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Abstract

Background: The importance to restore the hand function following an injury/disease of the nervous system led to

the development of novel rehabilitation interventions. Surface electromyography can be used to create a user-driven

control of a rehabilitation robot, in which the subject needs to engage actively, by using spared voluntary activation to

trigger the assistance of the robot.

Methods: The study investigated methods for the selective estimation of individual finger movements from

high-density surface electromyographic signals (HD-sEMG) with minimal interference between movements of

other fingers. Regression was evaluated in online and offline control tests with nine healthy subjects (per test)

using a linear discriminant analysis classifier (LDA), a common spatial patterns proportional estimator (CSP-PE),

and a thresholding (THR) algorithm. In all tests, the subjects performed an isometric force tracking task guided by a

moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that

should be moved. The outcome measures were mean square error (nMSE) between the reference and generated

trajectories normalized to the peak-to-peak value of the reference, the classification accuracy (CA), the mean amplitude

of the false activations (MAFA) and, in the offline tests only, the Pearson correlation coefficient (PCORR).

Results: The offline tests demonstrated that, for the reduced number of electrodes (≤24), the CSP-PE outperformed

the LDA with higher precision of proportional estimation and less crosstalk between the movement classes (e.g., 8

electrodes, median MAFA ~ 0.6 vs. 1.1 %, median nMSE ~ 4.3 vs. 5.5 %). The LDA and the CSP-PE performed similarly

in the online tests (median nMSE < 3.6 %, median MAFA < 0.7 %), but the CSP-PE provided a more stable performance

across the tested conditions (less improvement between different sessions). Furthermore, THR, exploiting topographical

information about the single finger activity from HD-sEMG, provided in many cases a regression accuracy similar to

that of the pattern recognition techniques, but the performance was not consistent across subjects and fingers.

Conclusions: The CSP-PE is a method of choice for selective individual finger control with the limited number

of electrodes (<24), whereas for the higher resolution of the recording, either method (CPS-PA or LDA) can be used

with a similar performance. Despite the abundance of detection points, the simple THR showed to be significantly

worse compared to both pattern recognition/regression methods. Nevertheless, THR is a simple method to apply (no

training), and it could still give satisfactory performance in some subjects and/or simpler scenarios (e.g., control of

selected fingers). These conclusions are important for guiding future developments towards the clinical application of

the methods for individual finger control in rehabilitation robotics.
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Background

The dexterity of human hand is the result of complex

motor patterns that generate a coordinated response of

multiple muscles placed intrinsically in the hand and in

the forearm. The control signals to move each finger of

the hand are generated in separate regions of the pri-

mary motor cortex (M1) [1], and are delivered to the

muscles via the efferent pathways of the spinal cord and

peripheral nervous system [2]. The neural commands

elicit muscle electrical activity and a mechanical re-

sponse. In recent years, it has been demonstrated that

the intention to move the hand can be decoded using

pattern recognition applied to recorded and processed

electromyography (EMG) signals [3, 4]. This research

was motivated by the importance to restore the hand

function following amputation or an injury/disease of

the nervous system, such as stroke. Most often, the aim

was to detect less dexterous arm movements, such as

the wrist rotations (e.g., pronation/supination) [5–7]

and/or overall grasping patterns (e.g., palmar, lateral

grip) [8, 9], whereas the classification and regression of

finger movements has been less explored. Only recently,

motivated by the development of modern dexterous

hand prostheses [10] and hand exoskeletons [11–13],

researchers started exploring the classification and re-

gression of finger movements with the aim of establish-

ing methods for intuitive control of these sophisticated

systems, mimicking the dexterity of the human hand.

Most studies addressed the classification of individual

finger movements (see Table 1). In this context, the aim

was to predict the finger that moved but without pro-

portional information (e.g., exerted force or position).

Despite a good level of classification accuracy, generally

higher than 90 % [14, 15], the discrete output of these

pattern recognition algorithms led to a limited clinical

applicability. In addition to discrete classification, con-

tinuous variables such as forces or positions can also be

estimated from the EMG signals using regression.

Regression algorithms have been applied under the main

assumption that the EMG signal is related to the force

generated by the muscle [16]. Since the force produced

by muscles acting on a joint determines the position of

the joint, the algorithms were trained to learn the

mapping from EMG to force and/or position. Previous

studies demonstrated that the hand kinematics can be

estimated from surface EMG [6, 17–20]. For example, in

Table 1 Journal papers on classification and regression of finger movements using electromyography

Ref. Year Classifier Features Finger moves Subjects Window (ms) Electrodes Accuracy

[38] 2002 kNN DFT, AR F (T,I,M-R-L) ND (4) - 3 98 %

[39] 2009 ANN TD F-E (T,I,M,R,L) TR (1)
ND (5)

200 32 90 % Classification

[18] 2010 kNN MAV F (T,I,M-R-L) TR (1) 250 16 86 %

[68] 2010 EPM TD F (T,I,M,L,R) ND (2) - 4 >97 %

[69] 2011 kNN MAV F (T,I,M,L,R) TR (5)
ND (5)

250 8 79 % (TR)
89 % (ND)

[70] 2012 SVM, kNN TD, AR F (T,I,M,L,R) ND (8) 250 2 90 %

[14] 2012 LDA, SVM, GMM TD, AR F-E (T,I,M-R-L) PS (12) 256 89 95 %

[15] 2013 LDA, SVM TD, AR F-E (T,I,M-R-L) ND (10)
TR (6)

200 ms 12
11

98 % (ND)
90 % (TR)

[41] 2014 KRLS TD F (T,I,M,R,L) ND(40) 100–400 12 90 %

[42] 2015 LDA TD, AR F (T,I,M) ND(7) 250 5 (iEMG) 85 %

[71] 2006 ANN ENV F (T,I,M,L,R) TR(2) - 8 (JA) Norm RMS error 8–20 % Regression

[17] 2009 ANN RMS F-E (I) ND (15) 100 1 (JA) RMS error 0.085 rad −0.163 rad

[19] 2012 ANN WL F-E (T,I,M-R-L) ND (5) 32 4 Norm RMS error 7–14 %

[20] 2014 ANN, GP EMD F-E (T,I,M-R-L) ND (10) - 8 (JA) Mean CORR
0.85 ± 0.07 (MCP)
0.78 ± 0.06 (PIP)
0.73 ± 0.04 (DIP)

[37] 2014 ANN ENV F-E (I,M,L,R) ND (8) - 14 – 16 (JA) R2 = 0.8

[22] 2014 RR RMS F (T,I,M,R,L) ND (10) 200 10 (FF) Norm RMS error 16 %

[23] 2014 RR ENV F-E (I,M-R-L) ND (10) - 10 (FF) Norm RMS error 10–20 %

ANN artificial neural network, AR autoregressive, CORR coefficient of correlation, DFT discrete Fourier transform, E extension, EMD electromechanical delay, ENV

Envelope, EPM entropy probabilistic model, F flexion, FF fingertip forces, GMM gaussian mixture model, GP nonparametric gaussian process, I index finger, JA joint

angles, KRLS kernel regularized least squares, kNN K-nearest neighbors, L little finger, M middle finger, MAV mean absolute value, ND nondisabled, PS post-stroke,

RA regression accuracy, R ring finger, RMS root mean square, RR ridge regression, SVM support vector machine, T thumb, TD time domain, TR transradial amputee,

WL waveform length
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[20], the authors proposed an innovative control strategy

using a muscle activation model that parameterized the

electro-mechanical delays (EMD). The study demonstrated

good accuracy, estimating metacarpophalangeal (MCP),

proximal interphalangeal (PIP) and the distal interphalan-

geal (DIP) finger joint with the mean correlation coefficient

of 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04, respectively. As

pointed out in [21], the position control is effective only in

the absence of interaction with objects. Since the func-

tional applications include direct contact through grasping

and manipulation, a force control is likely a more

relevant solution. Recently, proportional control was

investigated in the context of prediction of individual

finger forces [22, 23], demonstrating that a non-linear

incremental learning method could predict fingertip

forces during flexion and extension with a correlation

of ~0.9 between the estimated and measured forces.

Recently, considerable attention has been devoted to

investigating rehabilitation interventions which can

facilitate the recovery of the sensory-motor functions

impaired due to an injury/disease of the nervous system

[24]. Numerous studies [25–28] demonstrated that the

motor ability could be regained through a task-specific

intensive practice. In this context, robotic rehabilitation

is a promising method for the restoration and relearning

of motor functions, since it can provide mass practice in

well-controlled conditions [29]. Moreover, sEMG can be

used to estimate the intention of the subject and operate

the robot accordingly [12, 30–32]. This would create a

user-driven control of a rehabilitation robot, in which

the patient needs to provide a minimal activation to

trigger and maintain the assistance. The benefit of this

approach is that the subject is motivated to actively en-

gage in therapy by recruiting his/her spared voluntary

motor control, instead of passively relying on the robot

to guide the movement [33]. Furthermore, the EMG

control allows highly disabled patients who cannot pro-

duce detectable forces and/or motions, but can generate

residual EMG, to participate early in the user-responsive

therapy. More specifically, the context for the present

work is the rehabilitation of selective finger movements

using a specialized hand rehabilitation robot (Amadeo,

Tyromotion GmbH, AT). Rather than aiming at the simul-

taneous control of multiple fingers to achieve functional

movements (e.g., grasps) as required in prosthetics, the

emphasis here is on the selective activation of individual

fingers (i.e., one finger at a time) while reducing the simul-

taneous false co-activations. The motivation for this

approach is to promote relearning of the selective motor

control skills, which are heavily impaired in neurological

patients (e.g., stroke [34]).

The present study advances the state of the art of

individual finger control by investigating proportional

estimation of fingertip forces during tasks that combined

different force profiles, force levels and rates of change

of force. Three different methods based on common

spatial filtering (CSP-PE), linear discriminant analysis

(LDA) and simple thresholding (THR) were applied to

learn the mapping from High-Density sEMG (HD-

sEMG) to finger activation; their performance were

compared in offline/online tests and across different

numbers of electrodes. To the best of our knowledge,

such a comprehensive set of conditions was not consid-

ered before in the context of single finger classification

and regression (see Table 1).

The focus of the present study was on the estimation of

the finger forces using HD-sEMG to record the electrical

activity of the extrinsic hand muscles during isometric

finger flexion and extension. The thumb, however, has a

specific anatomy and a functional behavior, with an

additional degree-of-freedom (opposition) fully controlled

through the intrinsic muscles. Consequently, the present

study considered only the four long fingers. Nevertheless,

the thumb activation could be estimated as well by placing

additional electrodes over the intrinsic muscles. This could

be accomplished using conventional bipolar electrodes,

and therefore, this was not relevant for the present study.

HD-sEMG was selected since it provides a high

resolution of sensing points, capturing the high-fidelity

spatial and temporal patterns of muscle activity and reveal-

ing a topographical map of focal activation areas corre-

sponding to individual muscles. The muscle heads moving

individual fingers are located close to each other, within

the relatively small volume of the forearm [35]. Therefore,

HD-sEMG was chosen to selectively capture the individual

muscle activity despite the significant spatial and temporal

overlap. HD-sEMG has been used before to characterize

the activity of the forearm muscles [36] [37]. However, the

present study represents the first application where an

HD-sEMG interface has been applied for individual finger

movement classification and regression, investigating a

comprehensive set of conditions that were not considered

before. The high resolution of the recording (192 channels)

was exploited to assess the robustness of the tested

methods with respect to the reduction in the number of

electrodes, providing important perspectives regarding the

potential practical applications. Moreover, to the best of

our knowledge, there are no studies presenting an on-

line protocol of finger control based on HD-sEMG,

evaluating three control methods: one direct (THR),

and two based on pattern recognition (LDA and

CSP-PE). Furthermore, the two methods, CSP-PE

and THR, have not been considered before for the

control of individual fingers. All the experiments

were conducted using a commercial rehabilitation

robot, mimicking closely a real clinical context. In

conclusion, this study presents some important in-

sights for guiding future developments towards the
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clinical application of the methods for individual

finger control in rehabilitation robotics.

Methods

The aim of the study was to test different methods, for a

dexterous finger control, estimating the intended level of

activation of individual fingers (index, middle, ring and

little) while minimizing the simultaneous unintended co-

activations of other fingers during flexion and extension

movements. Therefore, the task was to classify among 9

classes (four fingers x two movements and rest, see

Fig. 1), with the simultaneous regression of the finger

activation level within the selected class. For all three

methods, the inputs were processed sEMG signals (feature

vector), from the full set or subsets of electrodes, while

the outputs were the estimated finger activation levels

proportional to the exerted force. The regression was

evaluated in the context of a linear discriminant analysis

(LDA) classifier [38], a multi-class proportional estimator

based on common spatial pattern (CSP-PE) [8] and a non-

pattern recognition method based on a thresholds

crossing (THR) [3], where the THR was applied only in

the online experiment. The LDA was selected as a widely

used method for movement classification and regression

[39] (common benchmark). The CSP-PE was selected

under the hypothesis that its mathematical properties

would make the method especially effective in the context

of selective finger activation, reducing the crosstalk

between the estimated movements. The THR was chosen

because it is a simple method, easy to understand, imple-

ment (no training) and apply even by a non-technical

personal, and thereby convenient for prospective practical

application in clinical settings. The hypothesis was that

the THR could still perform well when used with the HD-

sEMG interface due to its high resolution and ability to

reveal focal areas of muscle activations. Summarizing, the

Fig. 1 Outline of the experiments. HD-sEMG recordings were processed (root mean square, data windowing with overlap) and used as inputs

for classification/regression to estimate the level of activation of individual fingers during flexion (F) and extension (E) movements. Two machine-learning

approaches for myoelectric control, a standard benchmark (LDA) and a recently presented novel method (CSP-PE), as well as direct control via simple

thresholding (THR) were assessed in the context of selective finger control. Both offline and online tests were performed. In offline tests, isometric forces

of individual fingers were measured and predicted by applying the above-mentioned methods. During the online tests, the task for the subjects was to

track the reference trajectories specifying the desired individual finger activation levels assessed using EMG normalized to maximum voluntary

contraction. To this aim, the subjects controlled a visual marker, which was moving according to the finger activation levels predicted online

using the selected estimation method
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methods were selected to compare: i) machine learning

(CSP-PE and LDA) vs. direct (THR) control; and ii) a

novel multiclass algorithm (CSP-PE) vs. the golden stand-

ard for the myoelectric control using pattern recognition

(LDA). Their performance was compared in offline/online

tests and across different subsets of electrodes, in order to

assess how the nature of control (open vs. closed loop)

and the resolution of the recording affect the perform-

ance, respectively. In the offline tests, the full experimental

session could be devoted to data collection, leading to a

comprehensive dataset enabling a thorough assessment of

the methods across many conditions. The online tests

included both training and assessment within a single

session, and therefore only the selected conditions could

be evaluated. As pointed in [40], in online control the user

can exploit the visual feedback to adapt to the error map-

ping provided by the algorithms (closed-loop control),

resulting in different performance when compared to

offline estimation (open-loop control). Therefore, for an

objective assessment, it is recommended to test both

conditions. In offline tests, isometric forces of individual

fingers were measured and offline predicted using the

indicated estimation methods. During the online tests, the

subjects activated the fingers to accomplish an online

control task, while the selected method estimated the level

of activation for each individual finger in real-time. The

subjects received online visual feedback about the desired

and estimated level of activation expressed as a percent of

maximum voluntary contraction (MVC). In the online

tests, the aim was to produce a control signal proportional

to the exerted force, but the fingertip forces were not

measured and directly estimated. Instead, the reference

and estimated activation levels were calibrated according

to the MVC of each subject, as measured by EMG (see

section Online Experiment). To collect the training data,

the subjects were asked to perform isometric tracking

tasks, as in the previous studies [21, 23, 41, 42]. In offline

tests, the reference trajectory was a predefined force pro-

file expressed in Newtons, whereas in the online test, the

reference profile was expressed as a percent of MVC.

Experimental setup

The four long fingers of the dominant arm were attached

to the finger slides of a robot specifically designed for the

hand rehabilitation in stroke patients (Amadeo, Tyromo-

tion GmbH, AT) as indicated in Fig. 2-b. Magnetic pieces

were embedded in the ergonomic finger pads that were

secured to each finger tip using medical tape. The pads

were then positined on the respective magnetic connec-

tion point of each finger slide. Magnetic force was enough

to keep the fingers in position during all experimental

conditions in healthy subjects (see Fig. 2-b). The slides

were driven individually using dedicated linear motors in-

strumented with position and force sensors. The position

Fig. 2 Experimental setup. a The subject’s arm positioned in the finger -hand rehabilitation robot (Amadeo, Tyromotion GmbH, AT), the multichannel

EMG amplifier on the desk next to the subject, HD-sEMG electrode placed on the forearm and flat cables connecting the electrode to the amplifier.

b Hand connection by means of magnetic pieces embedded in the finger pads. c-d Approximated position of the High-Density 192-channel

electrode grid
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of the subject wrist and the slides was adjusted for each

subject individually so that the PIP joints were flexed at

approximately 90° while the DIP joints of all fingers were

fully extended (180°). Such an “orthogonal” setup allowed

for an optimal transmission of forces between the fingers

and the robot guides and sensors. After setting up the

hand configuration, the slides were kept in stationary posi-

tions during the rest of the experimental session, measur-

ing individual finger forces during isometric contractions.

The sensor range for finger extension and flexion was ±

20 N. The forces were recorded only during the offline ex-

periment. The signals were sampled at 10 Hz, internally

by the robot controller, sent to the host computer via

TCP/IP and shown on a computer screen as feedback to

the subject.

The EMG signals were recorded using a High-Density

192-channel electrode grid (ELSCH064NM 3–3, OT

Bioelettronica, 8x24 channels, 10 mm inter-electrode-

distance, 8 × 24 cm) in a monopolar configuration

placed on the dominant arm. The forearm length was

measured in each subject using a measuring tape. The

electrode array was positioned 6.4 ± 0.4 cm (25 % of the

forearm length) from the elbow crease (Fig. 2c and d),

covering 8 cm of the forearm longitudinally and 24 cm

circumferentially. The electrode configuration allowed

acquiring the sEMG activity of distal and proximal

muscles such as the flexor digitorum superficialis and

extrensor digitorium. The EMG signals were recorded

using a multichannel electrophysiological amplifier

(EMG-USB2, OT Bioelettronica, IT) connected to the

host computer via a USB port. The gain was set to 500,

the signals were band-pass filtered (eight order analog

Bessel filter, bandwidth 10-750 Hz), sampled at 2048 Hz

and digitally converted (12 bit A/D converter, 5 V

dynamic range) with a resolution per least significant bit

of 2.44 μV. The reference electrode was a ground strip

placed at the distal end of the forearm, just next to the

wrist joint.

Regression methods

The present study aimed at comparing three different

proportional controllers (LDA, CSP-PE and THR) as

they are applied to decode the activation of individual

fingers from HD-sEMG patterns. The inputs were the

processed EMG signals, and the regression methods

outputted the estimated levels of finger activation pro-

portional to the exerted force. The raw EMG data

were segmented into a series of overlapping data ana-

lysis windows. The window length of 200 ms with

50 % overlap was selected since it represents a good

trade-off between classification accuracy (CA) and

controller delay [43]. The Root Mean Square (RMS)

was computed over the data window and used as an

input for the classification/regression, since it is a time

domain feature related to the force exerted by the

muscle [43]. Therefore, a class decision was produced

for each data analysis window (every 100 ms), where

the input for the regression was a vector of RMS

values (one per electrode) computed over the 200-ms

data window [44].

The LDA classification represents one of the most

popular pattern recognition methods for myoelectric

control. In summary, it models the distribution of the

data within each class using a Gaussian distribution,

where the means are estimated for each class individu-

ally and the covariance matrix is computed over the

pooled data (shared covariance). The classification is

performed by computing the class posterior probability

(Bayes rule), which in the case of a shared covariance re-

duces to evaluating the linear discriminant functions

separating the classes [45]. As demonstrated by several

studies, this simple and fast method performed similarly

to or even better than the other, more complex non-

linear pattern recognition methods for time-domain

features [46, 47]. Since the LDA classifier has become

the golden standard for the pattern recognition of EMG

signals, it was selected as common benchmark. In this

study once a class decision was taken, a proportional

control value was extracted in a different way depending

on the experiment. In the offline test, this value was

extracted as an approximation of the recorded fingertip

forces obtained by linear regression. In the online test,

as the mean of the RMS values from a subset of chan-

nels related to the specific class, scaled to a percentage

of MVC for the detected movement class.

Common Spatial Patterns (CSP) is a semi-supervised

algorithm to determine a filter whose output has max-

imal and minimal variance when the multichannel input

data come from the first and second class, respectively.

Therefore, the filter maximizes the separation of the two

classes based on the variance of the filter output signal.

Commonly, CSP is used as a spatial filter for raw signals

of two distinct classes, but there are several options for

the extension to multi-class problems [48]. The method

has been originally used in brain-computer interfacing

as a spatial filter for data preprocessing [49–51].

However, it has been recently adapted and tested for

classification and regression in myoelectric control of

prostheses, with promising results [8]. In this study, we

applied CSP as a proportional estimator (CSP-PE) in one

vs. one configuration between all possible class pairs, as

presented in [8]. The CSP-PE has been selected since

this is a novel method for myoelectric control with

unique mathematical properties. Namely, the method

aims at maximizing the contrast between classes and

thereby minimizing the false co-activations. This indi-

cates that it could be especially effective in the context

of selective finger activation, which is the aim of the
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present work. In summary, the first step in the application

of the CSP-PE was to determine the CSP filters for each

pair of classes. The output of each filter was therefore

tuned to maximize the response for the input data (feature

vector) coming from one class, and respond minimally to

the data from the other class. In the second step, the out-

puts of all the pairwise-class filters were fused in post-

processing to estimate the class corresponding to the input

data. Therefore, the activation of the class was determined

by taking into account its relative contrast with respect to

all the other classes. The selected class is the one that wins

the competition, and the estimated activation reflects the

uncertainty of this decision. For example, if the class loses

at least one competition, the activation will be penalized

leading to a small value. The raw outputs (activation levels)

were scaled to yield a maximum value for 100 % of MVC.

The method, including the original CSP formulation as

well as the novel steps for CSP-based classification and

regression, are given in detail in [8].

The THR is a simple method that involves direct con-

trol of each individual finger by identifying the focal

areas of activity within the HD-sEMG interface. The

THR was chosen because it is a simple method, easy to

understand, implement (no training) and apply even by

a non-technical personal, and thereby convenient for

prospective practical application in clinical settings. The

finger movement was detected if the activity at the selected

subset of channels was above the predetermined threshold.

THR was applied only during the online tests and a set of

relevant channels was selected for each class (finger ×

movement) by the experimenter based on the visual obser-

vation of the EMG activity generated during the respective

movements. The calibration trials were used to adjust the

thresholds for each set of channels maximizing the correct

classification. A class was recognized when the mean of the

RMS values over the associated channel set crossed the

threshold, and the RMS was higher than for the other clas-

ses. The proportional control value was the mean of the

RMS values for the set of channels, scaled to a percentage

of the MVC of each movement.

Offline experiment

Nine healthy subjects (age between 26 and 41 years)

participated in the experiments, which were approved by

the Ethical Committee of the University Medical Center

Göttingen (UMG). Before starting the tests, the subjects

signed an informed consent form. The experimental

session lasted approximately 1.5 h.

Experimental protocol

Subjects performed cyclical isometric contractions

activating individual fingers in the direction of flexion

and extension, as specified by the reference force profile

presented on the screen. The marker indicating the

currently generated force was displayed on the computer

screen as the feedback for the subject. The subjects were

instructed to activate the fingers selectively by minimiz-

ing simultaneous activation of other fingers. Before the

beginning of the training session, the subjects were

allowed to familiarize with the experimental setup and

tasks. Twelve different tasks were carried out in random

order with regard to the finger and each task was

repeated 10 times in succession. The tasks combined

force profiles (square with 50 % duty cycle and triangu-

lar), force levels (33 and 66 % MVC) and two execution

speeds for each force profile (see Table 2), evaluating

thereby how well the methods estimated the force

during gradual increase/decrease (triangles) and level

holding (squares) for different rates of change and peak

forces. There were trials comprising only flexions, only

extensions or both contraction types.

Signal processing

Force signals were analyzed in order to extract segments

of sEMG activity associated with specific muscular

contraction (flexion or extension), level of force and dur-

ation. The processed EMG signals (windowing, RMS)

had an effective sampling frequency of 10 Hz (one value

per 100 ms) synchronized with the force recordings,

performed at the same sampling rate. For each task, the

force signal measured from the finger involved in the

task was used to identify the flexion/extension force

cycles, in order to leave out from the analysis the signal

portion without the link to specific movements. A force

cycle was defined by detecting when the generated finger

force crossed the predefined threshold, which was set to

10 % of the maximum force exerted with that finger

Table 2 Tasks included in the offline assessment. The tasks

combined square (S) and triangular (T) force profile, force levels

(33 and 66 % MVC) of flexion (F) and extension (E), and two

execution speed for each force profile

N Movement Profile % MVC Cycle Length (sec)

1 F S 33 6 Training

2 F S 66 12

3 F T 66 8

4 F T 66 4

5 E S 33 6

6 E S 66 12

7 E T 66 8

8 E T 66 4

9 F-E S 33 6 Testing

10 F-E S 66 12

11 F-E T 66 8

12 F-E T 66 4
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across all tasks, indicating the start of the contraction.

When the force returned to a subthreshold level

(<10 %), this denoted the end of the contraction.

Occasional atypical contractions (outliers) were identi-

fied on the basis of the force cycle length and the force

range. A regression line was estimated from the mid-

points of the plateaus in the case of square profile and

from the vertices of the triangle profiles. The mean and

the standard deviation of the cycle length, and the Mean

Squared Error (MSE) between the generated force dur-

ing plateau and the regression line were calculated.

Force cycles that were longer or shorter (Toutlier) than

2.58 times the standard deviation from the mean

duration (Tmean) (see Eq. 1) or for which the force error

(eoutlier) was higher than 1.96 times the MSE from the

regression line were considered as outliers (see Eq. 2)

and excluded from the analysis. The confidence levels

(1.96 × std and 2.58 × std) were chosen in order to

enforce conservative outlier detection. The interval of

±1.96 × std corresponds to the standard 95 % confidence

interval. The detected outliers were also confirmed by a

visual check.

T outlier < 2:58 � stdð Þ−Tmean ∨ T outlier

> 2:58 � stdð Þ þ Tmean ð1Þ

eoutlierj j > 1:96 �MSE ð2Þ

Data analysis

We investigated the performance of the algorithms with

full (192) and reduced number of channels (96, 48, 24,

16, 12, 10, 8, 6 and 4) where the channels were selected

in the form of regular grids (see Fig. 6-e). The latter was

chosen having in mind the future practical application of

the methods, which should ideally, for the sake of

simplicity, rely on the regular placement independent of

the anatomy or the activity hot spots. The recorded data

for each subject was split into training and testing sets

(approximately 70 and 30 % of the whole dataset

respectively, see Table 2): the tasks with only flexion or

extension contractions were assigned to the training set

(Table 2, Task 1–8), while the tasks with both flexion

and extension were selected for the testing (Table 2,

Task 9–12). The performance measures were common

for online and offline tests and are described below (see

section Performance measures).

Online experiment

Nine healthy male subjects (age between 23 and 38 years)

were recruited for the online algorithm evaluation. Each

subject signed an informed consent before commencing

the experiment, which was approved by the Ethical

Committee of the University Medical Center Göttingen

(UMG). The same test was performed twice on

consecutive days in order to evaluate the effect of

training. The experimental session lasted maximum 2 h.

Training data collection

The subjects were asked to perform sustained isometric

contractions activating selectively one of the four fingers

in the direction of flexion or extension. For each move-

ment, the experimenter selected groups of electrodes

(from 4 to 6) in which the maximum activity was

observed (Fig. 3-a) and measured the MVC as the max-

imum of processed sEMG (RMS, 200 ms window, 50 %

overlap) over the specific electrode subsets. After the

electrode subsets were chosen, the subjects were asked

to reproduce the reference activation profile after receiv-

ing a visual cue indicating the finger and the contraction

type (flexion or extension). Auditory “icons” (sound

beeps) were used in addition to the visual cues. The

reference profiles were trapezoidal (i.e., gradual increase,

plateau, gradual decrease) with the plateaus of 30, 60

and 90 % MVC of the respective finger (Fig. 3-b). The

current muscle activation level generated by the subject

was indicated by a cursor moving with the constant

velocity in the horizontal direction. The vertical coordin-

ate of the cursor was equal to the mean RMS of the

electrode subset corresponding to the current class

(finger × contraction type + rest). Each contraction lasted

for 7 s (2 s rise time, 3 s plateau, 2 s fall time) with 5-s

rest intervals in-between and it was repeated 3 times

(30, 60 and 90 % MVC), resulting in 27 contractions in a

single run. If necessary, specific contractions could be

repeated. For the training of both machine learning

methods the same data set was used and dynamic

movement phases were not excluded [52].

Online test

After the training, a test with online control was per-

formed. The subject controlled 4 visual markers (blue

circle in Fig. 3-c), each associated with the activation

of one finger. The subjects now actively and propor-

tionally controlled the vertical position of the control

marker by increasing or decreasing the finger force in

the direction of flexion (marker moving downward)

or extension (marker moving upward). The vertical

position of the marker (blue circle in Fig. 3-c) was

determined by a normalized output of the tested con-

trol method (CSP-PE, LDA and THR), as explained in

section Regression Methods. To quantify the control

performance, the subjects performed online target

tracking tasks, in which the subject tracked a moving

reference marker (red circle in Fig. 3-c) by activating

appropriate finger at the appropriate level. The aim

was to maintain the smaller blue marker (Fig, 3-c),

indicating the estimated activation level, within the

larger red circle (Fig. 3-c), representing the desired
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activation. Whenever the controlled marker was within

the reference circle, the color of the reference would turn

into green. The task comprised 16 individual finger activa-

tions (4 for each finger) in which the reference marker

moved vertically from 0 % MCV to 80 % MVC position,

rested on the 80 % MVC level, and then returned back to

the 0 % MVC value. The upward and downward move-

ments of the reference marker lasted for 4 (slow ramp) or

Fig. 3 Three phases of the online experiment. a sEMG Root Mean Square (RMS) maps calculated over a 200-ms data window of (1 RMS sample).

The RMS for each channel (white circle) was color coded as indicated by the color legend (μV), and the pixels between the channels were obtained by

interpolation. The figure shows one representative subject performing isometric sustained contractions of individual fingers in the direction of flexion or

extension. The fingers produce characteristic and spatially localized, but partly overlapping, EMG responses. b Training data collection. The subjects were

asked to reproduce trapezoidal reference activation profiles (i.e., gradual increase, plateau, gradual decrease) with plateau at 30, 60 and 90 % of MVC of

the respective finger. The red and blue lines depict the generated and reference activation levels from an example tracking trial at 60 %,

respectively. c Online test where the subjects controlled 4 visual markers (blue circles), each associated with the activation of one finger, as indicated

by the horizontal axis. The vertical position of the marker was set by the output of the tested control method (LDA, CSP-PE and THR) computing the

estimated finger activation level. The subjects therefore proportionally controlled the vertical position of the marker by increasing or decreasing the

finger force in the direction of flexion (marker moving downward) or extension (marker moving upward). The task for the subject was to activate the

fingers, one at a time, tracking online the reference marker (red sphere) moving along vertical direction and representing the desired finger activation level
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2 (fast ramp) seconds, respectively, and the marker stayed

at the plateau level for 3 s. Each finger was therefore

activated two times in flexion and two times in extension

and for both contractions one cycle was slow and the

other fast. The fingers (reference markers) were activated

in a random order. The test was repeated for each control

method, also in a random order to avoid that the learning

across methods influences the performance. The subjects

were blinded as to which algorithm was under test in each

session.

Performance measures

The estimated fingertip forces in the offline experiment

and muscle activation levels in the online experiment

were low-pass filtered using a moving average filter

applied to 5 successive samples starting at each sample

of the original signal. The Pearson correlation coefficient

(PCORR) between the estimated and reference forces

was computed to quantify the similarity in the signal

shapes, and the mean square error normalized (nMSE)

by the peak-to-peak value of reference force profile was

calculated to assess the difference in signal amplitudes

[22]. As shown in Results section, the trends revealed by

the two outcome measures, nMSE and PCORR, were

equivalent over a comprehensive dataset collected and

analyzed in the offline experiments. Therefore, the qual-

ity of the online tracking was evaluated by computing

the nMSE only. In both the experiments, this analysis

was performed for each finger during the segments of

the reference trajectory in which that specific finger was

supposed to be active (target finger in the task). The

corresponding segments were named active phases. In

order to evaluate the amount of false finger activations

(i.e., finger estimated to be active when it should have

been relaxed), the mean amplitude of the false activa-

tions (MAFA) outside of the respective active phases

was calculated. The segments of the reference trajectory

in which the finger was not supposed to be activated

were named silent phases. The CA was evaluated calcu-

lating the overall success rate as the trace of the confu-

sion matrix, divided by the total number of classified

instances. Finally, the selectivity and specificity of the

classifiers were calculated in one vs all configuration,

where the median success rate of all the classes was used

to compare the performance of the two methods for

different electrode subsets.

Statistical evaluation

The Kolmogorov-Smirnov test determined that the data

were not normally distributed. Therefore, the data were

statistically analyzed using non-parametric tests. To assess

the statistically significant difference at the group level, the

Friedman test was applied. If the Friedman test determined

the difference, the conditions were compared pairwise

using the Wilcoxon signed-rank tests with Bonferroni cor-

rection. A level of p < 0.05 was selected as the threshold for

the statistical significance. In the offline experiment, the

factors were number of channels (96, 48, 24, 16, 12, 10, 8,

6 and 4), and method (CSP-PE and LDA). In the online

experiment, the factors were finger movements (IF, IE, MF,

ME, RF, RE, LF, LE), and method (CSP-PE, LDA and

THR). Bartlett multiple-sample test for equal variances was

applied to determine statistically significant difference in

dispersions within the conditions overall, followed by

Ansari-Bradley two-sample test with Bonferroni correction

for pairwise comparisons of the force variability between

the conditions.

Results

Offline finger force prediction

Figure 4 illustrates the finger force estimation in one

representative subject, when applying the LDA (Fig. 4-a)

and the CSP-PE (Fig. 4-b) to a subset of 10 sEMG

channels selected as a regular grid (see Fig. 6-e). During

active phases (red line), both regression methods suc-

cessfully tracked the force trajectories of different shapes

and rates of change, i.e., triangles with faster/slower

slopes and squares with longer/shorter plateaus. In this

specific configuration, with only 10 electrodes, the force

profile for the index finger was estimated with the lowest

accuracy, and the estimation was better with the CSP-PE

(nMSE = 6 %) than the LDA (nMSE = 7 %). During the

silent phases, the LDA generated false activations that

were more frequent and with the higher amplitudes

compared to the CSP-PE. For example, the LDA falsely

estimated that the little finger was activated substantially

and consistently throughout the active phase of the

index finger (Fig. 4-a).

The recorded forces (gray lines) during the silent

phases showed that the subject exerted a small pressure

on the force sensors also outside the active periods. This

was because the subject could not generate perfectly iso-

lated activations of individual fingers, due to the natural

passive coupling [53]. Group data are represented in

Fig. 5, depicting the fingertip forces (mean ± standard

deviation) recorded from all subjects across different

finger tasks. The coupling between the fingers is evident,

and the amount of force decreases for the fingers further

away from the activated one. Nevertheless, the force in

the active finger was several times higher from all the

others, and the difference was statistically significant,

demonstrating the selective activation.

Figure 6 shows the summary results for the quality of

estimation (median and interquartile range - IQR 25–

75 %) using different number of electrodes. For both

methods, the performance initially increased with more

electrodes, i.e., the regression and classification become

more accurate and the false activations less pronounced.
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Fig. 4 Representative results from one subject during offline experiment. Figure shows the individual finger force estimation when applying the

LDA (a) and the CSP-PE (b) using a subset of 10 sEMG channels selected as a regular grid as input for the regression. The task for the subject was

to activate the fingers individually and selectively, one at a time. The dashed gray line is the recorded finger force. The continuous red line is the

estimated force for the finger that was supposed to be active in the task (active phase), while the continuous black line is the estimated force for

the fingers that should have been relaxed (silent phase, false activation). The vertical lines delineate the active phases for different fingers. The

quality of tracking is similar for the two methods, in this specific example, but the CSP-PE generated less false activations. For example, compare

the false activation of the little finger in LDA vs. CSP-PE during the active phase of the index finger

Fig. 5 Fingertip forces (mean ± standard deviation) recorded during the offline experiment across different finger tasks. The subjects could not

generate totally isolated movements of individual fingers, due to the natural passive coupling of the fingers
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Eventually, however, all outcome measures reached a

plateau (N ≥ 24), after which there was no substantial

further improvement. In terms of regression accuracy

(Fig. 6a-b), the outcome measures (PCORR and nMSE)

were consistent. For less than 24 electrodes, the CSP-PE

outperformed the LDA (p≪ 0.001), but for the higher

number of electrodes the performance was similar with

no statistically significant differences. For example, with

96 channels the nMSE values obtained with the LDA

and the CSP-PE were virtually identical, i.e., (median

and IQR 25–75 %) 3.5 % (2–5.1 %) and 3.6 % (2.1–

5.3 %) (p = 1), respectively. When using more than 24

electrodes, PCORR was approximately 0.88 (median) for

the CSP-PE and 0.90 (median) for the LDA. Similarly,

the MAFA depended on the number of electrodes and

the regression method (χ2 = 1773.30, p≪0.001). For less

than 24 channels, the MAFA was consistently lower for

the CSP-PE compared to LDA (p < 0.001); when increas-

ing the number of electrodes, the MAFA saturated to

values lower than 0.5 % (median) with both of the

methods.

Similar to the previous results, the CA (Fig. 6-d)

increased with the number of electrodes (χ2 = 127.95,

p≪0.001), but in this case there was no statistically

significant difference between the methods. The CA also

saturated at 24 electrodes and the overall highest value

(median and IQR 25–75 %) was reached using the LDA,

i.e., 92 % (88.2–94.5 %). As described in Table 3, the

specificity of the classifiers was highly affected by the

number of channels: e.g., with only 4 channels the

sensitivity of the CSP-PE and the LDA was still ap-

proximately 85 % (median), but the specificity

dropped to 55 % (median). In conditions where the

number of channels (N ≥ 24) saturated the performance of

the classifiers, the sensitivity was approximately 96 % (me-

dian) and the specificity approximately 90 % (median).

Summarizing, the two classifiers were more sensitive than

specific, and there were no statistically significant differ-

ences between the classifiers (LDA vs. CSP-PE) with re-

spect to both outcome measures.

Online control performance

There was a trend indicating an increase in performance

across the two sessions, since the median values of the

outcome measures improved, i.e., the nMSE and MAFA

decreased with statistically significant differences (respect-

ively, χ2 = 221.2 p≪0.001 and χ
2 = 163.7 p≪0.001). The

effect of training was least expressed when using the CSP-

PE, which was characterized with a high level of accuracy

in both sessions. For example, the median nMSE

decreased for only ~1 % for CSP-PE (p≪0.001) in the sec-

ond session compared to the first, while in the case of

LDA and THR, the median improvement in tracking

accuracy was approximately 6 % between the two sessions

(p≪0.001). The results reported in this section refer to

the second session of the experiment.

Fig. 6 Summary results (median and interquartile range (25–75 %)) of the offline experiment. Different performance indices were evaluated: a)

the coefficient of correlation and b) the normalized mean square error between the measured and estimated force signals during active phases,

c) the mean amplitude of the false activations during silent phases and d) the classification success rate. Note that for the reduced electrode sets

(<24), the CSP-PE outperformed the LDA in the accuracy of force estimation as well as in the suppression of false activations. Figure e) reports

the different set of electrodes selected from the 192 HD-sEMG matrix. *p < 0.01
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Figure 7 displays representative results from one sub-

ject illustrating the quality of proportional tracking when

using the three methods. Figure 7-a depicts the reference

and generated trajectories for each finger, including both

silent and active sections, whereas Fig. 7-b zooms into

the active phases only. The subject successfully tracked

the reference trajectory during different segments (i.e.,

slopes and constant levels at 80 % MVC) and rates of

change of the trapezoidal activation profiles. In the case

of the CSP-PE and the LDA, the trajectory was well

reconstructed during both flexion and extension move-

ments. The control using the LDA resulted in more false

activations compared to the CSP-PE (e.g., see index and

middle fingers in Fig. 7-a), but the difference between

the two methods was not so pronounced as in the offline

experiments. The results for the thresholding (THR)

were similar, as indicated by the outcome measures

computed over the trial (Fig. 7-b), except for the ring

finger for which the subject was unable to control the

extension. The subject effort to activate the ring exten-

sion resulted in the false activation of the index flexion.

The inability to control certain movements using the

THR was also observed in other subjects; in the second

session, three out of nine subjects were not able to acti-

vate a certain finger movement. This problem was not

observed with the two machine learning approaches.

Group data are represented in Fig. 8-a, which shows

the summary results across control methods for the

Fig. 7 Representative results from one subject during online target task. The figure illustrates the quality of proportional tracking during the

online test when using the three methods (CSP-PE, LDA and THR). The task for the subject was to activate the fingers, one at a time, tracking a

reference trapezoidal trajectory. a The continuous colored and gray lines are the estimated and reference trajectories for each finger, including

both silent (zero level) and active phases (trapezoids). b Active phases concatenated, with the indicated nMSE of estimation. With THR, false

activations were more frequent and the ring extension could not be properly estimated

Table 3 Percentage of selectivity and specificity across different electrode subset extracted from the HD-sEMG matrix. The values are

reported as median and interquartile range (25–75 %)

CH Sensitivity (%) Specificity (%)

CSP-PE Median and
IQR (25–75 %)

LDA Median and
IQR (25–75 %)

CSP-PE Median and
IQR (25–75 %)

LDA Median and
IQR (25–75 %)

4 85 (81–86) 84 (82–87) 55 (45–61) 54 (47–58)

6 87 (84–89) 84 (82–86) 59 (51–72) 52 (48–58)

8 93 (92–93) 92 (87–93) 81 (77–83) 75 (66–80)

10 92 (91–95) 91 (88–93) 79 (74–87) 74 (69–81)

12 92 (89–96) 92 (89–94) 81 (70–88) 77 (71–84)

24 95 (94–98) 97 (94–98) 86 (84–93) 91 (85–94)

48 96 (95–97) 97 (96–98) 90 (86–92) 92 (88–95)

96 96 (95–97) 97 (96–98) 90 (87–92) 92 (89–94)

192 96 (95–97) 97 (96–98) 90 (87–92) 91 (90–94)
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eight finger movements during the online experiment.

The statistical test showed that the finger movements

and methods were significant factors as well as their

interaction (χ2 = 43.52, p≪0.01). There were no statisti-

cally significant differences between the methods for the

same as well as across fingers. However, there was a

trend indicating that the THR was the weakest control

approach, i.e., the median nMSE as well as its IQR range

were consistently higher compared to that of the LDA

and the CSP-PE.

The results for the false activations complement those

for the accuracy of tracking. The median MAFA was the

highest for the THR consistently for all the movements,

although there were no significant differences between

the methods. However, some movements were con-

trolled with substantially lower MAFA, for example, the

MAFA for the index and middle finger extension was

low with all three methods (e.g., compare to index

flexion). Yet, the post hoc comparison did not reveal any

significant differences between the specific methods

across the movement classes.

The experiment was performed twice on consecutive

days in order to evaluate the effect of training, and redu-

cing the bias between subjects. Nevertheless, the lack of

experience in EMG control may explain the overall

variability between subjects showed in Fig. 8-c. For good

control, the subject needs to activate each finger consist-

ently, generating reproducible patterns of muscle activa-

tion that can be discriminated by the classifier/regressor.

In addition, the patterns need to correspond to the ones

generated during the training. The ability to reliably

execute such patterns is likely subject dependent and

two sessions were not enough for the consistency of

control to improve and converge to a similar level across

subjects. The figure shows the results for the accuracy of

tracking (nMSE) for each subject as a radar graph, where

each spoke represents one of the target finger move-

ments and the length of the spokes was normalized to

the maximum nMSE. This representation reveals partici-

pants who reached high level of accuracy with: i) all the

three methods (s2 and s4), ii) the CSP-PE and the LDA

(s1, s5, s6, s7 and s8), iii) the CSP-PE and the THR (s9)

Fig. 8 Summary results of the online experiment. a) Median and interquartile range (25–75 %) of the normalized mean square error between

trapezoidal reference trajectory and control signals during active phases, and the mean amplitude of the false activations during silent phases

across control methods for the eight finger movements. Overall, the online performance of the two machine learning methods was similar and

better than the THR. b) Median and interquartile range (25–75 %) of the summary results shown in A. c Radar graph with the results for the accuracy

of tracking (nMSE) for each subject. Each spoke represents one of the target finger movements and the length of the spokes is normalized to the

maximum value of nMSE. The radar graphs for THR are characterized with spikes indicating larger errors, but the spikes are limited to some fingers

(one, two typically), while for the other fingers the performance is actually comparable to that of the machine learning methods. *p < 0.01. The results

of the distribution analysis are reported as circles ° p < 0.01
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and finally iv) the CSP-PE only (s3). It is reasonable to

expect that with practice, the online performance of the

algorithms can be further improved, producing a more

coherent behavior across participants [54]. The initial

uncertainty and variability of control and substantial

improvement due to training are characteristic for

myoelectric control in general [55]. Regarding THR, for

most subjects and movements the performance was

similar to that of the CSP-PE and the LDA. However, as

indicated by the few pronounced spikes in the radar

plot, there were one or two specific movements in some

subjects (see s1, s5, s7, and s8) that were substantially

more difficult to control using THR. The performance

dropped significantly in these few cases, decreasing the

overall average accuracy and increasing the overall

variability.

In the summary results shown in Fig. 8-b, the nMSE

obtained with the CSP-PE, LDA and THR (median and

IQR 25–75 %) was 3.6 % (2.5–5 %), 2.5 % (1.5–3.9 %)

and 3.8 % (1.8–10.8 %), respectively. There was no statis-

tically significant difference between the CSP-PE and the

LDA, whereas the two machine learning methods were

significantly different compared to the THR (p < 0.01).

Furthermore, the CSP-PE and LDA exhibited similar

dispersion, which was significantly lower compared to

THR. The same trend holds for the MAFA. As shown

in Fig. 8-b, the MAFA of the CSP-PE, LDA and THR

was 0.7 % (0.2–2.2 %), 0.6 % (0.2–2.6) and 2.2 %

(0.24–9.9 %), respectively. Both the CSP-PE and the

LDA performed similarly, and they differed signifi-

cantly with respect to THR (p < 0.01) both in median

and dispersions.

The general similarity in the performance of the CSP-

PE and the LDA was also confirmed by the CA (median

and IQR 25–75 %), which were 91 % (87.7–91.7 %) for

the CSP-PE and 90.3 % (89.4–93.25 %) for the LDA with

no statistically significant differences.

Discussion

The experiments demonstrated that the finger activation

could be successfully decoded for different target activa-

tion profiles. Overall, the experiments demonstrated a

more stable performance of the CSP-PE across the

tested conditions. The CSP-PE exhibited less improve-

ment between different sessions and outperformed the

THR in online control and the LDA in offline tests.

Furthermore, the study showed that a simple method,

exploiting the topographical information about the indi-

vidual finger activity from the HD-sEMG, provided in

most cases regression accuracy similar to the pattern

recognition techniques. However, THR lacked robust-

ness in the sense that performance was not consistent

across subjects and fingers.

Offline and online proportional control

In the offline experiment, the performance of the CSP-

PE and the LDA increased with the number of channels,

saturating to a stable level for more than 24 electrodes.

Importantly, for less than 24 electrodes, the CSP-PE

outperformed the LDA consistently in all outcome mea-

sures, except CA, yielding more accurate force estimates

in active phases and better suppression of false activa-

tions in the silent phases. This confirmed the hypothesis

that the mathematical properties of the CSP-PE, as

described in [8], make this method especially effective in

the context of selective finger activation. Increasing the

number of channels evened out the performance of the

two methods with respect to the quality of tracking in

the active phase, but did not change the superiority of

the CSP-PE in filtering out the activations during the

silent phases.

The results of the online experiments were in accord-

ance with the insights from the offline tests. The tracking

accuracy was similar with both the CSP-PE and the LDA,

with the median nMSE of approximately 3.6 and 2.6 % in

online experiment, and 3.6 and 3.5 % respectively in off-

line experiment (48 electrodes). As explained in Methods,

the online experiment resulted in more than 24 electrodes

selected by the experimenter. According to the trends

revealed offline (Fig. 6), this number of channels was

enough to even out the performances of the two algo-

rithms. In addition, during online tests the subjects could

use visual feedback to adapt the activations during the

trial, as demonstrated in [40].

The CSP-PE exhibited more stable accuracy across the

tested conditions. The performance was good from the

beginning and similar across the two successive sessions,

providing the least improvement in outcome measures.

Furthermore, the CSP-PE produced better performance

for lower number of channels (Fig. 6) compared to LDA.

This means that the CSP-PE might be less sensitive to

the subjective factors than the LDA, which produced

similar accuracy but only for the high number of chan-

nels and after a session of practice.

Electrode reduction

In the offline experiment, the electrodes were selected as a

regular grid, without any relation to the specific finger ac-

tivation patterns. Regular electrode grids are convenient

for practical implementation and allow simple mounting,

since they can be realized as extensible uniform bracelets

that are simply wrapped around the forearm [56]. Future

investigations will further address the minimization of the

number of channels, determining acceptable electrode

locations and optimizing electrode-recording configura-

tions, using the established methods for feature reduction

[57–59]. Importantly, the results of the present study

(offline tests) demonstrate that the number of electrodes
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can be decreased substantially (from 192 to 10) without

significantly compromising the performance. This is an

optimistic result implying that the proposed methods

could be translated into the clinical context using multi-

channel EMG braces comprising practical dry electrodes.

Thresholding for online control

The online experiment demonstrated the feasibility of

simple thresholding for proportional control of individ-

ual fingers, albeit with some limitations. Exploiting a

dense array of detection points provided by HD-sEMG

interface, distinct areas of focal sEMG activity could be

identified for each finger [35], with an overlap in some

cases due to anatomical constraints and crosstalk [37].

When the areas overlapped, the experimenter did not

select the electrodes from the intersection. The THR

method has a low computational cost and there is no

training; after the electrode selection, the experimenter

provided only a fast calibration of the thresholds associ-

ated with each finger movement. However, the THR

method also exhibited some drawbacks. In the second

session, three out of nine subjects were not able to acti-

vate a certain finger movement, due to a significant

overlap, i.e., the activity of finger involved in the task

projected strongly to neighboring areas triggering

thereby other fingers. The THR was also less successful

in suppressing the false activations. Nevertheless, when

the subjects were able to control the finger, the tracking

accuracy was actually comparable to the performances

of the two machine learning approaches. Therefore, the

THR is not universally applicable. However, it can be

used successfully in some subjects or with a reduced

number of movement classes, controlling only those

fingers (or finger groups) characterized with distinct and

separate areas of activity.

Application for rehabilitation

The aforementioned conclusions could provide useful

guidelines for the translation of the tested methods to

the clinical context, targeting dexterous control of hand

rehabilitation robots. For example, stroke patients have

impaired motor functions characterized with patho-

logical synergies. At the hand level, this is expressed as a

difficulty in selectively activating individual fingers [34].

The methods developed in the present study could be ap-

plied to implement a user-driven control of a rehabilitation

system. For example, the activation signals estimated for

each finger, as demonstrated in the online tests, could be

used as the control signals in the isometric mode of

Amadeo, i.e., to implement the functionality of the force

joystick, as when playing simple video games by producing

appropriate isometric forces. More generally, the estimated

signals could be used to trigger and/or modulate the move-

ment of the Amadeo finger motors (dynamic control) [60].

Since the Amadeo system offers a set of therapeutic indi-

vidual finger exercises, the future perspective is to integrate

the individual finger myocontrol developed in the present

study with these motivational tasks, creating thereby an in-

novative, engaging and user-responsive training program.

Considering the future clinical application and following

the results of the offline analysis, the control could be

implemented with substantially less electrodes, which

would allow using a practical EMG bracelet such as

Myoband [56] combined with the CSP-PE. Alternatively,

even a full HD-sEMG electrode system could be used

practically if integrated in a textile garment (e.g., [37]). Im-

portantly, for online control of Amadeo, the arm/hand will

be supported exactly as in the present study, and it is

therefore not required to train/test the algorithms with the

arm in different positions, as usual in prosthetics to

increase the robustness of the classification/regression

across arm postures [61, 62].

Another potential application is the extension of the

methods to the control of dexterous hand prostheses. At

the current level, the methods tested in the present study

could not be directly translated for general prosthetic

application, as the fingers are controlled sequentially, one

by one. However, such a controller could be used to

support some specific functions (e.g., typing on a keyboard)

exploiting the individual finger actuation available in the

modern prostheses (e.g. i-Limb [63]). For example, key-

board typing could be implemented through classification

(on-off), or the estimated force could be mapped to the

finger velocity, allowing proportional control of the speed

of finger flexion/extension (instead of force). The latter is

not essential for typing, but it could allow the subject to

type faster as he/she becomes more trained and skilled in

control. More importantly, the present study demonstrates

the feasibility of achieving fine and selective control of

individual fingers, across a comprehensive number of tasks

(force profiles) and with a reduced set of electrodes. Never-

theless, the control of a prosthesis requires a more natural

and functional approach, and the future work will be to

study the simultaneous regression of multiple fingers

(including the thumb) using HD-sEMG setup.

The translation into the clinical context faces a number

of challenges, which will be addressed in future work. For

example, as explained above, stroke patients can have

significant reduction in muscle forces and impaired

coordinative control. Due to weak activity and patho-

logical synergies [64], the activation patterns for the indi-

vidual finger movements are likely to be significantly less

discriminative and thereby more difficult to classify and

estimate. In this context, nevertheless, an adaptive training

can be envisioned in which the patient and the system

coadapt [65] and evolve through the process of recovery.

Initially, the system can estimate a subset of movements,

limited to those that can be well discriminated. This can
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be used to start the training, promoting the initial

recovery, and when the activity maps become better

differentiated, new movements can be included.

Finally, as already pointed out in myoelectric control for

prosthetics [66], it would be of interest for clinical applica-

tions to minimize the time and effort (subjects and staff)

need for the training. Ideally, the training/calibration

should be short and easy and without the need for fre-

quent retraining. In the present study, we demonstrated

that a reasonable quality of control can be achieved with

an in-session training. The training is especially simple

and easy to understand in the case of THR, since it

reduces to selecting the channels with strong activation in

a color map and then visually adjusting the thresholds

(average time 10 min in THR vs. 20 min for LDA/CSP-

PE). Therefore, the THR might also allow for an easy

retraining across sessions. However, in the ideal case, the

retraining would not be necessary. This was not tested in

the present study but it is certainly an important future

goal. The robustness of the methods in terms of retraining

could be assessed by testing the control across sessions

using the same, previously collected data (no retraining).

In this context, the use of HD-sEMG interface might be

particularly beneficial as an increased resolution contrib-

utes with redundant information, and this can be used to

increase robustness. An illustrative demonstration is pro-

vided in [67] by extracting features reducing the sensitivity

to electrodes shifts.

Conclusion

The present study investigated methods for selective

estimation of individual finger movements, motivated

by the final aim of implementing an online protocol

for dexterous finger control using a hand rehabilita-

tion robot. We detected the intention to move a sin-

gle finger from electromyographic signals providing

proportional control while reducing the simultaneous co-

activations of other fingers during both offline and online

experiments. The insights from the present study can be

used to guide the implementation of a practical myoelec-

tric system for dexterous control in hand rehabilitation ro-

botics and prosthetics. More specifically, the results

demonstrated that despite the abundance of detection

points in HD-sEMG, a simple method based on threshold-

ing (THR) exhibited serious drawbacks, and that therefore

the pattern recognition is still the method of choice for

robust practical implementations. Next, provided that the

recording is above a certain resolution (>24 channels),

either of the pattern recognition methods (CSP-PE and

LDA) can be selected to implement the control. In this

case, information redundancy compensates for the

favorable mathematical properties of the CSP-PE vs. LDA.

Finally, if only a reduced number of electrodes is available

(≤12), the CPS-PE is the recommended approach.
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