
Proportionate Progress:

A Notion of Fairness in Resource Allocation�

S. K. Baruah N. K. Cohen C. G. Plaxton D. A. Varvel

Department of Computer Science

University of Texas at Austin

Abstract

Given a set of n tasks and m resources, where each task x has a rational weight
x:w = x:e=x:p; 0 < x:w < 1, a periodic schedule is one that allocates a resource to a
task x for exactly x:e time units in each interval [x:p � k; x:p � (k + 1)) for all k 2 N.
We de�ne a notion of proportionate progress, called P-fairness, and use it to design an
e�cient algorithm which solves the periodic scheduling problem.

Keywords: Euclid's algorithm, fairness, network
ow, periodic scheduling, re-
source allocation.

�This research was supported by NSF Research Initiation Award CCR{9111591, and Texas Advanced
Research Program (TARP) Award #003658480. Contact author: Prof. Greg Plaxton, Department of Com-
puter Science, University of Texas at Austin, Taylor Hall 2.124, Austin, Texas 78712{1188. Telephone: (512)
471{9751. FAX: (512) 471{8885. Email: plaxton@cs.utexas.edu.

1 Introduction

Scheduling is the act of assigning resources to activities or tasks. Scheduling problems
typically involve a set of constraints (e.g., deadlines) that must be met by any schedule.
Often these constraints are designed to enforce some notion of fairness; for example, a very
weak fairness constraint might be that any task will eventually get to use the resource it has
requested. For any particular set of constraints, there are two problems to be addressed: (i)
the \decision" problem (i.e., determining whether or not a given instance is feasible), and
(ii) the \scheduling" problem (i.e., actually constructing the schedule for a given feasible
instance). Many sets of constraints result in an intractable decision problem [4].

The periodic scheduling problem was �rst discussed by Liu in 1969 [10]. Given a set of n
tasks and m resources, where each task x has rational weight x:w = x:e=x:p, 0 < x:w < 1,
a periodic schedule is one that allocates a resource to a task x for exactly x:e time units or
slots in each interval [x:p � k; x:p � (k + 1)) for all k 2 N. Scheduling decisions may be made
only at integral times and a task may use either zero or one resources at a time.

We might also consider a relaxed version of the periodic scheduling problem in which
tasks are not restricted to using zero or one resources at a time. Consider, for example,
allowing resource sharing; that is, in each unit of time a task may use a fraction f of a
resource, 0 � f � 1. If

Pn�1
x=0 x:w � m, the following straightforward \resource sharing"

algorithm may be used to solve this relaxed version of the problem: Allocate a fraction x:w
of a resource to each task during each time unit. A second relaxed version requires integral
resource usage, but allows a task to use more than one resource at a time (that is, to run
with arbitrary concurrency). In this version, multiple-resource scheduling is easily reduced
to single-resource scheduling.

There are several optimal single-resource scheduling algorithms for the periodic schedul-
ing problem. The Earliest Deadline algorithm of Liu and Layland is one example [11]. None
of them extends directly to multiple resources. As Liu pointed out, \the simple fact that a
task can use only one [resource] even when several [resources] are free at the same time adds
a surprising amount of di�culty" to the scheduling of multiple resources [10].

The decision problem has an e�cient solution. Clearly systems in which
Pn�1

x=0 x:w > m
cannot be scheduled. If resource sharing is allowed, those in which

Pn�1
x=0 x:w � m can be

scheduled by the resource sharing algorithmmentioned above. Baruah, Howell, and Rosier [1]
used this fact, the network reduction of Horn [6], and the Ford-Fulkerson algorithm [3] to
show that there are solutions to the periodic scheduling problem. Thus, the decision problem
for such a periodic task system reduces to checking that

Pn�1
x=0 x:w � m. A method similar

to that of Baruah, Howell, and Rosier will be used in Section 3.

A more general form of the problem characterizes each task x by four parameters, x:s,
x:e, x:d, and x:p, commonly referred to as starting time, execution requirement, deadline,
and period, respectively. Here, a task x must receive exactly x:e units of the resource in the
time interval [x:s+ x:p � k; x:s+ x:p � k+ x:d) for all k 2 N. Leung's application of the Least
Slack algorithm to this problem represents a recent improvement on Earliest Deadline [9].
Leung was able to show that Least Slack schedules all instances that can be scheduled by
Earliest Deadline, as well as some instances that Earliest Deadline cannot schedule. Both
are optimal for scheduling a single resource but not for multiple resources; in fact, there is no

1

known optimal algorithm for this problem. Our model may be viewed as a four-parameter
model in which for all x, x:s = 0 and x:d = x:p. The general four-parameter model will not
be addressed here.

Given any feasible instance, it would be desirable to have an e�cient on-line scheduling
algorithm. Such an algorithm is executed at the beginning of each slot in order to determine
which subset of the tasks should be scheduled (i.e., assigned a resource for the next slot). It
is natural to de�ne the complexity of a given on-line scheduler as the maximum number of
steps it requires to schedule any single slot. Prior to this paper, no polynomial-time on-line
scheduling algorithm was known for the periodic scheduling problem.

We solve the periodic scheduling problem by imposing an even stronger fairness con-
straint. Our approach is based on maintaining proportionate progress: each task is scheduled
resources in proportion to its weight. Speci�cally, at every time t a task x must have been
scheduled either bx:w � tc or dx:w � te times. We call this proportionate fairness or P-fairness.
P-fairness is a strictly stronger condition than periodic scheduling, in that any P-fair sched-
ule is periodic while the converse is not generally true. P-fairness is a natural and desirable
notion in certain practical applications. To the best of our knowledge, none of the scheduling
algorithms currently known generate P-fair schedules even in the case of a single resource.
We prove that any periodic scheduling problem instance for which

Pn�1
x=0 x:w � m has a

P-fair schedule. This proof makes use of certain results from network
ow theory. We then
describe and prove correct a polynomial-time on-line scheduling algorithm that generates a
P-fair schedule for any feasible instance. Since every P-fair schedule is also periodic, this
algorithm solves the periodic scheduling problem.

We consider the research described here to be signi�cant for several reasons. First, we
introduce a new and potentially important notion of fairness in resource sharing, prove that
this notion of fairness is actually achievable, and demonstrate its practical applicability.
Second, as a corollary to our main results, we solve the periodic scheduling problem.

The remainder of this paper is organized as follows. Section 2 de�nes P-fairness and
some related concepts and gives examples of practical applications of P-fairness. Section 3
establishes that P-fair schedules exist for the periodic scheduling problem. The algorithm
corresponding to the proof has exponential time complexity, however. Section 4 proves the
correctness of a simple on-line algorithm for producing such P-fair schedules. The naive
implementation of that algorithm schedules each slot in pseudo-polynomial time. Section 5
proves the correctness of a a polynomial-time implementation. Section 6 o�ers some con-
cluding remarks.

2 P-Fairness

This section de�nes P-fairness and some related concepts. We start with some conventions:

� Scheduling decisions occur at integral values of time, numbered from 0. The real
interval between time t and time t+1 (including t, excluding t+1) will be referred to
as slot t, t 2 N.

� For integers a and b, let [a; b) = fa; : : : ; b � 1g. Furthermore, let [a; b] = [a; b + 1),
(a; b] = [a+ 1; b + 1), and (a; b) = [a+ 1; b).

2

� We will consider an instance � of the fair resource sharing problem will involve m
resources and n tasks. Speci�c tasks will be denoted by identi�ers x and y, which
range over �, the set of all tasks.

� Each task x has an integer period x:p, x:p > 1, an integer execution requirement x:e,
x:e 2 (0; x:p), and a rational weight x:w = x:e=x:p. Note that 0 < x:w < 1. Without
loss of generality we con�ne our attention to the case where

P
x2� x:w = m.

� Let �i denote the ith symbol of string �; i 2 N.

Now some de�nitions:

� A schedule S for instance � is a function from ��N to f0; 1g, where
P

x2�S(x; t) � m,
t 2 N. Informally, S(x; t) = 1 if and only if task x is scheduled in slot t.

� A schedule S is periodic if and only if

8i; x : i 2 N; x 2 � :
P

t2[0;x:p�i)S(x; t) = x:e � i:

� The lag of a task x at time t with respect to schedule S, denoted lag(S; x; t), is de�ned
by:

lag(S; x; t) = x:w � t�
P

i2[0;t)S(x; i):

� A schedule S is P-fair if and only if

8x; t : x 2 �; t 2 N : �1 < lag(S; x; t) < 1:

� A schedule S is P-fair at time t if and only if there exists a P-fair schedule S0 such that

8x : x 2 � : lag(S; x; t) = lag(S0; x; t):

Informally, lag(S; x; t) measures the di�erence between the number of resource allocations
that task x \should" have received in the set of slots [0; t) and the number that it actually
received.

Periodic schedules can also be de�ned in terms of lag constraints. In particular, a schedule
S is periodic if and only if

8i; x : i 2 N; x 2 � : lag(S; x; x:p � i) = 0;

from which it follows that every P-fair schedule is periodic. (Note that in the de�nition of
lag, the term x:w � t is independent of S, and the term

P
i2[0;t)S(x; i) is an integer.)

P-fairness is a very strict requirement. It demands that the absolute value of the di�erence
between the expected allocation and the actual allocation to every task always be strictly
less than 1. In other words, a task never gets an entire slot ahead or behind. In general it
is not possible to guarantee a smaller variation in lag. Consider n identical tasks sharing a
single resource, where the weight of each task is 1=n. For n su�ciently large, we can make
the lag of the �rst (resp., last) task scheduled come arbitrarily close to �1 (resp., 1).

P-fairness is the natural notion of fairness for many resource allocation problems. Here
are two examples:

3

Example 1 An airline has m airplanes and n
ight crews, n > m, all of which are based in
the same city. Assume that exactly m
ight crews are scheduled to work on any given day.
Due to seniority, job performance, or other factors, it may be desirable to schedule some

ight crews more often than others. For each
ight crew x, set x:w to the desired fraction
of all days that x should work, while ensuring that

P
x2� x:w = m. A P-fair scheduler will

produce a schedule in which every
ight crew works at a steady rate: after t days,
ight crew
x will have worked either bx:w � tc or dx:w � te days.

Example 2 Consider a node in a real-time communications network with a number of
incoming and outgoing edges. The weight x:w on an edge x corresponds to the relative
amount of tra�c expected on that edge. A P-fairness requirement may be necessary to
maintain the real-time nature of the communications, and to prevent exceptionally long
queueing delays from building up along certain edges.

3 Existence of a P-Fair Schedule

In Sections 4 and 5 we will develop a polynomial-time P-fair scheduling algorithm. The proof
of correctness of that algorithm relies on the existence of a P-fair schedule for the resource
sharing problem. In this section we use a network
ow argument to prove the existence of
such a P-fair schedule. In principle, the network reduction could itself serve as the basis
for a P-fair scheduling algorithm. Unfortunately, the size of the network generated by our
reduction is exponential in the size of the given scheduling instance, and so the network
reduction argument does not by itself provide a polynomial-time algorithm.

With respect to instance � of the resource scheduling problem, let earliest(x; j) (resp.,
latest(x; j)) denote the earliest (resp., latest) slot during which task x may be scheduled for
the jth time, j 2 N, in any P-fair schedule. We can easily derive closed form expressions for
earliest(x; j) and latest(x; j). Note that earliest(x; j) = min t : t 2 N : x:w�(t+1)�(j+1) > �1
and latest(x; j) = max t : t 2 N : x:w � t� j < 1. Hence,

earliest(x; j) = bj=x:wc; and

latest(x; j) = d(j + 1)=x:we � 1:

Note that earliest(x; j) < latest(x; j), x 2 �, j 2 N. Furthermore, earliest(x; j+1)�latest(x; j)
is either 0 or 1. In other words, there is at most one slot where either the jth or the j + 1st
scheduling of task x may occur.

The remainder of this section is devoted to proving the existence of a P-fair schedule for
any instance of the resource sharing problem �. Our proof strategy is as follows: First, we
will describe a reduction from instance � to a weighted digraph G with a designated source
and sink, such that certain
ows in G correspond exactly (in a manner that will be made
precise) to a P-fair schedule for �. Then we will prove the existence of such a
ow in G.

Throughout this section, let L denote the least common multiple of the task periods:
L = lcmx2� x:p.

Lemma 3.1 Instance � has a P-fair schedule if and only if there exists a schedule S such
that

8x; t : x 2 �; t 2 (0; L] : �1 < lag(S; x; t) < 1:

4

Proof: An in�nite P-fair schedule S0 may be obtained from S by scheduling in slot t those
tasks scheduled by S in slot t mod L.

Theorem 1 Instance � has a P-fair schedule.

Before proving this theorem, we will present some de�nitions and an important lemma.

Recall that x:w = x:e=x:p. We describe below the construction of a weighted digraph G.
The vertex set V of G is the union of 6 disjoint sets of vertices V0; : : : ; V5, and the edge set E
of G is the union of 5 disjoint sets of edges E0; : : : ; E4, where Ei is a subset of (Vi�Vi+1�N),
0 � i � 4. That is, G is a \6-layered" graph, with all edges connecting vertices in adjacent
layers. The sets of vertices are as follows:

V0 = fsourceg;

V1 = fh1; xi j x 2 �)g;

V2 = fh2; x; ji j x 2 �; j 2 [0; x:w � L)g;

V3 = fh3; x; ti j x 2 �; t 2 [0; L)g;

V4 = fh4; ti j t 2 [0; L)g; and

V5 = fsinkg:

An edge is represented by a 3-tuple. For u; v 2 V and w 2 N, the 3-tuple (u; v; w) 2 E
represents an edge from u to v of capacity w. The sets of edges in G are as follows:

E0 = f(source; h1; xi; x:w � L) j x 2 �g;

E1 = f(h1; xi; h2; x; ji; 1) j x 2 �; j 2 [0; x:w � L)g;

E2 = f(h2; x; ji; h3; x; ti; 1) j x 2 �;

j 2 [0; x:w � L); t 2 [earliest(x; j); latest(x; j)]g;

E3 = f(h3; x; ti; h4; ti; 1) j x 2 �; t 2 [0; L)g; and

E4 = f(h4; ti; sink;m) j t 2 [0; L)g:

Lemma 3.2 If there is an integral
ow of size m �L in G, then there exists a P-fair schedule
for �.

Proof: By Lemma 3.1, it su�ces to prove that the existence of an integral
ow of size
m � L in G implies the existence of a schedule S for � such that

8x; t : x 2 �; t 2 (0; L] : �1 < lag(S; x; t) < 1:

Suppose there is an integral
ow of size m � L in G. The total capacity of E0, the set of
edges leading out of the source vertex, is equal to

P
x2� x:w � L = m � L. Hence, each edge

in E0 is �lled to capacity, and each vertex h1; xi receives exactly x:w � L units of
ow. Since
there are x:w �L vertices in V2 each connected (by an edge of unit capacity) to vertex h1; xi,
and no two vertices in V1 are connected to the same vertex in V2, it follows that each vertex
in V2 receives a unit
ow. Accordingly, each vertex in V2 sends a unit
ow to some vertex in
V3.

5

We will construct the desired schedule S from the given
ow according to the following
rule: Allocate a resource to task x in slot t if and only if there is a unit
ow from vertex
h2; x; ji to vertex h3; x; ti.

Because the total
ow into the sink vertex is m � L, each of the L edges of capacity m in
E4 carries m units of
ow. Hence, for all t 2 [0; L), vertex h4; ti receives exactlym unit
ows
from vertices in V3. Each vertex h3; x; ti in V3 is connected (by an edge of unit capacity) to
vertex h4; ti, and is not connected to any other vertex in V4. Thus, S schedules exactly m
tasks in each time slot t, for all t 2 [0; L). To see that no lag constraints are violated by S,
observe that for each task x and for all j 2 [0; x:w � L), the jth scheduling of task x occurs
at a slot in the interval [earliest(x; j); latest(x; j)]. (The jth scheduling corresponds to the
unique unit
ow out of vertex h2; x; ji.)

We will now show the existence of an integral
ow.

Proof of Theorem 1: Since all edges of the graph have integral capacity, if there is a
fractional
ow of size m � L in the graph then there is an integral
ow of that size [3]. It
remains to be shown that such a fractional
ow exists. We use the following
ow assignments:

� Each edge (source; h1; xi; x:w � L) 2 E0 carries a
ow of x:w � L.

� Each edge (h1; xi; h2; x; ji; 1) 2 E1 carries a unit
ow.

� Each edge (h3; x; ti; h4; ti; 1) 2 E3 carries a
ow of size x:w.

� Each edge (h4; ti; sink;m) 2 E4 carries a
ow of size m.

� The
ows through edges in E2 are as follows:

� Each edge (h2; x; ji; h3; x; earliest(x; j)i; 1) carries a
ow of size

x:w � (j � x:w � bj=x:wc);

which is less than 1, the capacity of the edge.

� Each edge (h2; x; ji; h3; x; latest(x; j)i; 1) such that latest(x; j) = earliest(x; j + 1)
carries a
ow of size

(j + 1) � x:w � b(j + 1)=x:wc;

which is also less than 1, the capacity of the edge.

� Every other edge (h2; x; ji; h3; x; ti; 1) 2 E2 carries a
ow of size x:w.

We will now prove that the
ow just de�ned is a valid
ow of size m � L. The capacity
constraints have been met. The
ow out of the source vertex is

P
x2�(x:w � L) = m � L. We

will now complete the proof by showing that
ow is conserved at every interior vertex.

The
ow into each vertex in V1 is x:w �L, and there are x:w �L edges leaving, each carrying
a unit
ow. The
ow into each vertex in V2 is 1. Below we will prove that the
ow out of
each vertex in V2 is 1, and that the
ow into each vertex in V3 is x:w. Each vertex in V3 has
only one outgoing edge carrying a
ow of x:w. Each vertex in V4 has n incoming edges each
carrying a
ow of size x:w; since

P
x2� x:w = m, the
ow in is m, which equals the
ow out

on the one outgoing edge.

6

It remains to prove that: (i) the
ow out of each vertex in V2 is 1, and (ii) the
ow into
each vertex in V3 is x:w.

For (i), consider an arbitrary vertex h2; x; ji in V2. There are latest(x; j)�earliest(x; j)+1,
or d(j + 1)=x:we � bj=x:wc, outgoing edges from h2; x; ji. If earliest(x; j + 1) = latest(x; j)
(equivalently, d(j + 1)=x:we � 1 = b(j + 1)=x:wc), then the
ow out of h2; x; ji is

x:w � (j � x:w � bj=x:wc) + x:w � (d(j + 1)=x:we � bj=x:wc � 2)

+ (j + 1) � x:w � b(j + 1)=x:wc;

which simpli�es to 1. Otherwise, earliest(x; j + 1) = latest(x; j) + 1 (equivalently, d(j +
1)=x:we = b(j + 1)=x:wc = (j + 1)=x:w), and the
ow out of h2; x; ji is

x:w� (j � x:w � bj=x:wc) + x:w � (d(j + 1)=x:we � bj=x:wc � 1);

which also simpli�es to 1.

For (ii), consider an arbitrary vertex h3; x; ti in V3. If t = latest(x; j) = earliest(x; j + 1)
for some j 2 N, then there are two incoming edges to h3; x; ti, namely (h2; x; ji; h3; x; ti; 1)
and (h2; x; j+1i; h3; x; ti; 1). These edges carry
ows of size (j+1)�x:w � b(j+1)=x:wc and
x:w�((j+1)�x:w �b(j+1)=x:wc), respectively, for a total incoming
ow of x:w. Otherwise,
there is only one incoming edge to h3; x; ti, and it carries a
ow of x:w.

4 A P-Fair Scheduling Algorithm

We will now present a scheduling algorithm and prove that it produces a P-fair schedule.
First, some de�nitions:

� The characteristic string of task x, denoted �(x), is an in�nite string over f�; 0;+g
with

�t(x) = sign(x:w � (t+ 1) � bx:w � tc � 1); t 2 N:

� The characteristic substring of task x at time t is the �nite string

�(x; t)
def

= �t+1(x)�t+2(x) � � ��t0(x);

where t0 = min i : i > t : �i(x) = 0.

� With respect to P-fair schedule S at time t, we say that: task x is ahead if and only if
lag(S; x; t) < 0; task x is behind if and only if lag(S; x; t) > 0; task x is punctual if and
only if it is neither ahead nor behind.

� With respect to P-fair schedule S at time t, we say that: task x is tnegru if and only
if x is ahead and �t(x) 6= +; task x is urgent if and only if x is behind and �t(x) 6= �;
task x is contending if and only if it is neither tnegru nor urgent.

Lemmas 4.1 to 4.5 provide the logical machinery that we will need in order to reason
about the terms introduced above.

Lemma 4.1 If task x is ahead at time t under P-fair schedule S, then:

7

(a) If �t(x) = �, then S(x; t) = 0 and task x is ahead at time t+ 1.

(b) If �t(x) = 0, then S(x; t) = 0 and task x is punctual at time t+ 1.

(c) If �t(x) = + and S(x; t) = 1, then task x is ahead at time t+ 1.

(d) If �t(x) = + and S(x; t) = 0, then task x is behind at time t+ 1.

Proof: Assuming that task x is ahead at time t under P-fair schedule S, we have
P

i2[0;t)S(x; i) = dx:w � te, where x:w � t 62 N; hence, dx:w � te = bx:w � tc+ 1 and bx:w � tc =
P

i2[0;t)S(x; i)� 1.

We now deal with each part in turn. For Part (a) we have

�t(x) = � ^
P

i2[0;t)S(x; i) = dx:w � te

=) x:w � (t+ 1) � bx:w � tc � 1 < 0 ^
P

i2[0;t)S(x; i) = dx:w � te

=) x:w � (t+ 1) �
P

i2[0;t)S(x; i) < 0

=) lag(S; x; t+ 1) + S(x; t) < 0:

Because schedule S is P-fair, lag(S; x; t+1) > �1, and the inequality lag(S; x; t+1)+S(x; t)<
0 implies that S(x; t) = 0. Hence, lag(S; x; t+ 1) < 0 and task x is ahead at time t+ 1, as
required. For Part (b) we have

�t(x) = 0 ^
P

i2[0;t)S(x; i) = dx:w � te

=) x:w � (t+ 1) � bx:w � tc � 1 = 0 ^
P

i2[0;t)S(x; i) = dx:w � te

=) x:w � (t+ 1) �
P

i2[0;t)S(x; i) = 0

=) lag(S; x; t+ 1) + S(x; t) = 0:

Note that lag(S; x; t+1)+S(x; t) = 0 implies that S(x; t) = 0 and task x is punctual at time
t + 1, as required. For Part (c), note that if S(x; t) = 1 then lag(S; x; t + 1) < lag(S; x; t).
Finally, for Part (d) we have

�t(x) = + ^
P

i2[0;t)S(x; i) = dx:w � te ^ S(x; t) = 0

=) x:w � (t+ 1)� bx:w � tc � 1 > 0 ^
P

i2[0;t)S(x; i) = dx:w � te ^ S(x; t) = 0

=) x:w � (t+ 1)�
P

i2[0;t)S(x; i) > 0 ^ S(x; t) = 0

=) lag(S; x; t+ 1) > 0:

Lemma 4.2 If task x is behind at time t under P-fair schedule S, then:

(a) If �t(x) = � and S(x; t) = 1, then task x is ahead at time t+ 1.

(b) If �t(x) = � and S(x; t) = 0, then task x is behind at time t+ 1.

(c) If �t(x) = 0, then S(x; t) = 1 and task x is punctual at time t+ 1.

(d) If �t(x) = +, then S(x; t) = 1 and task x is behind at time t+ 1.

8

Proof: Assuming that task x is behind at time t under P-fair schedule S, we have
P

i2[t]S(x; i) = bx:w � tc, where x:w � t 62 N. Again, we deal with each part in turn. For Part
(a) we have

�t(x) = � ^
P

i2[0;t)S(x; i) = bx:w � tc ^ S(x; t) = 1

=) x:w � (t+ 1)� bx:w � tc � 1 < 0 ^
P

i2[0;t)S(x; i) = bx:w � tc ^ S(x; t) = 1

=) x:w � (t+ 1)�
P

i2[0;t)S(x; i)� 1 < 0 ^ S(x; t) = 1

=) lag(S; x; t+ 1) < 0:

For Part (b), note that if S(x; t) = 0 then lag(S; x; t+ 1) > lag(S; x; t). For Part (c) we
have

�t(x) = 0 ^
P

i2[0;t)S(x; i) = bx:w � tc

=) x:w � (t+ 1) � bx:w � tc � 1 = 0 ^
P

i2[0;t)S(x; i) = bx:w � tc

=) x:w � (t+ 1) �
P

i2[0;t)S(x; i)� 1 = 0

=) lag(S; x; t+ 1) + S(x; t)� 1 = 0:

Note that lag(S; x; t+1)+S(x; t)� 1 = 0 implies S(x; t) = 1 and task x is punctual at time
t+ 1, as required. For Part (d) we have

�t(x) = + ^
P

i2[0;t)S(x; i) = bx:w � tc

=) x:w � (t+ 1) � bx:w � tc � 1 > 0 ^
P

i2[0;t)S(x; i) = bx:w � tc

=) x:w � (t+ 1) �
P

i2[0;t)S(x; i)� 1 > 0

=) lag(S; x; t+ 1) + S(x; t)� 1 > 0:

Note that lag(S; x; t+ 1) + S(x; t)� 1 > 0 implies S(x; t) = 1 and task x is behind at time
t+ 1, as required.

Lemma 4.3 If task x is tnegru at time t under P-fair schedule S, then S(x; t) = 0.

Proof: Follows from Lemma 4.1(a) and (b).

Lemma 4.4 If task x is urgent at time t under P-fair schedule S, then S(x; t) = 1.

Proof: Follows from Lemma 4.2(c) and (d).

Lemma 4.5 If task x is contending at time t under P-fair schedule S, then:

(a) If S(x; t) = 1, then x is ahead at time t+ 1.

(b) If S(x; t) = 0, then x is behind at time t+ 1.

9

Proof: If x is ahead at time t, this follows from Lemma 4.1(c) and (d) and if x is behind
at time t it follows from Lemma 4.2(a) and (b). For x punctual we have the following:

lag(S; x; t) = x:w � t�
P

i2[0;t)S(x; i) = 0

=) x:w � (t+ 1) �
P

i2[0;t)S(x; i) = x:w

=) lag(S; x; t+ 1) = x:w� S(x; t):

Because 0 < x:w < 1, if S(x; t) = 1 then x is ahead at time t+ 1, and if S(x; t) = 0 then x
is behind at time t+ 1, as required.

Given the preceding de�nitions and lemmas, it is now straightforward to present our on-
line scheduling algorithm, which will be referred to as Algorithm PF. At any time t the task
of Algorithm PF is to determine which m-subset of the n tasks to schedule. By Lemma 4.4,
every urgent task must be scheduled in the current time slot in order to preserve P-fairness.
Symmetrically, Lemma 4.3 implies that no tnegru task can be scheduled in the current time
slot without violating P-fairness. Since our goal is to prove that Algorithm PF produces a
P-fair schedule, it must be that Algorithm PF schedules all of the urgent tasks and none of
the tnegru tasks. It remains to de�ne the behavior of Algorithm PF on the set of contending
tasks.

Before doing so, however, we should pause to address two possible pitfalls. Let n0, n1,
and n2 denote the number of tnegru, contending, and urgent tasks at time t, respectively. If
n2 > m, then it would be impossible for Algorithm PF to schedule all of the urgent tasks.
Symmetrically, if n0 > n�m, then Algorithm PF would be forced to schedule some tnegru
task. (Because

P
x2[0;n) x:w = m, we cannot hope to schedule instance � correctly unless all

m resources are allocated in every slot.) An immediate consequence of Theorem 2, stated
below, is that neither of these pitfalls will ever arise under Algorithm PF. Thus, in de�ning
the behavior of Algorithm PF on the set of contending tasks, we can assume that n0 � n�m
and n2 � m. The task of Algorithm PF is to determine which subset (of size m� n2 � n1)
of the n1 contending tasks to schedule.

At each time t, we can de�ne a total order � on the set of contending tasks as follows:
x � y if and only if �(x; t) � �(y; t), where the comparison between characteristic substrings
�(x; t) and �(y; t) is resolved lexicographically with � < 0 < +. Ties can be broken
arbitrarily; for example, we could assume that ties are broken in favor of the higher-numbered
task.

Algorithm PF schedules the m � n2 highest-priority contending tasks according to this
total order. Algorithm PF is summarized in its entirety below:

1. Schedule all urgent tasks.

2. Allocate the remaining resources to the highest-priority contending tasks according to
the total order �.

Throughout the remainder of this section, let SPF denote the schedule produced by
Algorithm PF on instance �.

Lemma 4.6 If schedule SPF is P-fair at time t, then it is P-fair at time t+ 1, t 2 N.

10

Proof: Assume that schedule SPF is P-fair at time t for some t 2 N. Hence, there exists a
P-fair schedule S such that lag(SPF ; x; t) = lag(S; x; t), x 2 [0; n). Let X (resp., Y) denote
the m-subset of tasks scheduled by S (resp., SPF) in slot t. If X = Y then SPF is P-fair at
time t + 1 because S is P-fair at time t+ 1. If X 6= Y , there exist tasks x 2 X and y 2 Y
such that x 2 X n Y and y 2 Y nX. In the argument that follows we will demonstrate the
existence of a P-fair schedule S0 such that: (i) lag(SPF ; x; t) = lag(S0; x; t), x 2 [0; n), and
(ii) S0 schedules the m-subset X n fxg [fyg in slot t. By repeating this argument jX n Y j
times, we can obtain a sequence of P-fair schedules such that the last P-fair schedule in the
sequence, S�, satis�es lag(SPF ; x; t+ 1) = lag(S�; x; t+ 1). Hence, schedule SPF is P-fair at
time t+ 1, proving the lemma.

Accordingly, it is su�cent to prove existence of a P-fair schedule S0 as de�ned above.
We begin by claiming that S(x; i) 6= S(y; i) for some i > t. (If not, it follows easily that
x:w = y:w, lag(S; x; t) = lag(S; y; t) + 1, and hence that Algorithm PF would have given
priority to task x over task y at time t, a contradiction.) We transform schedule S into S0

as follows. Let
t0

def

= min i : i > t : S(x; i) 6= S(y; i):

We prove below that in fact S(x; t0) = 0 and S(y; t0) = 1. Schedule S0 is de�ned to be
identical to S except that we \swap" the allocations to tasks x and y at slots t and t0, setting
S0(x; t) = 0, S 0(y; t) = 1, S0(x; t0) = 1, and S0(y; t0) = 0.

In the arguments that follow, all statements \categorizing" tasks x and y (e.g., \task x is
not urgent at time t") are being made with respect to the P-fair schedule S. (Note that at
time t, it makes no di�erence whether our claims are made with respect to SPF or S, since
lag(SPF ; x; t) = lag(S; x; t), x 2 [0; n).)

Consider the following predicates:

P0(i)
def

= task x is ahead at time i;

P1(i)
def

= task y is behind at time i;

P2(i)
def

= �j(x) = �j(y) 6= 0; j 2 (t; i), and

P (i)
def

= P0(i) ^ P1(i) ^ P2(i):

We will prove by induction on i that P (i) holds, i 2 (t; t0]. For the base case, set i = t+1.
Since SPF (x; t) = 0 (resp., S(y; t) = 0), task x (resp., y) is not urgent at time t. Similarly,
since S(x; t) = 1 (resp., SPF (y; t) = 1), task x (resp., y) is not tnegru at time t. Hence,
tasks x and y are both contending at time t. We can now use Lemma 4.5(a) to establish
P0(t+ 1). Similarly, Lemma 4.5(b) implies P1(t+ 1). Note that P2(t+ 1) is vacuously true.
This completes the base case of the induction.

For the induction step, we assume that P (i) holds over the interval (t; i], and prove that
it holds over (t; i+ 1], where i 2 (t; t0). By the de�nition of t0, we have

S(x; i) = S(y; i): (1)

Given that P2(i) is part of our induction hypothesis, P2(i+1) will follow if we can establish
that

�i(x) = �i(y) 6= 0: (2)

11

Assuming that Equation (2) fails to hold, there are four cases to consider: (i) �i(x) = �
and �i(y) = 0, (ii) �i(x) = � and �i(y) = +, (iii) �i(x) = 0 and �i(y) = +, and (iv)
�i(x) = 0 and �i(y) = 0. (The symmetric versions of the �rst three cases are impossible
since y � x at time t and P2(i) holds.) Assume that Case (i) holds. Lemma 4.1(a) and
P0(i) imply that S(x; i) = 0. Lemma 4.2(c) and P1(i) imply that S(y; i) = 1, contradicting
Equation (1). Assume that Case (ii) holds. Lemma 4.1(a) and P0(i) imply that S(x; i) = 0.
Lemma 4.2(d) and P1(i) imply that S(y; i) = 1, contradicting Equation (1). Assume that
Case (iii) holds. Lemma 4.1(b) and P0(i) imply that S(x; i) = 0. Lemma 4.2(d) and
P1(i) imply that S(y; i) = 1, contradicting Equation (1). Finally, assume that Case (iv)
holds. Lemma 4.1(b) and P0(i) imply that S(x; i) = 0. Lemma 4.2(c) and P1(i) imply that
S(y; i) = 1, contradicting Equation (1). Hence, Equation (2) holds and P2(i + 1) holds. It
remains to establish P0(i+ 1) and P1(i+ 1).

By Lemma 4.1 and P0(i), if S(x; i) = 1 then �i(x) = +. Conversely, �i(x) = + and
Equation (2) imply �i(y) = +; P1(i) and Lemma 4.2(d) then imply S(y; i) = 1; and �nally,
Equation (1) implies S(x; i) = 1. Hence, we have proven that

S(x; i) = 1 () �i(x) = +: (3)

By Equations (1), (2), and (3), at time i we either had: (i) S(x; i) = S(y; i) = 0 and
�i(x) = �i(y) = �, or (ii) S(x; i) = S(y; i) = 1 and �i(x) = �i(y) = +. Consider Case (i).
By Lemma 4.1(a) and P0(i), P0(i+ 1) holds. By Lemma 4.2(b) and P1(i), P1(i + 1) holds.
Similarly, consider Case (ii). By Lemma 4.1(c) and P0(i); P0(i+1) holds. By Lemma 4.2(d)
and P1(i); P1(i+ 1) holds. Hence, P0(i+1) and P1(i+1) hold. This completes our proof by
induction.

Given that P (i) holds, i 2 (t; t0], it is now quite easy to prove the two remaining claims
that we need, namely: (i) S(x; t0) = 0 and S(y; t0) = 1, and (ii) S0 is P-fair. Because our
algorithm schedules task y,

�t0(x) � �t0(y); (4)

and by the de�nition of t0,
S(x; t0) 6= S(y; t0): (5)

If �t0(x) = � or �t0(x) = 0, then P0(t0) and Lemma 4.1 implyS(x; t0) = 0, and so Equation (5)
implies S(y; t0) = 1. If �t0(x) = +, then Equation (4) implies �t0(y) = +; Lemma 4.2(d) then
implies S(y; t0) = 1; and �nally, Equation (5) implies S(x; t0) = 0. Thus Claim (i) holds.

For Claim (ii), it is su�cient to prove that

8i : i 2 (t; t0] : �1 < lag(S0; x; i) < 1 (6)

and
8i : i 2 (t; t0] : �1 < lag(S0; y; i) < 1; (7)

since all other lags are the same as under schedule S. Note that lag(S0; x; i) = lag(S; x; i)+1,
i 2 (t; t0]. Since S is P-fair, Equation (6) will hold if we can show that lag(S; x; i) < 0,
i 2 (t; t0]. This is immediate, since P0(i) holds for all i 2 (t; t0]. Thus, Equation (6) holds. A
symmetric argument proves that Equation (7) holds. Hence, Claim (ii) holds, and our proof
is complete.

12

Theorem 2 Schedule SPF is P-fair.

Proof: By Theorem 1, schedule SPF is P-fair at time 0. Hence, Lemma 4.6 implies that
schedule SPF is P-fair at time t, t 2 N.

5 The Comparison Algorithm

We will now present two implementations of the characteristic substring comparison function
required by Algorithm PF. The �rst, which we call NaiveCompare, we prove correct. The
second, Compare, we prove equivalent to the �rst and show that it runs in polynomial time.
Both subroutines use only integer variables, and the integer operations f�;+; �;modg. We
will prove that the number of integer operations performed by Compare on tasks x and y is
at most linear in the size of the binary representation of minfx:p; y:pg. (Furthermore, all
intermediate values can be represented in dlg(maxfx:p; y:pg)e bits.)

Subroutine Compare can be used as the basis for an implementation of Algorithm PF
that requires at most linear time (in the size of instance �) to decide which m-subset of the
n tasks to schedule in a given slot. (The idea is to compare all strings at once, rather than
two at a time.)

5.1 A Naive Implementation

This subsection presents a naive implementation of the characteristic substring comparison
algorithm. Given contending tasks x and y at time t, our goal is to determine whether: (i)
�(x; t) < �(y; t), (ii) �(x; t) > �(y; t), or (iii) �(x; t) = �(y; t). The naive approach is to
compare the two substrings one symbol at a time. Note that for any P-fair schedule S and
i 2 [0; j�(x; t)j):

�i(x; t) = �t+i+1(x)

= sign(x:w � (t+ i+ 2) � bx:w � (t+ i+ 1)c � 1)

= sign(lag(S; x; t) + x:w � (i+ 2) � blag(S; x; t) + x:w � (i+ 1)c � 1)

= sign(x:p � lag(S; x; t) + x:e � (i+ 2)

� x:p � b(x:p � lag(S; x; t) + x:e � (i+ 1))=x:pc � x:p)

= sign(x:e� x:p+ (x:p � lag(S; x; t) + x:e � (i+ 1)) mod x:p);

where the last equation follows from the identity a � bb=ac = b�b mod a, for positive integers
a and b. If task x is contending at time t under P-fair schedule S, we have (x:p � lag(S; x; t)+
x:e) 2 (0; x:p). Hence

�0(x; t) = sign(x:p � lag(S; x; t) + 2 � x:e� x:p):

Let

a0
def

= x:p� x:e;

b0
def

= x:e; and

c0
def

= x:p � lag(S; x; t) + 2 � x:e� x:p:

13

Note that a0 2 (0; x:p), b0 2 (0; x:p), and c0 2 (�a0; b0). De�ne a1, b1, and c1 similarly with
respect to task y. Given a0, b0, and c0, it is straightforward to compute �(x; t) one symbol
at a time, using a constant number of integer operations per symbol. Of course, �(y; t) can
be computed in a similar fashion. This is the approach taken in subroutine NaiveCompare

below. Note that in the ith iteration of the do loop, we have sign(c0) = �i(x; t) and
sign(c1) = �(y; t).

(1) NaiveCompare(a0; b0; c0; a1; b1; c1)
(2) int a0; b0; c0; a1; b1; c1;
(3) f
(4) do c0 > 0 ^ c1 > 0 �! c0; c1 := c0 � a0; c1 � a1
(5) [] c0 < 0 ^ c1 < 0 �! c0; c1 := c0 + b0; c1 + b1
(6) od;
(7) if c0 = 0 ^ c1 = 0 �! return TIE �;
(8) if c0 � 0 ^ c1 � 0 �! return 0
(9) [] c0 � 0 ^ c1 � 0 �! return 1
(10) �

(11) g

The return values of NaiveCompare are 0, 1, and TIE. The return value 0 indicates that the
task corresponding to the triple (a0; b0; c0) should be given priority over the one corresponding
to the triple (a1; b1; c1). Conversely, the return value 1 indicates that the triple (a1; b1; c1)
should have priority. The return value TIE indicates that either can be scheduled ahead of
the other. As mentioned in Section 4, such a tie could be broken using the task numbers.

De�nition 5.1 A triple (a; b; c) is admissible if and only if: (i) a and b are positive integers,
and (ii) c is an integer in the interval (�a; b) such that gcdfa; bg j c. We will say that a 6-
tuple (a0; b0; c0; a1; b1; c1) is admissible if and only if (a0; b0; c0) and (a1; b1; c1) are admissible
triples.

It is immediate from the foregoing discussion that every input 6-tuple passed to Naive-

Compare by our scheduling algorithm is admissible. Condition (ii) implies that NaiveCompare

will eventually terminate. Unfortunately, the running time of NaiveCompare is not very good;
it is pseudo-polynomial in the input size. This de�ciency will be addressed in the next sec-
tion.

5.2 An E�cient Implementation

In this section, we present a polynomial-time subroutine Compare with the same input-
output behavior as the NaiveCompare subroutine of Section 5.1. The algorithm is recursive.
As argued in Section 5.1, we can assume that any 6-tuple of arguments passed to the Naive-

Compare subroutine is admissible. Correspondingly, the arguments of any top-level call to
Compare may be assumed to be admissible. Lemma 5.1 below proves that this assumption
can be extended to any non-trivial depth of recursion.

14

Lemma 5.1 If algorithm Compare is called with an admissible 6-tuple, then every resulting
recursive call will also involve an admissible 6-tuple.

Proof: Assume that subroutine Compare is called with admissible 6-tuple (a0; b0; c0; a1; b1; c1).
Note that for 0 � i � 1, ai and bi are not changed within Compare but that ci is assigned
a new value at Line 8. For the sake of clarity, let Ci represent the value passed to ci in the
call to Compare and let C 0

i represent the value of ci after Line 8. To prove the lemma we
will establish the following pair of claims, for 0 � i � 1: (i) if the recursive call in Line 4 of
Compare is executed then (bi; ai;�Ci) is an admissible triple, and (ii) if the recursive call in
Line 16 is executed then (a0i; b

0
i; c

0
i), de�ned as

(ai � (bi mod ai); bi mod ai; C
0
i + (bi mod ai));

is an admissible triple. The proof of Claim (i) is straightforward; (ai; bi; Ci) is admissible if
and only if (bi; ai;�Ci) is admissible.

We now address Claim (ii). First, note that if ai j Ci then the recursive call at Line 16 is
not reached. Thus we can assume that ai 6 j Ci, which easily implies ai 6 j bi and ai 6 j C 0

i. Line 8
sets C 0

i to �ai + (Ci mod ai) and hence c0i = �ai + (Ci mod ai) + (bi mod ai). If a0 � b0
or a1 � b1 then again the recursive call at Line 16 is not reached. Thus we can assume
that (bi mod ai) 2 (0; ai) and both a0i = (ai � (bi mod ai)) and b0i = (bi mod ai) are positive
integers. It remains to prove that gcdfa0i; b

0
ig j c

0
i and that c0i 2 (�a0i; b

0
i).

The identities gcdfm;ng = gcdfm;m � ng and gcdfm;ng = gcdfm;m mod ng;m >
n > 0, are easily veri�ed. (Note that two common versions of Euclid's GCD algorithm
depend on these identities.) The second identity implies that gcdfai; b0ig = gcdfai; big. The
�rst identity implies that gcdfa0i; b

0
ig = gcdfai; b

0
ig and therefore gcdfa0i; b

0
ig = gcdfai; big.

For convenience, let gi = gcdfai; big = gcdfa0i; b
0
ig. Because (ai; bi; Ci) is an admissible

triple, gi j Ci. Since gi j ai we have gi j (Ci mod ai). Note that (bi mod ai) = b0i, and so
gi j (bi mod ai). Thus, c0i = �a+ (Ci mod ai) + (bi mod ai) is a sum of multiples of gi and
therefore is itself a multiple of gi.

Finally, because (bi mod ai) and (Ci mod ai) are both in (0; ai), it follows that �ai +
(bi mod ai) < �ai+(Ci mod ai)+(bi mod ai) < (bi mod ai). Hence, c0i 2 (�a0i; b

0
i), completing

the proof of Claim (ii).

Theorem 3 Let d = minf`(a0); `(b0); `(a1); `(b1)g where `(i) = blg(i+1)c. Then algorithm
Compare performs O(d) integer operations.

Proof: Since algorithm Compare does not contain any loops and uses only tail recursion, it is
su�cient to prove that the maximumdepth of recursion isO(d). More precisely, we will prove
by induction that the maximum depth of recursion is 2d � 2 if minfa0; a1g � minfb0; b1g,
and 2d � 1 otherwise.

The base of our induction is d = 1. (By Lemma 4.1, d > 0.) Note that if (a; b; c) is an
admissible triple, then a+ b � 2. Thus, using Lemma 5.1, we have ai + bi � 2, 0 � i � 1. If
d = 1 then a0 = a1 = b0 = b1 = 1, which implies c0 = c1 = 0. Thus the depth of recursion is
2d � 2 = 0, as claimed.

For the induction step, assume that d � 2 and that the claim holds for smaller values of
d. We consider two cases:

15

1. If minfa0; a1g � minfb0; b1g (and the depth of recursion is greater than 0), Line 16 of
Compare must be executed. Let a0i, b

0
i, and c0i be de�ned as in the proof of Lemma 5.1,

and assume without loss of generality that a0 � a1. Thus, `(a0) = d � 2. Since
a00+b00 = a0, minf`(a00); `(b

0
0)g < d. The claim then follows by the induction hypothesis.

2. If minfa0; a1g > minfb0; b1g then the recursive call in Line 4 of Compare will be exe-
cuted. That call will terminate within at most 2d� 2 additional levels of recursion by
the argument of the preceding case. Thus, the maximum depth of recursion is at most
2d � 1, as claimed.

(1) Compare(a0; b0; c0; a1; b1; c1)
(2) int a0; b0; c0; a1; b1; c1;
(3) f
(4) if minfa0; a1g > minfb0; b1g �! return Compare(b1; a1;�c1; b0; a0;�c0) �;
(5) if dc0=a0e > dc1=a1e �! return 0
(6) [] dc0=a0e < dc1=a1e �! return 1
(7) �;
(8) c0; c1 := c0 � a0 � dc0=a0e; c1 � a1 � dc1=a1e;
(9) if c0 = 0 ^ c1 = 0 �! return TIE
(10) [] c0 6= 0 ^ c1 = 0 �! return 0
(11) [] c0 = 0 ^ c1 6= 0 �! return 1
(12) �;
(13) if bb0=a0c > bb1=a1c �! return 0
(14) [] bb0=a0c < bb1=a1c �! return 1
(15) �;
(16) return Compare(a0 � (b0 mod a0); b0 mod a0; c0 + (b0 mod a0);
(17) a1 � (b1 mod a1); b1 mod a1; c1 + (b1 mod a1))
(18) g

It remains to argue that: (i) Compare never executes a division by 0, and (ii) Compare

always returns the correct value. Claim (i) is easy to justify: all divisions are by a0 or a1,
which are strictly positive. Claim (ii) is addressed by the following theorem.

Theorem 4 On any admissible input 6-tuple, algorithms NaiveCompare and Compare return
the same value.

Proof: In the following, let �i denote the characteristic substring associated with the
admissible triple (ai; bi; ci), 0 � i � 1.

We will prove the theorem by induction on the depth of recursion used by algorithm
Compare. By Theorem 3, this depth is �nite. For the base case, assume that Compare does
not call itself recursively, i.e., that the maximum depth of recursion is 0. Thus, one of the
non-recursive return statements is executed (the two recursive return statements are in
Lines 4 and 16). In the argument that follows we will deal with each of the non-recursive
return statements in turn.

16

Since the recursive call on Line 4 is not executed, we can assume that minfa0; a1g �
minfb0; b1g. Now consider the two quantities, dc0=a0e and dc1=a1e, being compared in Lines 5
and 6. Note that the string �i must begin with dci=aie +'s, followed by either a � or a 0.
Thus, the return statements of Lines 5 and 6 correctly handle any case where dc0=a0e 6=
dc1=a1e.

If execution proceeds beyond Line 7, let t = dc0=a0e(= dc1=a1e). Note that Line 8
then sets c0 and c1 to the values these variables would have attained in NaiveCompare after
processing the common pre�x of t +'s in �0 and �1 (i.e., after exiting the do loop). Let �0

i

denote the string �i with this common pre�x removed, 0 � i � 1. It remains to compare
strings �0

0 and �0
1.

Note that after executing Line 8, we have ci 2 (�ai; 0], 0 � i � 1. If either c0 or c1 is
equal to 0, we can immediately determine the outcome of the comparison between strings
�0
0 and �0

1. For example, if c0 = 0 and c1 6= 0 then �0
0 > �0

1 because �0 = +t0, whereas the
�rst t+ 1 symbols of the string �1 are +t�. Reasoning in this manner, we can see that the
three return statements of Lines 9, 10, and 11 correctly handle any case where either c0 or
c1 is equal to 0.

If execution proceeds beyond Line 12, we have ci 2 (�ai; 0), 0 � i � 1. For each i,
0 � i � 1, we now consider three cases:

� Case 1: ci = �(bi mod ai). In this case, it is easy to verify that �0
i = �+bbi=aic 0. In

what follows, let �i denote the string �+bbi=aic 0.

� Case 2: ci 2 (�ai;�(bi mod ai)). In this case, the �rst bbi=aic+ 1 symbols of �0
i form

the string 	i
def

= �+bbi=aic. Let c0i denote the new value of ci after processing these
symbols as in NaiveCompare. Then

c0i = ci + bi � ai � bbi=aic

= ci + (bi mod ai):

Note that c0i 2 (�ai; 0).

� Case 3: ci 2 (�(bi mod ai); 0). In this case, the �rst dbi=aie+1 symbols of �0
i form the

string �i
def

= �+dbi=aie. Let c0i denote the new value of ci after processing these symbols
as in NaiveCompare. Then

c0i = ci + bi � ai � dbi=aie

= ci � (ai � (bi mod ai)):

Note that c0i 2 (�ai; 0).

In Case 1 above, we completely characterize the string �0
i. In Cases 2 and 3, we identify

a pre�x of �0
i and �nd that after processing that pre�x, the new value of ci remains in the

interval (�ai; 0), meaning that the preceding case analysis can be repeated on the remaining
su�x of �0

i. In other words, the string �0
i may be viewed as a sequence of 	i's and �i's,

followed by a single occurrence of �i. Whenever bb0=a0c 6= bb1=a1c, we can immediately
determine which of the strings �0

0 and �0
1 is lexicographically greater. In particular, the

return statements of Lines 13 and 14 correctly handle any case in which bb0=a0c 6= bb1=a1c.

17

We have now completed the base case of the induction, that is, we have proven that
Compare works correctly (i.e., returns the same value as NaiveCompare) on any admissible
input for which no recursive call is generated. It remains to consider the induction step.
Accordingly, let us assume that algorithm Compare works correctly on any admissible input
leading to a maximum depth of recursion strictly less than d, d > 0. It remains to prove
that Compare works correctly on any admissible input (a0; b0; c0; a1; b1; c1) with associated
maximum depth of recursion d > 0. There are two cases to be considered: (i) the top-level
recursive call is made in Line 4, and (ii) the top-level recursive call is made in Line 16.

The case in which the top-level recursive call occurs in Line 4 is quite easy to handle.
Let �i denote the characteristic substring associated with the admissible triple (bi; ai;�ci),
0 � i � 1. Note that the strings �i and �i are closely related. In particular, they are
\complementary" strings in the sense that one can be obtained from the other by changing
�'s to +'s, +'s to �'s, and leaving the 0 symbol unchanged. With this observation, it is
easy to see that NaiveCompare will return the same result on (b1; a1;�c1; b0; a0;�c0) as it
would on (a0; b0; c0; a1; b1; c1). By the induction hypothesis, the recursive call of Line 4 will
function correctly, completing the analysis of this case.

It remains to consider the case in which the top-level recursive call occurs in Line 16. Our
base case analysis implies that when Line 16 is executed: (i) c0 2 (�a0; 0), (ii) c1 2 (�a1; 0),
(iii) 	

def

= 	0 = 	1, (iv) �
def

= �0 = �1, (v) �
def

= �0 = �1, (vi) strings �0
0 and �0

1 (as de�ned
in the base case analysis) can be viewed as strings of 	's and �'s terminated by a �.

Furthermore, it is straightforward to prove that �0
i, viewed as a string over f	;�;�g,

corresponds to the characteristic substring of the admissible triple

(ai � (bi mod ai); bi mod ai; ci + (bi mod ai));

0 � i � 1. (To make the correspondence, replace 	 by �, � by 0, and � by +.) Thus, the
induction hypothesis implies that the recursive call of Line 16 correctly compares strings �0

0

and �0
1.

6 Conclusions

We have de�ned a new notion of fairness, called P-fairness, which we believe to be quite useful
in a variety of resource allocation problems. We have shown that P-fair schedules exist for the
resource sharing problem, which is a slight generalization of the periodic scheduling problem.
Furthermore, we have provided an e�cient algorithm that produces a P-fair schedule on-line.

The swapping argument of Lemma 4.6 captures the essence of P-fairness by modeling
exchanges that are permissible in P-fair schedules. An interesting problem for future research
is to identify generalizations of the periodic scheduling problem that can be handled within
the same framework.

The Compare subroutine appears to be closely related to Euclid's GCD algorithm, as
well as to various algorithms that have been proposed for 2-ILP, that is, integer linear
programming with two variables [5, 7, 12, 13]. (ILP is NP-complete in general, but can
be solved in polynomial-time for any �xed number of variables [8].) Deng has extensively
studied the relationship between GCD and 2-ILP [2].

18

7 Acknowledgments

We would like to thank A. K. Mok and C. L. Liu for their encouragement and interest in
this problem. We are indebted to the members of the Austin Tuesday Afternoon Club for
their many helpful comments and suggestions. In particular, E. W. Dijkstra suggested a nice
simpli�cation of the NaiveCompare subroutine.

References

[1] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time

Systems, 2:301{324, 1990.

[2] X. Deng. Mathematical Programming: Complexity and Applications. PhD thesis, De-
partment of Operations Research, Stanford University, Stanford, CA, September 1989.

[3] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, NY, 1979.

[5] D. S. Hirschberg and C. K. Wong. A polynomial-time algorithm for the knapsack
problem with two variables. JACM, 23:147{154, 1976.

[6] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21:177{185, 1974.

[7] R. Kannan. A polynomial algorithm for the two-variable integer programming problem.
JACM, 27:118{122, 1980.

[8] H. W. Lenstra, Jr. Integer programming with a �xed number of variables. Mathematics

of Operations Research, 8:538{548, 1983.

[9] J. Y.-T. Leung. A new algorithm for scheduling periodic, real-time tasks. Algorithmica,
4:209{219, 1989.

[10] C. L. Liu. Scheduling algorithms for multiprocessors in a hard-real-time environment.
JPL Space Programs Summary 37{60, vol. II, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, pages 28{37, November 1969.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. JACM, 20:46{61, 1973.

[12] H. E. Scarf. Production sets with indivisibilities, Part I: Generalities. Econometrica,
49:1{32, 1981.

[13] H. E. Scarf. Production sets with indivisibilities, Part II: The case of two activities.
Econometrica, 49:395{423, 1981.

19

