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In device-independent quantum key distribution (DIQKD), the violation of a Bell inequality is
exploited to establish a shared key that is secure independently of the internal workings of the
QKD devices. An experimental implementation of DIQKD, however, is still awaited, since hitherto
all optical Bell tests are subject to the detection loophole, making the protocol unsecured. In
particular, photon losses in the quantum channel represent a fundamental limitation for DIQKD.
Here, we introduce a heralded qubit amplifier based on single-photon sources and linear optics that
provides a realistic solution to overcome the problem of channel losses in Bell tests.

Bell inequalities had an enormous impact on the foun-
dations of quantum physics [1]. Interestingly, they also
find application in Device-Independent Quantum Key
Distribution (DIQKD) [2–8]: as their violation guaran-
tees the presence of entanglement independently of what
precisely is measured, they can be exploited to establish
a secret key between two black boxes without the neces-
sity to know anything about how the boxes operate (see
Figure 1).

An experimental demonstration of DIQKD, however, is
still awaited. Indeed, all optical tests of Bell’s inequality
suffer from the detection loophole [9]: not all entangled
photons are detected, because of unavoidable losses in
the quantum channel, losses in the coupling between the
photon-pair source and the optical fibers, and because of
finite detector efficiency. The usual way out in Bell tests
consists in assuming that the set of detected photon pairs
is a fair set (the fair sampling assumption). It is indeed
reasonable to assume that Nature is not malicious and
does not trick us. But the situation is completely differ-
ent in DIQKD. Here one does not test Nature, but fights
against a possible active adversary [10, 11]: it would
make no sense to assume that the eavesdropper is not
malicious. Missed events could be used to perform sim-
ple and powerful attacks, e.g. the eavesdropper could
force the black boxes to produce results only if the set-
tings of the measuring devices are in agreement with a
predeterminate scheme. Closing the detection loophole
in an optical experiment is therefore a requirement for a
demonstration of DIQKD.

The detection efficiency, the product of the transmis-
sion efficiency (including the coupling into the fiber) and
the photon-detector efficiency, required to rule out at-
tacks based on the detection loophole is very high, typ-
ically larger than 82.8% for the CHSH inequality in
the absence of other limitations. However, even assum-
ing perfect photo-detection and lossless components, the
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FIG. 1: Principle of DIQKD. Alice and Bob repeatedly choose
inputs x and y for their QKD devices and obtain outputs a
and b. The inputs can be thought of as measurements on
entangled particles, and the outputs as the measurement out-
comes. At the end of the protocol, Alice and Bob use an au-
thenticated public channel to compare a sample of their data
in order to estimate the conditional probability distribution
P (a, b|x, y). If P (a, b|x, y) violates the CHSH-Bell inequality
by a sufficient amount, then Alice and Bob can use standard
error correction and privacy amplification to distill a secret
key out of the remaining data. To establish security nothing
has to be known or assumed about Alice’s and Bob’s black
boxes, except that they can be described by quantum physics.
Note, however, that it is assumed that Alice and Bob are each
located in a secure place and control the information going in
and out of their locations (dotted lines). In particular, the
value of the inputs x, y and of the outputs a, b should not
leak out unwillingly of Alice’s and Bob’s secure place. This is
the only part of the protocol that cannot be untrusted: Alice
and Bob should either enforce these conditions (e.g., by clos-
ing a “door”) or test it (e.g., by monitoring the output signals
of the boxes).

transmission efficiency of a 5 km long optical-fiber at tele-
com wavelength is roughly of 80%. Transmission losses
thus represent a fundamental limitation for the realiza-
tion of a detection-loophole free Bell test on any distance
relevant for QKD.

The problem of transmission losses might be circum-
vented by performing quantum-non-demolition measure-
ments of the incoming photon or by using quantum re-
peaters to distribute entanglement over large distances
[12] in a heralded way. Here, we propose a much simpler
scheme based on heralded qubit amplification that com-
bines single-photon sources and linear optical elements
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only. Our proposal could be implemented with present-
day technology. It provides a realistic avenue towards
device-independent quantum cryptography.
Heralded qubit amplifier. Recently Ralph and Lund

proposed a clever use of quantum teleportation to realize
a heralded single-photon amplifier [13]. Their scheme,
presented in Fig. 2.a), has already motivated several ex-
periments [14, 15]. We show how it can be extended for
polarization-qubit amplification and we describe how this
can be used in long-distance Bell experiments.
We consider a (normalized) coherent superposition

ψin = α|0〉+
(

βhin
†
h + βvin

†
v

)

|0〉

of a vacuum component and of a qubit corresponding
to a single photon either horizontally (corresponding to

the creation operator in†h) or vertically polarized (asso-
ciated to in†v). This state enters the device presented
in Fig. 2.b). Two auxiliary photons, one horizontally
|1h〉 polarized and the other one vertically |1v〉 polar-
ized, are sent through a beamsplitter with transmission t.

This leads to the entanglement
(√

1− tc†h +
√
t out†h

)

⊗
(√

1− tc†v +
√
t out†v

)

|0〉 of modes c and out. The modes
ch,v and inh,v are then combined on a 50/50 beam-
splitter. The modes after this beamsplitter are dh =
(ch + inh)/

√
2, d̃h = (ch − inh)/

√
2, dv = (cv + inv)/

√
2,

and d̃v = (cv − inv)/
√
2. The detection of two photons

with orthogonal polarization, for example, one in mode
dh, the other one in mode dv, projects the output mode
into

ψout =

√
1− t

2

(√
1− tα|0〉+

√
t
(

βhin
†
h + βvin

†
v

)

|0〉
)

.

For t = 1/2, the output state is equal to the input state
and the scheme reduces to a teleportation protocol for
qutrits with a partial Bell state analyzer. But for t > 1/2,
the relative weight of the vacuum component decreases,
leading to the amplification of the polarization-qubit.
This qubit amplification is probabilistic, since it depends
on the accomplishment of the Bell measurement, but it is
heralded by two detector clicks. The success probability
is given by |ψout|2. Since the detection of two-photons
in modes (dh,d̃v), (d̃h,dv), or (d̃h,d̃h) combined with the
appropriate one-qubit rotation also collapses the outcom-
ing state into ψout, the overall success probability of the
heralding amplifier is given by 4|ψout|2.
Application to DIQKD. As all teleportation proto-

cols, the qubit amplifier also applies to mixed states.
This provides a powerful tool to overcome the problem
of losses in the frame of DIQKD. Suppose that a photon-
pair source located on Alice’s side is excited and can emit
entangled photons with a small probability p ≪ 1, lead-
ing to the state

|0〉〈0|+ p|a
†
hb

†
h + a†vb

†
v√

2
〉〈a

†
hb

†
h + a†vb

†
v√

2
|+O(p2) . (1)
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FIG. 2: a) Heralded amplifier for single photons as pro-
posed in Ref. [13]. A beam splitter with transmission co-
efficient t turns an incoming photon into the entanglement
of modes c and out which can be used to teleport an ar-
bitrary state α|0〉 + βin†|0〉 with the help of a partial Bell
state analyzer. If t = 1

2
, this is standard quantum telepor-

tation, i.e. the outcoming state α|0〉 ± βout†|0〉 is similar to
the incoming one, up to a possible unitary transformation
depending on which detector clicked. But if t > 1

2
, a suc-

cessful Bell state measurement projects the outcoming state
in the incoming one but shifted towards the single-photon
state |1〉:

√
1− tα|0〉 ±

√
tβin†|0〉. b) Setup for amplifying

polarization qubits in a heralded way. This scheme is simi-
lar to the single-photon amplifier except that a product state
of two photons with orthogonal polarization are sent through
the partial beamsplitter. The probabilistic Bell measurement
is based on a 50-50 beamsplitter followed by polarization
measurements in the h/v basis (which require a polarization
beamsplitter and two photodetectors). For t = 1

2
, a success-

ful Bell measurement teleports an arbitrary qutrit of the form
α|0〉 + (βhin

†
h
+ βvin

†
v)|0〉. For t > 1/2, the teleported state

√
1− tα|0〉 +

√
t
(

βhin
†
h
+ βvin

†
v

)

|0〉 has a smaller vacuum

component leading to the heralded amplification of the qubit
state.

The term O(p2) introduces errors in the protocol, leading
to the requirement that p has to be kept small. The mode
b is sent to Bob through a quantum channel and because
of losses, Alice and Bob share the state

|0〉〈0|+ 1

2
p (1− ηt)

(

|a†h〉〈a
†
h|+ |a†v〉〈a†v|

)

+ pηt|
a†hb

†
h + a†vb

†
v√

2
〉〈a

†
hb

†
h + a†vb

†
v√

2
| , (2)

where ηt denotes the transmission efficiency of the quan-
tum channel. Before Bob performs measurements, he
amplifies the modes bh and bv using the setup described
in Fig. 3. The state resulting from the successful ampli-
fication of both polarization modes is given by

(1− t)2

4
|0〉〈0| (3)

+
(1− t)2p (1− ηt)

8

(

|a†h〉〈a
†
h|+ |a†v〉〈a†v|

)
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FIG. 3: Proposed setup for the implementation of DIQKD
based on a heralded qubit amplifier. The entangled-photon
source is located close to Alice’s location. Each of Alice’s and
Bob’s black boxes includes a measurement apparatus. Fur-
thermore, Bob’s box contains the qubit amplifier which gives
an heralding signal each time an entangled pair has been suc-
cessfully distributed. Since Bob performs a measurement or,
in other words, inputs a y, only when he got the heralding
signal, Alice and Bob can safely discard all events where a
photon got lost in the quantum channel. Note that the detec-
tors can be either out or in the boxes depending on whether
they can be trusted or not. In the figure, they are outside the
black boxes.

+
t(1− t)pηt

4
|a

†
hb

†
h + a†vb

†
v√

2
〉〈a

†
hb

†
h + a†vb

†
v√

2
|.

For large enough t, the entangled component is amplified
in a heralded way, offering the possibility for Alice and
Bob to share a maximally entangled state despite losses.
This promises a considerable advance towards the im-
plementation of DIQKD on meaningful distances. The
heralding signal from the amplifier allows Bob to intro-
duce an input y in his black box only when he shares an
entangled state with Alice. Hence, the overall detection
efficiency required to close the detection loophole does
not depend anymore on the transmission efficiency, but
reduces to the intrinsic detection efficiency of Alice’s and
Bob’s boxes.
The probability to obtain a heralded signal is

PH = (1− t)2 + p(1− t)2(1− ηt) + t(1− t)pηt (4)

which roughly reduces to (1− t)2 for small transmission
efficiency. As can be seen from Eqs. (3) and (4), there is
a tradeoff on the transmission coefficient t of the partial
beamsplitter. The amplification of the entangled com-
ponent favors t ≈ 1, whereas a high success probability
favors t ≈ 0. In order to rule out attacks based on the
detection loophole, it is essential to choose a large trans-
mission coefficient t ≈ 1 to guarantee the distribution
of highly entangled states. The price to pay is a reduc-
tion in the key rate because of the limited success prob-
ability of the qubit amplifier. Note that the problem of
transmission losses cannot be overcome using a standard
quantum relay implemented with two remote stochastic

photon-pair sources and a Bell measurement made with
linear optical elements and photon detectors. Indeed,
without post-selection, a standard quantum relay allows
only Alice and Bob to share a poorly entangled state due
to multi-pair emissions.

Implementation and performance analysis. In prac-
tice, photons get lost not only because of the transmis-
sion losses in the quantum channel but also because of
the imperfect coupling of photons into the optical fibers,
which is characterized by an efficiency ηc. On Bob’s side,
the coupling loss can be counter-balanced by the ampli-
fier, as the transmission losses. However, the amplifier
itself contributes a factor ηc back to the detection effi-
ciency of Bob’s box since the single-photon sources used
in the amplifier must themselves be coupled into fibers.
Hence, the overall detection efficiency required to close
the detection loophole reduces to the product of the cou-
pling efficiency ηc by the detector efficiency ηd, but does
not depend anymore on the transmission efficiency ηt.

We now perform a detailed analysis to assess the per-
formance of our scheme where we consider two possibil-
ities for the single-photon sources used in the amplifier:
either on-demand or heralded sources. Note that the lat-
ter can be realized from a pair-source where the emission
of an individual photon is heralded by the detection of the
twin-photon, as implemented in Ref. [18] from the para-
metric down conversion process. A single-photon source
on-demand could then be obtained by adding a quantum
memory. In the long run, on-demand sources based on
quantum dots embedded in microcavities [16] or single
atoms inside high-finesse cavities [17] are also potential
candidates.
We consider the DIQKD protocol based on the CHSH

inequality analyzed in [4]. Existing security proofs valid
against collective attacks, assume perfect detectors [5, 6].
We show in Appendix I, how to apply them to the case
of imperfect devices and how to compute the correspond-
ing key rate. Moving slightly away from a full device-
independent scenario, we also consider the case where the
end detectors are trusted and can be moved out of the
black boxes. This means that the detectors are well char-
acterized, have a known efficiency, and that the eaves-
dropper cannot tamper with them. In this case, a Bell
violation can be observed independently of the detector
efficiency ηd and any local description is ruled out pro-
vided that the coupling ηc of single-photons into optical
fibers is high enough.

To compute the key rate, we consider a fiber attenua-
tion of 0.2 dB/km, corresponding to telecom wavelength
photons, and a coupling efficiency of ηc = 0.9. The cou-
pling efficiency of single-photons within optical fibers is
being maximized in many laboratories and a coupling of
83% was reported in [18]. We assume that the photon-
sources are excited with a repetition rate of 10 Ghz [19].
We take all detectors to be photon-number resolving de-
tectors with efficiency ηd and we neglect dark counts.
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FIG. 4: Key rate vs distance for DIQKD with imperfect de-
vices (log-log scale). (Red) curves labelled a) correspond to
untrusted detectors of efficiency ηd = 0.95 (seen as part of
the QKD black boxes); (Blue) curves labelled b) correspond
to trusted detectors of efficiency ηd = 0.8 (moved out of the
QKD black boxes). The dotted vertical line represent the
maximal distance above which no secret key can be extracted
in the absence of an amplification process that counterbal-
ances transmission losses. The two lower curves give the key
rate (in bit/min) as a function of the distance for an ampli-
fier based on heralded single-photon sources; the two upper
curves represent the key rate (in bit/s) for an amplifier with
on-demand single-photon sources.

Note that superconducting transition-edge sensor detec-
tors can already resolve telecom-wavelength photons and
have 95% efficiency with negligible noise [20]. Since we
consider realistic sources, e.g. based on parametric down-
conversion to provide high repetition rates, the dominant
errors come from the multi-pair emissions which have to
be made small by controlling the intensity of pumping
lasers, i.e. the parameter p for the entangled pair source
and p′ for the pair-source used to produce heralded single-
photons. For a given distance, we optimized the trans-
mission coefficient t and the pump dependent parameters
p and p′ to maximize the key rate, see Appendix II. The
results of our calculations are presented in Figure 4 for
untrusted detectors of efficiency ηd = 0.95 and for trusted
detectors of efficiency ηd = 0.8.

In the absence of an amplification process, no secret
key can be established beyond 1.4km for untrusted de-
tectors and beyond 3.6km for trusted detectors. On the
other hand, an implementation based on a qubit ampli-
fier with heralded single-photon sources achieves rates
of about 1bit/min on distances of 10-20km and rates of
about 1bit/s on distances of 80-90km with on-demand
single-photon sources. Note that contrarily to the situa-
tion without the amplifier, there is in principle no limi-
tations other than technical ones on these distances and
they can be further extended, provided that one is willing

to lower the key rate.

Finally, note that the physics behind the qubit-
amplification is based on the bosonic character of indis-
tinguishable photons. The temporal, spectral, spacial
and polarization properties of modes produced by the
entangled-pair source and by the single-photon sources
(the modes b and c involved in the Bell measurement,
see Figure 3) thus have to overlap. However, when the
input state is an admixture between a qubit state and an
empty component, as caused by losses, the optical path
length does not require an interferometric control. The
degree of indistinguishability of two photons is measured
through the visibility V of the “Hong-Ou-Mandel” dip
[22]. Reference [23] has reported a visibility V = 0.994,
largely sufficient for the successful implementation of our
scheme (see analysis in Supplementary Informations II).

Conclusion. We have presented a simple qubit ampli-
fication scheme suited to the distribution of entanglement
over large distances in a heralded way. This scheme could
find applications, e.g., in traditional QKD [21] or in the
context of quantum repeaters [12]. Here, we show how to
use it in DIQKD to overcome the problem of transmission
losses.

An implementation of our proposal with heralded
single-photon sources represent an experiment feasible
with today’s best technology that demonstrates DIQKD
over 10-20 km of standard telecom fibers. The experi-
ment promises to be difficult, though every single step of
the proposed experiment has already been demonstrated.
We see our proposal as a great challenge for the quantum
communication community.
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APPENDIX I: DIQKD WITH PHOTON LOSSES

Existing security proofs of DIQKD assume devices that
always produce a conclusive answer, e.g., a ±1 result [1–
3]. Here we show how to apply them to the case of imper-
fect devices (including the transmission losses, the detec-
tor inefficiencies and the imperfect coupling of individual
photons within optical fibers) and how to compute the
corresponding key rate. We consider the DIQKD proto-
col based on the CHSH inequality introduced in [4] and
first remind the known results in the case of lossless de-
vices.

Lossless devices

In the “2+3 bases” protocol introduced in [4], Alice has
three inputs x = {x0, x1, x2} and Bob two inputs y =
{y1, y2}. All outputs a = {a0, a1, a2} and b = {b1, b2}
take binary values a0, a1, a2, b1, b2 ∈ {−1,+1}. Most of
the time, Alice and Bob use the inputs x = x0 and y =
y1, and the raw key is extracted from the corresponding
outputs a0 and b1. The amount of correlations between
Alice’s and Bob’s symbols is quantified by the quantum
bit error rate (QBER) defined as

Q = P (a0 6= b1) . (5)

This parameter is related to the amount of classical com-
munication needed for error correction.

The inputs x1, x2, y1, y2 are used on a subset of the par-
ticles to bound the eavesdropper’s information through

the estimation of the CHSH quantity

S = 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 , (6)

where the correlator 〈aibj〉 is defined by P (ai = bj) −
P (ai 6= bj). The CHSH quantity bounds eavesdropper’s
information on the raw key and thus governs the pri-
vacy amplification process. Under collective attacks [1–
3], eavesdropper’s information is bounded by

IE(S) ≤ χ(S) = h

(

1 +
√

(S/2)2 − 1

2

)

, (7)

where h(x) = −x log2(x)−(1−x) log2(1−x) is the binary
entropy.
The achievable key rate K after error-correction and

privacy amplification is then given by

K ≥ 1− h(Q)− IE(S) (8)

Imperfect devices

If the devices of Alice and Bob have non-unit detec-
tion efficiency, the outputs a and b can take three val-
ues {i,±1} where i denotes an inconclusive result (the
absence of a click). Let µcc denote the observed proba-
bility of obtaining a conclusive result (±1) on each side;
µci of obtaining a conclusive result on Alice’s side and
an inconclusive one on Bob’s side; and µic of obtaining
an inconclusive result on Alice’s side and a conclusive
one on Bob’s side. Note that we assume for simplic-
ity throughout the paper that the devices are such that
µcc(xy) = µcc, µci(xy) = µci, and µic(xy) = µic for all
inputs x, y, i.e. the observed probabilities for the devices
to produce a conclusive result are the same for all inputs.
Our analysis, however, can be generalized in a straight-
forward way to more general cases.
We assume that the QBER and the CHSH value are

computed as in Eqs. (5) and (6) on the set of con-
clusive results ±1 using the renormalized probabilities
P (ai, bj)/µcc.
We consider the following possible strategies for the

eavesdropper, Eve. Either she uses some quantum strat-
egy q that will produce two conclusive results on each
side with certainty. This arises with probability Pq and
contributes by an amount Sq to the CHSH violation. In
this case, Eve’s information is bounded by IE(q) ≤ χ(Sq)
as determined in [2, 3]. Or she uses a mixture g of “guess-
ing” strategies where on each run at least one of the
inputs x of Alice or y of Bob is assigned an inconclu-
sive results. In this case, Eve may have full information,
IE(g) ≤ 1, and the CHSH violation (given that two con-
clusive results have been obtained on each side) is Sg ≤ 4.
Let Pg be the proportion of events that arises from

a mixture of guessing strategies and where both Alice

http://arxiv.org/abs/0906.2699
http://arxiv.org/abs/0809.0326
http://arxiv.org/abs/0812.4301
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and Bob obtain a conclusive result. We thus have µcc =
Pq + Pg. The observed CHSH violation is given by

S =
PqSq + PgSg

Pq + Pg

≤ PqSq + 4Pg

µcc

(9)

and thus

Sq ≥ µccS − 4Pg

µcc − Pg

. (10)

The information of Eve is bounded by

IE =
PqIE(q) + PgIE(g)

Pq + Pg

≤ Pqχ(Sq) + Pg

µcc

≤
[

(µcc − Pg)χ(
µccS − 4Pg

µcc − Pg

) + Pg

]

/µcc , (11)

where we have used (10) to obtain the last inequality.
Now note that

Pg ≤ µci + µic (12)

since every guessing strategy that contributes to µcc con-
tributes at least with the same weight to either µci or
µic (since the guessing strategies assign an inconclusive
results to at least one of the inputs x of Alice or y of
Bob). As the bound (11) is a monotonically increasing
function of Pg, it is necessarily smaller than or equal to
the solution with Pg = µci + µic. Writing

µ =
µci + µic

µcc

(13)

we finally find that Eve’s information is bounded by

IE(S, µ) ≤ (1− µ)χ

(

S − 4µ

1− µ

)

+ µ (14)

which only depends on the observable quantities
S, µcc, µci, µic. Putting all together, the key rate per con-
clusive event is given by [1−h(Q)−IE(S, µ)] and the key
rate per use of the device is then

K ≥ µcc [1− h(Q)− IE(S, µ)] . (15)

As an illustration, consider the case where µcc = η2,
µci = µic = η(1 − η), where η is the detection efficiency
of each box. The bound (14) then becomes

I ≤
[

(3η − 2)χ

(

ηS − 8(1 + η)

3η − 2

)

+ 2(1− η)

]

/η . (16)

For the perfect singlet correlations satisfying Q = 0, S =
2
√
2, the key rate is positive as long as η > 2/(1+

√
2) ≃

0.8284 which corresponds to the threshold required to
close the detection loophole with the CHSH inequality.

Imperfect devices with trusted detectors

If the detectors can be trusted, we can move them out
of boxes. Instead of assuming that the boxes have clas-
sical outputs ±1, we assume that they have two output
channels, a “+1” channel and a “ − 1” channel, from
each of which N photons can be emitted. These photons
may then produce clicks on trusted photon-number re-
solving detectors characterized by a known efficiency, ηd.
The eavesdropper can control how many photons out-
put the boxes, but he cannot control whether they will
be detected or not by the trusted detectors. The QKD
black boxes are thus now characterized by the proba-
bilities γjk,lm that j photons are emitted in Alice’s +1
channel, k in Alice’s −1 channel, l in Bob’s +1 channel,
and m in Bob’s −1 channel.

As a starting point, let us assume that Alice and Bob
have photon-number resolving detectors with unit effi-
ciency, ηd = 1. In this case, Alice and Bob observe
(jk, lm) clicks in their detectors only if the boxes sent
(jk, lm) photons, i.e., Alice and Bob have direct infor-
mation about the outcomes (jk, lm) produced by the de-
vices. We define the set of conclusive events as those
where a unique photon is detected on each side. For in-
stance, if Alice chooses the input x0 and finds one photon
in the +1 channel and no photon in the −1 channel, she
associates to this event the output a0 = +1. If there is
no photon in the +1 channel and one in the −1 chan-
nel, this corresponds to a0 = −1. All other possibilities,
for instance no photons outputted by any channels or 2
photons outputted by one of the channels, are consid-
ered as inconclusive events, a0 = i. As before the raw
key and the parameters Q and S are defined on the sub-
set of conclusive events. The situation is then formally
equivalent to the one discussed in the previous section
where the box can either produce conclusive or inconclu-
sive events, which are unambiguously recognized as such
by Alice and Bob. Eve’s information is thus bounded by
the expression (14) for IE(S, µ) and the key rate is given
by (15).

If, on the other hand, Alice and Bob have photon-
number resolving detectors with a finite efficiency ηd < 1,
they can no longer determine unambiguously the out-
comes (jk, lm) generated by the devices. For instance, if
Alice obtains one click in the +1 channel, this could either
correspond to the event j = 1 where the unique produced
photon has been detected or to an event j = 2 where one
of generated photons did not give a click. The probabil-
ities δjk,lm that Alice and Bob obtain (jk, lm) clicks can
be easily computed from the probabilities γj′k′,l′m′ that
the boxes emit (j′k′, l′m′) photons using the fact that
the probability to detect n photons when n′ have been

produces in a given channel is pnn′ =
(

n′

n

)

ηnd (1−ηd)n
′−n.

As before, we define the set of conclusive events as
those where only one photon is detected and we denote
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by µcc the probability of finding two conclusive results
on each side. We also introduce the notation

µ̃cc = γ10,10 + γ10,01 + γ01,10 + γ01,01 (17)

for the probability that the devices produce a single pho-
ton on each side. This quantity is identical to µcc when
the detectors have unit efficiency ηd = 1. Similarly, we
introduce the notation

µ̃ci =
∑

j+k 6=1

γ10,jk + γ01,jk (18)

for the probability that the devices output a single pho-
ton on Alice’s side and strictly more or strictly less than
one photon on Bob’s side, and define analogously µ̃ic.
Again, these quantities reduce to µci and µic, respec-
tively, when the detectors have unit efficiency, ηd = 1.
A fraction η2dµ̃cc/µcc of the raw key originates from

events where a single photon has been produced by the
boxes and has successfully been detected by Alice’s and
Bob’s detector. This part of the raw key corresponds
to the ideal situation discussed above when ηd = 1.
The information that Eve has on it, is thus bounded
by IE(S̃, µ̃), where S̃ is the CHSH violation conditional
to the emission of one photon from each boxes and
µ̃ = (µ̃ci + µ̃ic)/µ̃cc is defined through the relations (17)
and (18) [10]. Note that even though Alice and Bob
cannot know for each individual run exactly how many
photons where sent by the boxes, i.e., which outcome
(jk, lm) was precisely produced, they can nevertheless
determine the probabilities γ = {γjk,lm} characterizing
the output of the devices from their observed detection
statistics δ = {δjk,lm}. This information is sufficient to

determine in turn the parameters S̃ and µ̃ above and thus
to compute IE(S̃, µ̃).
The remaining fraction 1 − η2dµ̃cc/µcc of the raw key

originates from events where more than one photon are
produced at each side, but only one was detected. In this
case, we conservatively give to Eve all information about
the outcomes. In total, Eve information is thus equal to

IE(δ) ≤
η2dµ̃cc

µcc

IE(S̃, µ̃) +

(

1− η2dµ̃cc

µcc

)

(19)

which can be determined solely from the observed statis-
tics δ. Finally, taking into account the probability with
which Alice and Bob observe a conclusive results, we find
that the key rate is given by

K ≥ µcc [1− h(Q)− IE(δ)] . (20)

APPENDIX II: KEY RATE WITH A QUBIT

AMPLIFIER IMPLEMENTATION

Here, we detail the calculation of the achievable key
rate when DIQKD is implemented with a heralded qubit
amplifier.

Single-photon sources

The key rates have been estimated by considering var-
ious resources. In particular, the single-photon sources
required within the qubit amplifier can be either heralded
or on-demand.

Let us first focus on the implementation of a heralded
single-photon source from a pair source based on the
parametric down convertion (PDC) process. The state
resulting from the PDC process is well approximated by

|00〉〈00|+ p′|11〉〈11|+ p′2|22〉〈22|+ o(p′3). (21)

p′ is the probability for the successful emission of one
pair. The first (second) Fock state gives the number of
photons in the signal (idler) mode. The detection of one
member of a pair can then be used to herald the pres-
ence of the other. This provides a heralded single-photon
source as required in the proposed qubit-amplifier. The
probability for a detector that is photon number resolv-
ing, but that has non-unit efficiency ηd, to detect a single
photon in a predetermined mode, given that there are n
photons present in that mode, is nηd(1− ηd)

n−1. Hence,
the state conditional on the detection of a single-photon
is

|1〉〈1|+ 2p′(1− ηd)|2〉〈2|+ o(p′2) (22)

and the success probability for the heralding signal is
PS = p′ηd.

Our proposal requires two heralded photons with
orthogonal polarizations. In what follows, we focus
on an implementation based on two separate crystals.
Note that two heralded photons could be produced by a
single non-linear crystal by selecting only the emissions
of double pairs of photons. In other terms, the detection
of two photons with orthogonal polarization in e.g. the
“idler” mode heralds the production of the two desired
photons in the signal mode.

A single-photon source on-demand is more difficult to
implement in practice but it provides a higher key rate
than the one from a heralded single-photon source. For
the first demonstration experiments, the most promis-
ing approach may be the use of heralded single-photon
source based on parametric down-conversion, as previ-
ously described, combined with a quantum memory for
light. In the long run, sources based on quantum dots [5]
embedded in microcavities [6] are likely to offer higher
repetition rates. Single atoms inside high-finesse cavi-
ties [7] are also potential candidates. In our paper, the
state generated by on-demand sources is assumed to be
described by the Fock state |1〉 and to be produced with
the probability PS = 1.
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State conditional to a successful amplification

The evaluation of the achievable ket rate is based on
the knowledge of the state that is shared by Alice and
by Bob. In the ideal case where we take into account the
transmission losses only, the state resulting from a suc-
cessful amplification is given by the equation (2) of the
main text. However, to properly assess the performance
of our scheme, we take into account other imperfections
in what follows. (Note that these imperfections are rep-
resented schematically in Figure 5.)
The starting point is the initial state which is the prod-

uct of three states. The first one is associated to the
stochastic emission of entangled photon-pairs at Alice’s
location where we now explicitly write the O(p2) terms
corresponding to double-pair emissions. The two others
are associated to the single-photon emissions within the
qubit amplifier, one horizontally polarized and one verti-
cally polarized
[

|1h〉〈1h|+ 2p′(1− ηd)|2h〉〈2h|
]

⊗
[

|0〉〈0|+ p| 1√
2

(

a†hb
†
h + a†vb

†
v

)

〉〈 1√
2

(

a†hb
†
h + a†vb

†
v

)

|+

3

4
p2| 1

2
√
3

(

a†hb
†
h + a†vb

†
v

)2

〉〈 1

2
√
3

(

a†hb
†
h + a†vb

†
v

)2

|
]

⊗
[

|1v〉〈1v|+ 2p′(1− ηd)|2v〉〈2v|
]

.

(If the single-photons are produced on-demand, the ini-
tial state is similar but with p′ = 0.) The modes pro-
duced by the entangled-pair source, labelled a and b, are
each coupled into optical fibers with efficiency ηc. Al-
ice performs measurement on the mode a. The mode b
is sent to Bob’s location using an optical fiber with the
transmission efficiency ηt. The photons emitted by the
heralded sources located within the qubit amplifier, are
coupled into optical fibers with efficiency ηc. Then, they
are sent through a partial beamsplitter with transmis-
sion t to form an entangled state involving the modes ch,
cv, and the modes later on detected by Bob. The modes
b and c are combined on a 50/50 beamsplitter to per-
form a partial Bell state measurement based on photon
detectors with non-unit efficiency ηd.

From a perturbative calculation, i.e. keeping only the
terms at the order o(p2), o(p′2) and o(pp′), we derived
explicitly the state ρ resulting from a successful Bell mea-
surement [11] . This mixed state has many components

ρ = P̃00 ρ00 + P̃01 ρ01 + P̃10 ρ10

+P̃11 ρ11 + P̃02 ρ02 + P̃20 ρ20 (23)

+P̃12 ρ12 + P̃21 ρ21 + P̃22 ρ22

corresponding to different cases where Alice and Bob get
each either zero, one or two photons. By summing the
weights P̃ij of these components, one obtained the suc-
cess probability for the heralded qubit amplification PH .

b

a Alice

X

Bob Y

h|v
h
|v

|0〉

a b

b

ηc ηc

ηd

ηd

ηt

ηd

c
|1v〉

|1h〉

ηd

ηd

ηc

ηc

ηd

FIG. 5: Proposed setup for the implementation of device-
independent quantum key distribution based on heralded
qubit amplification. Here, the photon sources are based on the
parametric down conversion process. The entangled-photon
source is located close to Alice’s location. Two sources of
heralded single-photons are located within the qubit ampli-
fier at Bob’s location. The photons are coupled into optical
fibers with efficiency ηc. The detectors have non-unit efficien-
cies given by ηd. The efficiency of the transmission line is
labelled ηt.

The renormalized weights Pij = P̃ij/PH correspond to
the probabilities that Alice gets i photons and that Bob
gets j photons exactly, knowing that the amplification
succeeded.

Key rates for imperfect devices

To compute the key rate, we consider a particular im-
plementation of the “2+3 bases” protocol [4] where Alice
chooses to apply one out of three possible measurements
x0 = σz, x1 = (σz + σx)/

√
2, x2 = (σz − σx)/

√
2 and

where Bob chooses one measurement out of two, either
y1 = σz or y2 = σx. This specific choice maximizes the
CHSH polynomial when Alice and Bob share a maximally
entangled state.

Untrusted detectors

We first consider the case where Alice’s and Bob’s de-
tectors are untrusted and are thus a part of the QKD
black-boxes. We follow the analysis reported in sub-
section to obtain the secret key rate. We remind
that a conclusive event corresponds to a single detec-
tor click. The probabilities µcc, µci and µic to ob-
tain conclusive-conclusive, conclusive-inconclusive, and
inconclusive-conclusive events, respectively, are functions
of the probabilities Pij to have i photons on Alice’s side
and j photon on Bob’s side, defined by

µcc = η2dP11 + 2(1− ηd)η
2
d(P21 + P12)

+ 4η2d(1− ηd)
2P22, (24a)
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µci = ηdP10 + ηd(1− ηd)P11 + 2ηd(1− ηd)
2P21

+
(

η3d + ηd (1− ηd)
2
)

P12 + 2ηd(1− ηd)P20

+
(

2η3d(1− ηd) + 2ηd(1− ηd)
3
)

P22 (24b)

µic = ηdP01 + ηd(1− ηd)P11 + 2ηd(1− ηd)
2P12

+
(

η3d + ηd (1− ηd)
2
)

P21 + 2ηd(1− ηd)P02

+
(

2η3d(1− ηd) + 2ηd(1− ηd)
3
)

P22. (24c)

The QBER Q and the CHSH value S are given by

Q = η2dQ11 + 2(1− ηd)η
2
d(Q21 +Q12) + 4η2d(1− ηd)

2Q22

(25)
and

S = η2dS11+2(1−ηd)η2d(S21+S12)+4η2d(1−ηd)2S22 (26)

where Qij and Sij represent the QBER and the CHSH
values computed on the state Pijρij/µcc for the measure-
ment settings x and y specified above. The key rate per
conclusive event, given by [1−h(Q)−IE(S, µ)] is obtained
from Eve’s information IE(S, µ) which is calculated from
Eq. (14). Taking the success probability for the single-
photon emission PS and the success probability for the
qubit amplification PH into account, we deduce the key
rate per second

K = r × P 2
SPH × (27)

µcc

(

1− h(Q)−
(

(1− µ)χ

(

S − 4µ

1− µ

)

+ µ

))

where r is the repetition rate of sources. Let us remind
that when the qubit amplifier uses on-demand single-
photon sources, PS = 1.

Trusted detectors

We now consider the case where the detectors are
trusted and moved out of the boxes. This corresponds
to the analysis developed in subsection . The raw key
is formed as before on the set of conclusive events cor-
responding to a single detector click on each side. The
parameter µcc and the QBER Q are thus given by (24a)
and (25) as before. However, the CHSH value S̃ is now
calculated on the state ρ11 corresponding to a single pho-
ton on each side. Finally, µ̃ is defined from the following
parameters

µ̃cc = P11,

µ̃ci = P10 + P12,

µ̃ic = P01 + P21.

The key rate per conclusive event is then given by [1 −
h(Q)−IE(δ)] where Eve’s information IE(δ) is calculated
from Eq. (19), and the key rate per second is given by

K = rP 2
SPHµcc (1− h(Q)− IE(δ))) (28)

where r is the repetition rate of sources, PS is the suc-
cess probability for the single-photon emission and PH is
the success probability for the qubit amplification. Let
us remind again that when the qubit amplifier uses on-
demand sources, PS = 1.

Requirements on the overall detection efficiency

Let us roughly estimate the overall detection effi-
ciency which is required to rule out attacks based on
the detection loophole. If Bob’s box contains a qubit
amplifier and if the sources are weakly excited such
that the double pair emissions can be neglected, we
have P02 ≈ P20 ≈ P12 ≈ P21 ≈ P22 ≈ 0. Further-
more, if the reflectivity of the beam-splitter located
within the amplifier is weak enough, the conditional
probability to distribute one photon at a given loca-
tion is mainly determined by the coupling of single
photons within an optical fiber ηc, i.e. P11 = η2c and
P10 + P01 = 2ηc(1 − ηc). Note that in this case, the
state corresponding to the event where one photon is
generated at each side ρ11 is a pure maximally entangled
state ρ11 = φ+ = 1/

√
2(ahbh + avbv).

First, consider the case where the detectors are
untrusted. The QBER, calculated from Eq. (25),
reduces to zero since the correlations observed from a
maximally entangled state are perfect. Eve’s information
IE(S, µ) is obtained from Eq. (14) where the CHSH
value, calculated from Eq. (26), is given by S = 2

√
2

and where the parameter µ (see Eq. (13)) is defined
as µ = 2(1 − ηdηc)/(ηdηc). One concludes that the
difference of mutual informations 1 − h(Q) − IE(S, µ)
is positive as long as the argument of χ is greater than
2 (see Eq. (14)), i.e. if ηdηc ≥ 2/(1 +

√
2) ≃ 0.8284.

Thus, the proposed protocol requires a minimum value
for the product of the detector efficiency by the coupling
efficiency (ηdηc)

min = 0.8284 which corresponds to the
threshold required to close the detection loophole with
the CHSH inequality. If this is satisfied, the distribution
of a quantum key is made possible, independently of
the proper functioning of the devices, for arbitrary
long distances. Note that without qubit amplifier,
ηdηc has to be replaced by the product

√
ηtηdηc where

ηt is the transmission efficiency of the optical fiber
connecting Alice’s and Bob’s location. This means that
for ηd = 0.95 and ηc = 0.9, DIQKD is possible only for
distances smaller than 1.4 km.

In case where the detectors can be trusted, the
QBER is unchanged and hold to zero but eavesdropper’s
information IE(δ) has to be calculated from Eq. (19)
which reduces to IE(S̃, µ̃) since µcc = η2dµ̃cc. We find

S̃ = 2
√
2 and µ̃ = 2(1 − ηc)/ηc so that any attacks

based on the detection loophole is ruled out as long as
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the coupling efficiency is greater than ηmin
c = 0.8284

independently of the detection efficiency. We emphasize
that without qubit amplifier, ηc has to be replaced by
the product

√
ηtηc and for ηc = 0.9, Alice and Bob

cannot exchange a secure key if the distance separating
them is larger than 3.6 km.

Performance of the proposed protocol

Finally, let us detail how the achievable key rate is
evaluated, first by focusing on the case where the de-
tectors are untrusted. We fix the detector efficiency ηd
and the coupling efficiency ηc. For a given distance, we
optimize the success probability for the entangled-pair
emission p and for the single-photon emission p′, as well
as the transmission of beam splitter located within the
qubit amplifier t in order to maximize the key rate (27).
Assume for concreteness ηc = 0.9 and ηd = 0.95. For

10 km, we found that the optimal success probability for
entangled-pair emission and for single-photon emission
are respectively p = 2 × 10−3 and p′ = 3 × 10−3 and
that the optimal transmission of the beam splitter lo-
cated within the qubit amplifier is t ≈ 0.98. If the sources
are excited with a repetition rate of 10 Ghz, this leads to
a key rate of roughly 1 bit/min. If the required single-
photons can be produced on-demand, one has PS = 1
and DIQKD can be performed over 90 km with a key
rate of 0.1 bit/s.
In case where the detectors are trusted, one has to

maximize the formula (28). With ηc = 0.9, ηd = 0.8
and for 10 km, the optimal values are p = 7 × 10−3

and p′ = 4 × 10−3 and t ≈ 0.97. For a repetition
rate of 10 Ghz, the achievable key rate is roughly of 7
bits/min. If the single-photons are on-demand, a secret
key can be transmitted over 90 km with a rate of 2 bits/s.

Photon indistinguishability

To herald the remote distribution of entanglement us-
ing the qubit amplifier, the photons involved in the Bell
measurement have to be indistinguishable. The degree of
indistinguishability of two photons can be quantified by
their mode overlap which corresponds experimentally to
the visibility of the “Hong-Ou-Mandel” (HOM) dip [8].
We have estimated with a simple model based on discrete
modes that partial overlaps lead to a phase noise on the
heralded entanglement. Alice and Bob do not share the
state φ+ anymore but instead a state which has an ad-
mixture of φ−, i.e. F |φ+〉〈φ+| + (1 − F )|φ−〉〈φ−| where
F = (1 + V 3)/2. V is the HOM dip visibility which is
supposed to be the same for the modes {b, ch}, {b, cv}, or
{ch, cv}. This phase noise reduces potentially the CHSH
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FIG. 6: Key rate vs distance for DIQKD (log-log scale)
when the mode overlap is imperfect (V=0.994). (Red) curves
labelled a) correspond to untrusted detectors of efficiency
ηd = 0.95; (Blue) curves labelled b) correspond to trusted
detectors of efficiency ηd = 0.8. The dotted vertical line rep-
resent the maximal distance above which no secret key can be
extracted without qubit amplification. The two lower curves
give the key rate (in bit/min) as a function of the distance for
an amplifier based on heralded single-photon sources; the two
upper curves represent the key rate (in bit/s) for an amplifier
with on-demand single-photon sources.

violation and thus the key rate. In Figure 6, we present
the achievable key rate as a function of the distance for
V = 0.994 corresponding to the visibility reported in
Ref. [9]. One sees in comparison with the result of the
Figure 4 (main text) that the key rate is divided by a fac-
tor of 3.5 in the case of untrusted detectors with heralded
sources but is essentially unchanged in the case of trusted
detectors with on-demand sources. In conclusion, small
imperfections in the mode overlap do not dramatically
change the performance of our protocol.

Remarks on the quantum relays for DIQKD

Note that a standard quantum relay made with
SPDC sources is not an alternative solution for the
implementation of device independent quantum key
distribution. The central problem with a quantum relay
comes from the multi-pair emission and this problem
cannot be circumvented only by reducing the power of
the pump injected in the nonlinear crystal. To mitigate
the multi-pair problem in a standard quantum relay, it
is necessary to post-select either the events where there
is one detection at both ends of the chain (at each Bob’s
and Alice’s locations) or the events where a predeter-
mined detector located at one end of the chain (either at
Alice’s or Bob’s location) clicks provided that the closest
source is very weakly excited. Such a postselection is fine
for standard QKD. However, postselections of that kind
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is incompatible with DIQKD since they open inevitably
the detection loophole. Our proposal fundamentally
differs from a conventional quantum relay. It allows
to distribute high-quality entanglement provided that
the two photons required within our qubit amplifier are
produced in a heralded way.x

[1] A. Acin et al., Device-independent security of quantum
cryptography against collective attacks. Phys. Rev. Lett.
98, 230501 (2007).

[2] S. Pironio et al., Device-independent quantum key distri-
bution secure against collective attacks. New J. Physics

11, 045021 (2009).
[3] M. McKague, Device independent quantum key distri-

bution secure against coherent attacks with memoryless
measurement devices. New J. Physics 11, 103037 (2009)
; M. McKague, arXiv:1006.2352.

[4] A. Acin, S. Massar, S. Pironio, Efficient quantum key
distribution secure against no-signalling eavesdroppers,
New J. Phys. 8, 126 (2006).

[5] P. Michler et al., Science 290, 2282 (2000); C. Santori et
al., Phys. Rev. Lett. 86, 1502 (2001).

[6] E. Moreau et al., Appl. Phys. Lett. 79, 2865 (2001); M.
Pelton et al., Phys. Rev. Lett. 89, 233602 (2002).

[7] J.C. McKeever et al., Science 303, 1992 (2004) ; M. Hi-
jlkema et al., Nature Physics 3, 253 (2007).

[8] C.K. Hong, Z.Y. Ou, and L. Mandel, Measurement of
subpicosecond time intervals between two photons by in-
terference, Phys. Rev. Lett. 59, 2044 (1987).

[9] T.B. Pittman and J.D. Franson, Violation of Bell’s in-
equality with photons from independent sources, Phys.
Rev. Lett. 90, 240401 (2003).

[10] Indeed, I(S, µ) is an intrinsic property of the devices; it
represents an information theoretic bound on the infor-
mation of Eve when the boxes output a single photon.

[11] Note that we checked that the optimal values for p and p′

are such that the terms that we leave at the order o(p3),
o(p′3), o(p2p′) and o(pp′2) are negligible.

http://arxiv.org/abs/1006.2352

	 References
	 Appendix I: DIQKD with photon losses
	 Lossless devices
	 Imperfect devices
	 Imperfect devices with trusted detectors

	 Appendix II: Key rate with a qubit amplifier implementation
	 Single-photon sources
	 State conditional to a successful amplification
	 Key rates for imperfect devices
	 Untrusted detectors
	 Trusted detectors

	 Requirements on the overall detection efficiency
	 Performance of the proposed protocol
	 Photon indistinguishability
	 Remarks on the quantum relays for DIQKD

	 References

