcation point.

For set-point M2 at 21.2 [Hz], the transversal vi-

bration level at other locations on the beam appears to

be of the same order as for the transversal vibrations,

halfway the length of the beam, as shown in Fig. 7.

7.2 Control objective 2

When the results of all considered combinations of P-

and D-action are visually compared (these results are

not presented here), it appears that actually only D-

action is needed to maximize overall displacement re-

duction in the range 10–60 [Hz]. Very large P-action

could shift all resonances to frequencies above 60 [Hz]

but the required kp is outside the constraint interval

given by (3). For the required kp the amplified mea-

surement noise would result in an unstable system.

The circles in Fig. 8 show the experimental results

for the experimentally maximum applicable D-action

(kp = 0 [N/m], kd = 600 [Ns/m]). Both the harmonic

and the 1/2 subharmonic resonance peaks are reduced.
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Fig. 7 Vibration reduction

of the harmonic resonance

of the uncontrolled system

at 21.2 [Hz] for set-point

M2. Solid line: stable

simulation results, black

dots: unstable simulation

results. Circles:

experimental results.

Dashed line: response of

uncontrolled system

including the passive

actuator

Fig. 8 Vibration reduction

in the range 10–60 [Hz].

Solid line: simulation

results. Circles:

experimental results

(set-point: kp = 0 [N/m],

kd = 600 [Ns/m]). Dashed

line: uncontrolled case.

Black dots: unstable

numerical solutions of the

uncontrolled case

The largest vibration reduction of a factor 20 is ob-

served at the harmonic resonance peak.

The difference between the simulation results and

the experimental results in Fig. 8 is due to the noise

in the “measured” velocity signal (actually the inte-

grated measured transversal acceleration of the beam

midpoint). This results in a limited accuracy of the ap-

plied control force. Better correspondence between ex-

perimental and simulation results is obtained for lower

D-action at the cost of somewhat larger max disp val-

ues.

In a very small frequency range near 54 [Hz], the

vibration level actually increases somewhat for the

controlled situation compared to the uncontrolled sit-

uation as presented in Fig. 2. This can be understood

when realizing that the control force increases the ex-

citation of the second nonlinear normal mode, which

is very closely related to the 3rd linear eigenmode,

which is shown in Fig. 3 and has an eigenfrequency

of f3 = 54 [Hz]. It is only due to the passive dynamics

of the actuator in the uncontrolled situation that this

eigenmode has a node, which not exactly coincides

with the beam midpoint. Without the passive dynam-

ics of the actuator, the piecewise linear spring would

not have any influence on the eigenmode at 54 [Hz]:

the second nonlinear normal mode would convert to a

linear eigenmode.
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Fig. 9 Collocated control:

max disp in [mm] for kp, kd

combinations

As stated before, the vibration reduction, which is

realized for the transversal displacement of the mid-

point of the beam, does not guarantee vibration reduc-

tion for transversal displacements of other positions on

the beam. However, by visual inspection it was ver-

ified that also on other beam positions reduction of

transversal vibrations is achieved, except for excita-

tion frequencies near the second harmonic resonance

peak, i.e., near 54 [Hz].

7.3 Collocated control

In the case of collocated control, the transversal dis-

placement and acceleration are again measured in the

middle of the beam as before. The control force, how-

ever, is now also exerted in the middle of the beam,

instead of 0.2 m outside the middle of the beam as be-

fore. For collocated control, Figs. 9 and 10 show the

results for respectively control objective 1 and control

objective 2. These figures are to be compared with the

results shown earlier in respectively Figs. 6 and 8.

Repositioning of the PD controller to the middle of

the beam obviously means that the inertia, damping,

and stiffness of the inactive actuator, i.e., its passive

dynamic properties, are moved to the middle position

of the beam. This implies a change in the dynamic

properties of the uncontrolled system. This can be

seen, for example, when comparing Fig. 6 (noncollo-

cated control) with Fig. 9 (collocated control). Recall

that the excitation frequency is 21.2 Hz in both figures.

In the case of noncollocated control, at 21.2 Hz, the

harmonic resonance peak is found (see Fig. 2) which

corresponds to the set-point kp = 0 N/m and kd =
0 Ns/m (no control) in Fig. 6. Due to repositioning of

the controller to the midpoint of the beam, the stiffness

of the uncontrolled system has increased a little bit, re-

sulting in a small increase of the first harmonic reso-

nance peak to 21.75 Hz. In Fig. 9, the highest max disp

value is now found for the set-point kp = −5000 N/m

and kd = 0 Ns/m. Indeed, some negative P control is

needed to decrease the effective stiffness of the sys-

tem, in order to find a maximum max disp value again

at 21.2 Hz. This can also be seen when comparing the

frequencies, where the first harmonic resonance peak

occurs in the uncontrolled situation, for the noncol-

located case in Fig. 8 and for the collocated case in

Fig. 10. After zooming in, it can be observed in Fig. 10

that in the uncontrolled situation (dashed lines) the

first harmonic resonance peak has increased a little bit

from 21.2 Hz to 21.75 Hz.

When comparing the results of Figs. 8 and 10 with

respect to control objective 2, two differences between

the simulations with control (solid lines) can be seen.

The first difference occurs near 54 Hz. In the non-

collocated case (Fig. 8), the harmonic resonance of

the second nonlinear normal mode is clearly visible.

This resonance is completely absent in the collocated

case (Fig. 10). This is due to the fact that in the col-
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Fig. 10 Vibration

reduction in the range

10–60 [Hz]. Solid line:

simulation results

collocated control

(set-point: kp = 0 [N/m],

kd = 600 [Ns/m]). Dashed

line: uncontrolled case.

Black dots: unstable

numerical solutions of the

uncontrolled case

located case, the second nonlinear normal mode actu-

ally becomes a linear eigenmode, which has a node at

the beam midpoint, due to symmetry in the structure.

Therefore, this eigenmode will not be excited by the

PD controller force. This eigenmode is nearly equal to

the third eigenmode visible in Fig. 3 for the noncol-

located case. The second difference is that in the col-

located case no 1/2 subharmonic solutions occur any-

more; see the solid line in Fig. 10, whereas these still

were present in a small frequency range near 38 Hz for

the non-collocated case. See the solid line in Fig. 8.

Note that, apart from the minor differences men-

tioned above, the global behavior of the controlled sys-

tem in the frequency range 10–60 Hz hardly changes

by repositioning of the PD controller.

8 Comparison with passive control

In [25], passive vibration control of the same piece-

wise linear beam system was applied by attaching a

linear Dynamic Vibration Absorber (DVA) to the beam

instead of the PD-controller. The DVA was attached

to the beam at exactly the same position as the PD-

controller. The eigenfrequency of this DVA, which

basically is a single degree of freedom mass-spring-

damper system, was tuned to the first harmonic res-

onance frequency of the piecewise linear system. In

[25], the same two control objectives were formulated

as in this paper. The undamped DVA was applied to

reduce the vibration amplitude at the first harmonic

resonance (control objective 1), whereas the damped

DVA was used to realize vibration reduction over the

frequency range 10–60 [Hz] (control objective 2). The

amplitudes of periodic solutions, which are obtained

by passive vibration reduction, are shown for control

objective 1 in Fig. 11 and for control objective 2 in

Fig. 12.

With respect to control objective 1, it can be seen

that the undamped DVA (Fig. 11) realizes a larger vi-

bration reduction at the harmonic resonance frequency

than P-control (Fig. 7). When Fig. 7 is compared with

Fig. 11, a clear qualitative difference can be noticed. In

Fig. 7 (P-control), the minimum at 21.2 Hz is found at

the period doubling bifurcation point between the first

harmonic resonance peak and the 1/2 subharmonic

resonance peak. In Fig. 11, the minimum at 21.2 Hz

is found at the antiresonance between two harmonic

resonance peaks indicated by the two 1’s. This dif-

ference can be explained by comparing the natures

of the active P-controller and the passive, undamped

Dynamic Vibration Absorber (DVA). The P-controller

only changes the effective stiffness of the controlled

structure and, therefore, it basically shifts the reso-

nance frequencies; see Sect. 6. The undamped DVA

is a mass-spring system, which in contrast to the ac-

tive controller, adds an extra degree of freedom and,

therefore, an extra harmonic resonance to the system.

If the eigenfrequency of the undamped DVA is tuned

to the first harmonic resonance frequency of the sys-
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Fig. 11 Suppression of the

first harmonic resonance

peak near 19 [Hz] using an

undamped DVA. Solid

lines: simulation results

DVA, circles: experimental

results DVA. Dashed lines:

simulation results without

DVA

Fig. 12 Vibration

reduction in the frequency

range 10–60 [Hz] using a

damped DVA. Solid lines:

simulation results DVA,

circles: experimental results

DVA. Dashed lines:

simulation results without

DVA

tem without DVA, for the system with DVA at this fre-

quency an anti-resonance results, which is located in

between two nearby harmonic resonance peaks. This

is completely comparable to the case of an undamped

DVA applied to a linear single degree of freedom sys-

tem as studied in [1].

With respect to control objective 2, the results

obtained with D-control (Fig. 8) are apparently su-

perior to the results realized by the damped DVA

(Fig. 12). Also here, the natures of the active D-

controller and the passive, damped DVA are different.

The D-controller only changes the effective damping

of the controlled structure (see Sect. 6) and, therefore,

it basically reduces the resonance amplitudes. Also in

the case of the damped DVA, which is a mass-damper-

spring system, an extra degree of freedom is added to

the system. The damping constant of the damped DVA

should be chosen such that the maximum value of the

amplitudes of the two nearby harmonic resonances is

minimized. The solid line in Fig. 12 represents this sit-

uation. In the experiments a nonoptimal damping con-

stant was used (circles in Fig. 12) resulting in higher

amplitude values for the two nearby harmonic reso-

nances. In both the actively controlled case and in the

passively controlled case, amplitude reduction of the

harmonic resonance peaks also results in amplitude re-

duction of the related 1/2 subharmonic resonances.
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9 Conclusions and recommendations

This paper shows that a linear PD-controller can be

used very effectively for vibration reduction of piece-

wise linear systems, for the considered case of flush

with a moderate amount of nonlinearity. Simulation

results have been validated by experimental results and

in almost all cases a good correspondence has been

obtained. The effects of P-action and D-action have

been investigated separately. Proportional feedback

mainly shifts the frequencies where (sub)harmonic

resonances occur. In this paper, negative P-action has

been used very effectively to decrease the vibration

level at the frequency, where the first harmonic reso-

nance peak occurs in the uncontrolled system, by shift-

ing this resonance peak to a lower frequency. Applica-

tion of D-action results in substantial reduction of the

resonance amplitudes in the whole frequency range of

interest, ranging from 10 to 60 [Hz].

For the case of flush considered in this paper, the

results indicate that the effect of PD-control applied

on a piecewise linear system to a large extent is com-

parable to the effect of PD-control applied on a linear

system.

The performances of the active PD-controller and

the passive DVA have been compared for the cases

considered. With respect to the first control objec-

tive, the undamped DVA was superior to the active

P-controller. With respect to the second control ob-

jective, the active D-controller performed better than

the damped DVA. However, a general objective trade-

off between PD-control and a tuned DVA for effec-

tiveness in vibration reduction is difficult to make, be-

cause many factors will have to be taken into account:

costs, controller weight, controller power, ease of im-

plementation, control objectives, etc. In general, the

importance of certain issues may differ from situation

to situation.

The vibration reduction, which is realized for the

transversal displacement of the midpoint of the beam,

does not guarantee vibration reduction for transversal

displacements of other positions on the beam. How-

ever, by visual inspection, it was verified that also on

other beam positions vibration reduction is achieved,

except for excitation frequencies near the second har-

monic resonance peak.

A direction for future research will be the issue of

the uniqueness of the steady-state solutions found for

the controlled cases, because a proof of uniqueness

would further increase the value of the results obtained

in this paper. Theory for proving uniqueness of peri-

odic solutions has been developed in [37] and may be

applied to the periodic solutions found for the piece-

wise linear system studied in the current paper.
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