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The Standard Quantum Limit in continuous monitoring of a system is given by the trade-off of
shot noise and back-action noise. In gravitational-wave detectors, such as Advanced LIGO, both
contributions can simultaneously be squeezed in a broad frequency band by injecting a spectrum of
squeezed vacuum states with a frequency-dependent squeeze angle. This approach requires setting
up an additional long base-line, low-loss filter cavity in a vacuum system at the detector’s site. Here,
we show that the need for such a filter cavity can be eliminated, by exploiting EPR-entangled signal
and idler beams. By harnessing their mutual quantum correlations and the difference in the way
each beam propagates in the interferometer, we can engineer the input signal beam to have the
appropriate frequency dependent conditional squeezing once the out-going idler beam is detected.
Our proposal is appropriate for all future gravitational-wave detectors for achieving sensitivities

beyond the Standard Quantum Limit.

Detection of gravitational waves from merging bi-
nary black holes (BBH) by the Laser Interferometer
Gravitational-wave Observatory (LIGO) opened the era
of gravitational wave astronomy [1]. The future growth
of the field relies on the improvement of detector sen-
sitivity, and the vision for ground-based gravitational-
wave detection is to improve, eventually by a factor ~30
in amplitude in the next 30 years[2—6]. This will even-
tually allow us to observe all BBH mergers that take
place in the universe, thereby inform on the formation
mechanism of BBH, the evolution of the universe [5, 7],
and the way gravitational waves propagate through the
universe [8, 9]. Higher signal-to-noise ratio observations
of BBH will allow demonstrations and tests of effects
of general relativity in the strong gravity and nonlinear
regimes [10, 11]. Besides BBH, gravitational waves from
neutron stars are being highly anticipated, as well as an
active program of joint EM-GW observations [12, 13]. Fi-
nally, improved sensitivity may lead to detections of more
exotic sources [14], as well as surprises.

A key toward better detector sensitivity is to suppress
quantum noise, which arises from the quantum nature of
light and the mirrors, and is driven by vacuum fluctua-
tions of the optical field entering from the dark port of
the interferometer [15-18]. There are two types of quan-
tum noise: shot noise, the finite displacement resolution
due to the finite number of photons, and the radiation-
pressure noise, which arises from the photons randomly
impinging on the mirrors. In the broadband configura-
tion of Advanced LIGO, we measure the phase quadra-
ture of the carrier field at the dark port, the quadrature
that contains GW signal. In this case, shot noise is driven

by phase fluctuations of the incoming optical field, while
radiation-pressure noise is driven by amplitude fluctua-
tions. The trade off between these two types of noise, as
dictated by the Heisenberg Uncertainty Principle, gives
rise to a sensitivity limitation called the Standard Quan-
tum Limit (SQL) [19-21].

One way to improve LIGO’s sensitivity with mini-
mal modification to its optical configuration is to in-
ject squeezed vacuum into the dark port[18, 22-24].
More than 10dB of squeezing down to audio side-band
frequency (10Hz to 10kHz) has been demonstrated in
the lab [25-30], while moderate noise reductions have
been demonstrated in the large-scale interferometers
GEO 600 [31] and LIGO [32]. However, squeezed vacuum
generated by a nonlinear crystal via Optical Parametric
Amplification (OPA) is frequency-independent for audio
sidebands: within the GW band, we can only “squeeze”
a fixed quadrature — fluctuations in the orthogonal
quadrature are amplified by the same factor, as required
by the Heisenberg Uncertainty Principle. This does not
allow broadband improvement of sensitivity beyond the
SQL [19, 33] such as the example shown in Fig. 1; instead,
a frequency-dependent quadrature must be squeezed for
each sideband frequency. Starting off from frequency-
independent squeezing, we must rotate the squeezed
quadrature in a frequency-dependent way [19, 34]; for
the broadband configuration of Advanced LIGO, this ro-
tation angle needs to gradually transition by 7/2 at a
frequency scale of 50 Hz [35]. Kimble et al. [19] proposed
to achieve such rotation by filtering the field with two
Fabry-Perot cavities; Khalili further showed that it is
often sufficient to use one cavity with bandwidth and de-
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FIG. 1: Sensitivity of a AdvLIGO type gravitational wave
detector driven by squeezed vacuum (6 dB squeeze degree is
chosen for comparing the 5% input/output loss case in Fig. 4)
with a fixed squeezing angle. The red, purple and blue curves
describe the cases when squeezed light is injected with squeez-
ing angle 0(corresponding to an amplitude squeezed vacuum),
/4 and 7/2, respectively. The black curve is the case when
there is a frequency dependent squeezed vacuum injection.

tuning (from the carrier frequency) roughly at the tran-
sition frequency [36, 37]. However, the narrowness of the
bandwidth requires the filter cavity to be long in or-
der to limit impact from optical losses; the current plan
for Advanced LIGO is to construct a ~ 16 m filter cav-
ity [35, 38, 39|, and ~ 300m long cavities have been stud-
ied for KAGRA [40] and for the Einstein Telecscope [41].
Alternative theoretical proposals for creating narrow-
band filter cavities were also discussed, they are strongly
limited by thermal noise and/or optical losses [42—44].

In this paper, we propose a novel strategy to achieve
broadband squeezing of the total quantum noise via the
preparation of EPR entanglement and the dual use of the
interferometer as both the GW detector and the filter,
eliminating the need for external filter cavities.

As shown in Fig. 2, our strategy is divided into 4 steps.
(i) We detune the pumping frequency of the OPA away
from 2wy (where wy is the carrier frequency of the inter-
ferometer) to w, = 2wy + A, with A an rf frequency of
a few MHz, creating two EPR-entangled beams: the sig-
nal beam around the carrier frequency wg, and the idler
beam around wp + A. (ii) The idler beam, being far de-
tuned from the carrier, sees the interferometer as a sim-
ple detuned cavity, and experiences frequency-dependent
quadrature rotation, see Fig. 3, which can be optimised
by adjusting A with respect to the lengths of interferom-
eter cavities. (iii) When traveling out of the interferom-
eter, the collinear signal and idler beams are separated
and filtered by the output mode cleaners and measured
by beating with local oscillators at frequencies wy and
wo + A, respectively. (iv) The homodyne measurement
of a fixed quadrature of the out-going idler beam con-
ditionally squeezes the input signal beam in a frequency
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FIG. 2: Optical configuration for noise suppression via EPR
entanglement. The OPA is detuned by A, generating signal
beam a and idler beam b and injecting them into the interfer-
ometer. Upon returning from the interferometer, signal beam
A and idler beam B are separated and filtered by the output
mode cleaners (denoted as OMC in the figure), and each de-
tected via homodyne detection. Measurement data are com-
bined using an optimal filter for obtaining the squeezing of
the quantum noise on the signal channel. The abbreviations
PRM, ITM, ETM and SRM stand for power recycling mir-
ror, input test mass mirror, end test mass mirror and signal
recycling mirror, respectively.

dependent way, thereby achieving the broadband reduc-
tion of quantum noise. Practically, benefit of the con-
ditional squeezing of the signal beam is obtained as we
apply a Wiener filter to the photocurrent of the idler and
subtract it from the photocurrent of the signal beam.
Without optical losses, using parameters in TableI (with
a 15dB squeezed vacuum in particular), we obtain the
solid black curve in Fig. 4, with ~11-12dB improvement
over the entire frequency band. We shall next discuss
more details of the configuration, as well as the impact
of optical losses; further details are provided in Supple-
mentary Materials.

EPR entanglement by detuning the OPA.— For
an OPA pumped at wp, it is often convenient to study
quadrature fields around wy/2, which are linear combina-
tions of upper and lower sideband fields at w,/2+Q, with
¢ quadrature defined by:

ec(Q) = (e_igéwp/zm + emélp/z_n) /N2 (1)

Here ¢é,, and ¢ are the annihilation and creation opera-
tors for the optical field at w; we will use ¢; 2 to stand for
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FIG. 3: The differential mode of the interferometer as seen
by the signal (upper panel) and idler (lower panel) beams.

A Carrier laser wavelength 1064 nm
Tsrm |[SRM power transmissivity 0.35

T ITM power transmissivity 0.014
Larm |Arm cavity length ~ 4km

Lsrc |Signal recycling cavity length [~ 50 m

% Detection bandwidth 389 Hz

m Mirror mass (ITM and ETM) |40kg

1. Intra cavity power 650 kW

A Idler-signal detuning —15.3 MHz
T Squeeze factor of the OPA 1.23 (15 dB)

TABLE I: Sample Parameters for Advanced LIGO. (See sup-
plementary material for details.)

Co,r/2, and ¢ = ¢ cos( + €2 sin (. For a squeeze factor r
and squeeze angle 6, the orthogonal quadratures ¢y and
Co+r /2 have uncorrelated fluctuations, with spectra given
by

Séoée

=e S =", (2)

Cotm/2C04m/2
Compared with vacuum, fluctuations in ¢y are suppressed
by €27, and those in Co4r/2 are amplified by e?". This is
due to the entanglement between the upper and lower
sidebands, w,/2 £ §, generated by the optical nonlinear-
ity. However, any pair of sideband fields with frequencies
w1 and wy within the squeeze bandwidth (usually >MHz)
from w,,/2, and satisfying wy +ws = wy, are entangled; in
particular, for the proposed OPA (Fig.2) with pumping
frequency w, = 2wy + A, we have entanglement between
wo+Q and wy+ A —Q, as well as wg — 2 and wg+ A+,
as shown in the upper panel of Fig. 5. As it turns out,
this entanglement is equivalent to an EPR-type entangle-
ment [45-47] between quadratures around wy [consisting
of wy £ sidebands, denoted by a(£2)] and those around
wo + A [consisting wg + A £ Q sidebands, denoted by
BC(Q)] In terms of the four fields, (a; + b1)/v/2 and

(d2 + by)/v/2, they are mutually uncorrelated, and have
spectra

+2r 2r
S(flliih)/\/i =e s S(le:ﬁ:i)g)/\/ﬁ = e:F . (3)

In other words, for r 2 1, fluctuations in by — a; and
ba + ao are both much below vacuum level, as in the
original EPR situation. In this way (lower panel of
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FIG. 4: Upper panel: Noise spectrum of Advanced LIGO
configurations with conditional frequency-dependent squeez-
ing by using a 15dB squeezed vacuum at MHz frequen-
cies(see Table I), assuming no loss (black), and assuming
arm-cavity loss €. = 100 ppm and signal recycling cavity loss
esrc = 2000 ppm, plus an identical input and output loss €
of 1% (red), 5% (blue) and 10% (purple). Lower panel: The
sensitivity improvement factor measured in terms of dB.

Fig. 5), if we detect b = by cos B + by sin 0, we can pre-
dict G_g = aq cos — as sin @ with a very good accuracy,
while not providing any information for a,/_g. More
precisely, given measurement data of the idler quadra-
ture 139, the signal beam will be conditionally squeezed,
with conditional spectra

, = 1/cosh(2r), Slbe

ax _gGm _
30750

sl

a_pa_

=cosh(2r), (4)

where the squeeze angle is —6, and the squeeze factor is
(log cosh(2r))/2. For significant squeezing, " > 1, this
corresponds to 3dB less squeezing than before detuning
the pump field.

Improvement of Detector Sensitivity.— As shown in
Fig.1, after signal beam @, 2 and idler beam 31’2 are fed
into the interferometer, we detect phase quadratures of
the out-going signal and the idler beams, A; and Bs,
after they are separated and filtered by the output mode
cleaners (Fig. 2). For the signal beam (upper panel of
Fig. 3), we have [19]:

Ay = ¢ (ay — Kan) + V2Keh/hsqr,  (5)

which consists of shot noise, radiation-pressure noise, and
signal, with 8 = arctan({2/~), where v is the bandwidth
of the interferometer seen by the signal beam,

h3qr = 8h/(mQPL?), K =20°y/[0*(Q%++%)], (6)
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FIG. 5: Spectral decomposition of EPR-entangled beams (up-
per panel) and the quantum statics of the signal and idler
beams (lower panel).

and © = [8wol./(mLc)]*/3.

Here we need to squeeze the a[_ arctan(1/x) quadra-
ture of the input signal beam, which requires detecting
barctan(1/k)- If we detect By, we will need the interferom-
eter (lower panel of Fig. 3) to apply a rotation of @, =
arctan IC to the idler beam so that Bg = Barctan(l/}C)‘ This
can be realized approximately by adjusting the detuning
A and the length of signal-recycling cavity and arm cav-
ity (see Supplementary Material for details), if ©@ < ~.
To achieve the sensitivity provided by conditional squeez-
ing, we need to compute the best estimate of A from Ba,
and subtract it from As. If a rotation by @, is realized
exactly, we will have a noise spectrum of

2
hsqr,

1
"™ 2cosh2r (IC+ IC) ’ Q

where conditional squeezing provides a cosh 2r suppres-
sion. In reality, we get less suppression since the interfer-

ometer, acting as a single cavity, does not exactly realize
®,¢ for the idler beam. In Fig. 4, the black curve shows
the actual noise spectrum for parameters in Table I.

Discussions.— In Fig. 4, we plot noise spectra of
interferometers with optical losses. In particular, we
include losses in the arm cavities, at the input port, and
during readout. As it turns out, the current 100 ppm
arm cavity loss and 2000 ppm signal recycling cavity
loss [48] has only a small effect on the noise (for details,
see Supplementary Material). When the input loss and
the readout loss are both around 10%, the sensitivity im-
provement is only roughly 3dB, which corresponds to an
amplitude improvement ~ 1.4. However, for a lower loss
of 5%, which is promising in the near future [35, 48, 49|,
we can gain ~ 6dB or a factor of ~ 2 improvement in
amplitude. This corresponds to an increase of sensitive
sky volume by a factor of 8. Compared to the traditional
scheme with a filter cavity [35], our input and detection
losses are doubled, because signal and idler beams
experience the same amount of loss during propagation.
Although we do suffer less from loss in the filter cavity
compare to the design based on an auxiliary filter cavity
(since arm cavities have less loss), this higher level of
input and detection losses is the price we have to pay in
this scheme for eliminating the additional filter cavity.
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