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Abstract. We describe new benchmark settings for the rigorous evaluation of dif-
ferent methods for fluid-structure interaction problems. The configurations consist
of laminar incompressible channel flow around an elastic object which results in
self-induced oscillations of the structure. Moreover, characteristic flow quantities
and corresponding plots are provided for a quantitative comparison.

1 Introduction

The main purpose of this benchmark proposal is to describe specific configu-
rations which shall help in future to test and to compare different numerical
methods and code implementations for the fluid-structure interaction (FSI)
problem. In particular, the various coupling mechanisms, ranging from parti-
tioned, weakly coupled approaches to fully coupled, monolithic schemes are of
high interest. Moreover, it shall be possible to examine the quality of different
discretization schemes (FEM, FV, FD, LBM, resp., beam, shell, volume ele-
ments), and the robustness and numerical efficiency of the integrated solver
components shall be a further aspect. This new benchmark is based on the
older successful flow around cylinder setting developed in [3] for incompress-
ible laminar flow and on the setup in [4]. Similar to these older configurations
we consider the fluid to be incompressible and in the laminar regime. The
structure is allowed to be compressible, and the deformations of the struc-
ture should be significant. The overall setup of the interaction problem is
such that the solid object with elastic part is submerged in a channel flow.
Then, self induced oscillations in the fluid and the deformable part of the
structure are obtained so that characteristic physical quantities and plots for
the time-dependent results can be provided.
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2 Definitions

We consider the flow of an incompressible Newtonian fluid interacting
with an elastic solid. We denote by Ωf

t the domain occupied by the fluid
and Ωs

t by the solid at the time t ∈ [0, T ]. Let Γ 0
t = Ω̄f

t ∩ Ω̄s
t be the part of

the boundary where the elastic solid interacts with the fluid.

2.1 Fluid properties

The fluid is considered to be Newtonian, incompressible and its state is
described by the velocity and pressure fields vf , pf . The balance equations
are

�f ∂vf

∂t
+ �f (∇vf )vf = div σf

div vf = 0
in Ωf

t . (1)

The material constitutive equation is

σf = −pfI + �fνf (∇vf + ∇vf T
). (2)

The constant density of the fluid is �f and the viscosity is denoted by νf .
The Reynolds number is defined by Re = 2rV̄

νf , with the mean velocity V̄ =
2
3v(0, H

2 , t), r radius of the cylinder and H height of the channel (see Fig. 1).

2.2 Structure properties

The structure is assumed to be elastic and compressible. Its configuration
is described by the displacement us, with velocity field vs = ∂us

∂t . The balance
equations are

�s ∂vs

∂t
+ �s(∇vs)vs = div(σs) + �sg in Ωs

t . (3)

Written in the more common Lagrangian description, i.e. with respect to
some fixed reference (initial) state Ωs, we have

�s ∂2us

∂t2
= div(JσsF−T) + �sg in Ωs (4)

where F = I + ∇us is the deformation gradient tensor. For further details
see for example [1].

The material is specified by giving the Cauchy stress tensor σs (the 2nd
Piola-Kirchhoff stress tensor is then given by Ss = JF−1σsF−T ) by the
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following constitutive law for the St. Venant-Kirchhoff material (E =
1
2 (F TF − I))

σs =
1
J

F (λs(tr E)I + 2µsE)F T (5)

Ss = λs(trE)I + 2µsE (6)

The density of the structure in the undeformed configuration is �s. The
elasticity of the material is characterized by the Poisson ratio νs (νs < 1

2
for a compressible structure) and by the Young modulus E. The alternative
characterization is described by the Lamé coefficients λs and µs (the shear
modulus):

νs =
λs

2(λs + µs)
E =

µs(3λs + 2µs)
(λs + µs)

(7)

µs =
E

2(1 + νs)
λs =

νsE

(1 + νs)(1 − 2νs)
(8)

2.3 Interaction conditions

The boundary conditions on the fluid solid interface are assumed to be

σfn = σsn

vf = vs
on Γ 0

t , (9)

where n is a unit normal vector to the interface Γ 0
t . This implies the no-slip

condition for the flow, and that the forces on the interface are in balance.

2.4 Domain definition

The domain is based on the 2D version of the well-known CFD benchmark in
[3] and shown here in Figure 1. By omitting the elastic bar behind the cylinder
one can exactly recover the setup of the flow around cylinder configuration
which allows for validation of the flow part by comparing the results with the
older flow benchmark.

– The domain dimensions are: length L = 2.5, height H = 0.41.
– The circle center is positioned at C = (0.2, 0.2) (measured from the left

bottom corner of the channel) and the radius is r = 0.05.
– The elastic structure bar has length l = 0.35 and height h = 0.02, the

right bottom corner is positioned at (0.6, 0.19), and the left end is fully
attached to the fixed cylinder.

– The control points are A(t), fixed with the structure with A(0) = (0.6, 0.2),
and B = (0.15, 0.2).

The setting is intentionally non-symmetric (see [3]) to prevent the dependence
of the onset of any possible oscillation on the precision of the computation.
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Fig. 1. Computational domain
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Fig. 2. Detail of the structure part

2.5 Boundary conditions

– A parabolic velocity profile is prescribed at the left channel inflow

vf (0, y) = 1.5Ū
y(H − y)(

H
2

)2 = 1.5Ū
4.0

0.1681
y(0.41 − y), (10)

such that the mean inflow velocity is Ū and the maximum of the inflow
velocity profile is 1.5Ū .

– The outflow condition can be chosen by the user, for example stress free
or do nothing conditions. The outflow condition effectively prescribes
some reference value for the pressure variable p. While this value could
be arbitrarily set in the incompressible case, in the case of compressible
structure this will have influence on the stress and consequently the de-
formation of the solid. In this proposal, we set the reference pressure at
the outflow to have zero mean value.

– The no-slip condition is prescribed for the fluid on the other boundary
parts. i.e. top and bottom wall, circle and fluid-structure interface Γ 0

t .

2.6 Initial conditions

Suggested starting procedure for the non-steady tests is to use a smooth
increase of the velocity profile in time as

vf (t, 0, y) =

{
vf (0, y)1−cos( π

2 t)

2 if t < 2.0
vf (0, y) otherwise

(11)

where vf (0, y) is the velocity profile given in (10).
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geometry parameters value [m]

channel length L 2.5
channel width H 0.41
cylinder center position C (0.2, 0.2)
cylinder radius r 0.05
elastic structure length l 0.35
elastic structure thickness h 0.02
reference point (at t = 0) A (0.6, 0.2)
reference point B (0.2, 0.2)

Table 1. Overview of the geometry parameters

2.7 Material parameters

material �s [ kg
m3 ] νs E [106 kg

ms2
] µs [106 kg

ms2
]

polybutadiene 910 0.50 1.6 0.53
polyurethane 1200 0.50 25 8.3
polypropylene 1100 0.42 900 317
PVC 1400 0.42 1500 528
steel 7800 0.29 210000 81400
cork 180 0.25 32 12.8

material �f [ kg
m3 ] νf [10−6 m2

s
] µf [10−3 kg

ms
]

air 1.23 0.015 0.018
aceton 790 0.405 0.32
ethyl alcohol 790 1.4 1.1
oil, vegetable 920 76.1 70
water 1000 1.14 1.14
blood 1035 3 – 4 3 – 4
glycerine 1260 1127 1420
honey 1420 7042 10000
mercury 13594 0.0114 1.55

Table 2. Overview of some solid and fluid material parameters (densities �f , �s,
Poisson ratio νs, Young modulus E, shear modulus µs, dynamic viscosity µf and
kinematic viscosity νf )

An overview of certain material properties for some relevant fluids and
elastic materials is shown in the Table 2. The choice of the parameters for
the benchmark is guided by several requirements:

First, we would like the flow to be in the laminar regime, which implies
“small” Reynolds numbers. On the other hand, the flow should be capable of
deforming the elastic structure. A typical fluid candidate for such experiments
is glycerine.
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parameter
polybutadiene
& glycerine

polypropylene
& glycerine

�s [103 kg
m3 ] 0.91 1.1

νs 0.5 0.42

µs [106 kg
ms2

] 0.53 317

�f [103 kg
m3 ] 1.26 1.26

νf [10−3 m2

s
] 1.13 1.13

Table 3. Proposed material combination

In order not to introduce additional numerical complications connected
with high aspect ratios in the geometry, the deformable structure has a cer-
tain thickness which requires that the stiffness of the material should be
low enough to allow significant deformations. Certain rubber-like materials
fit into such a setting, namely polybutadiene (for a future incompressible
configuration) and polypropylene.

In Table 3 the material parameters are presented for 2 combinations of
glycerine and selected rubber-like material.

3 Quantities for comparison

According to our preliminary calculations, self induced periodic oscillations
develop in the flow and structure. The comparison will be done for fully
developed flow, and particularly for one full period of the oscillation with
respect to the position of the point A(t). The suggested quantities of interest
are:

1. The y-coordinate y(t) of the end of the beam structure at point A(t) (see
the Figure 2).

2. Forces exerted by the fluid on the whole submerged body, i.e. lift and
drag forces acting on the cylinder and the beam structure together

(FD, FL) =
∫

S

σndS,

where S = S1 ∪ S2 (see Fig. 3) denotes the part of the circle being in
contact with the fluid (i.e. S1) plus part of the boundary of the beam
structure being in contact with the fluid (i.e. S2), and n is the outer unit
normal vector to the integration path with respect to the fluid domain.
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Remark 1. The forces can be calculated in several different ways, i.e.

(FD, FL) =
∫

S

σndS =
∫

S1

σfndS +
∫

S2

σfndS

=
∫

S1

σfndS +
∫

S2

σsndS

=
∫

S1

σfndS +
∫

S2

1
2
(σs + σf )ndS

=
∫

S0

σndS.

That means that, up to numerical effects, all proposed evaluations will
lead (asymptotically) to the same results.

3. Pressure difference between the points A(t) and B

∆pAB = pB − pA(t).

The position of the point A(t) is time dependent.

S1
S2

S0

Fig. 3. Integration path S = S1 ∪ S2 for the force calculation

The time dependent values are represented by the mean value, amplitude
and frequency. The mean value and amplitude are computed from the last
period of the oscillations by taking the maximum and minimum values, then
the mean value is taken as average of the min/max values, and the amplitude
is the difference of the max/min from the mean:

mean =
1
2
(max+ min)

amplitude =
1
2
(max−min)

The frequency of the oscillations can be computed either from the period
time T as

frequency =
1
T

or by using fourier analysis on the periodic data and taking the lowest signifi-
cant frequency present in the spectrum. Additionally, a plot of the quantities
over the period should be presented.
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4 Partial computational tests

For the validation of the employed fluid and solid solvers, we first describe
partial tests which are performed on different levels of mesh refinement (see
Fig. and Table 4) with various time steps. We provide the results for the
different discretization levels in the following since these sequences of results
indicate that our given ”reference results” are almost grid-independent. All
simulations have been performed with a fully implicit monolithic ALE-FEM
method with a fully coupled multigrid solver as described in [2].

level #refine #el #dof

0+0 0 62 1338
1+0 1 248 5032
2+0 2 992 19488
3+0 3 3968 76672
4+0 4 15872 304128

Fig. 4. Example of a coarse mesh and the number of degrees of freedom for refined
levels

4.1 CFD tests

Taking the flag as a rigid object, we perform 3 subtests focusing on the fluid
dynamics part of the problem. The flag can be made almost rigid by setting
the structural parameters to large values (�s = 106 kg

m3 , µs = 1012 kg
ms2 ) or

completely rigid by considering the flow domain only with fixed boundary
conditions on the flag interface.

dimensional parameter CFD1 CFD2 CFD3

�f [103 kg
m3 ] 1 1 1

νf [10−3 m2

s
] 1 1 1

Ū [m
s
] 0.2 1 2

non-dimensional parameter CFD1 CFD2 CFD3

Re = Ūd
νf 20 100 200

Ū 0.2 1 2
Table 4. Parameter settings for the CFD tests
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level nel ndof drag lift

0 + 0 144 3032 1.41635 × 10+01 1.15592 × 10+00

1 + 0 576 11536 1.42236 × 10+01 1.11747 × 10+00

2 + 0 2304 44960 1.42730 × 10+01 1.11692 × 10+00

3 + 0 9216 177472 1.42880 × 10+01 1.11852 × 10+00

4 + 0 36864 705152 1.42919 × 10+01 1.11896 × 10+00

5 + 0 147456 2811136 1.42927 × 10+01 1.11904 × 10+00

5 + 1 150528 2869504 1.42929 × 10+01 1.11906 × 10+00

5 + 2 156672 2986240 1.42929 × 10+01 1.11905 × 10+00

5 + 3 168960 3219712 1.42929 × 10+01 1.11905 × 10+00

6 + 0 589824 11225600 1.42929 × 10+01 1.11905 × 10+00

ref. 14.29 1.119
Table 5. Results for CFD1

level nel ndof drag lift

0 + 0 144 3032 1.33188 × 10+02 1.18522 × 10+01

1 + 0 576 11536 1.34996 × 10+02 1.10739 × 10+01

2 + 0 2304 44960 1.36355 × 10+02 1.05337 × 10+01

3 + 0 9216 177472 1.36610 × 10+02 1.05303 × 10+01

4 + 0 36864 705152 1.36678 × 10+02 1.05347 × 10+01

5 + 0 147456 2811136 1.36696 × 10+02 1.05349 × 10+01

5 + 1 150528 2869504 1.36700 × 10+02 1.05346 × 10+01

5 + 2 156672 2986240 1.36701 × 10+02 1.05343 × 10+01

5 + 3 168960 3219712 1.36701 × 10+02 1.05340 × 10+01

6 + 0 589824 11225600 1.36700 × 10+02 1.05343 × 10+01

ref. 136.7 10.53
Table 6. Results for CFD2

CFD3: lift and drag forces on the cylinder+flag
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level nel ndof drag lift

1 + 0 576 11536 416.8 ± 3.3578[4.3825] −24.702 ± 342.38[4.3825]
2 + 0 2304 44960 437.29 ± 5.3462[4.3825] −11.085 ± 429.88[4.3825]
3 + 0 9216 177472 438.99 ± 5.4419[4.3825] −10.289 ± 433.09[4.3825]
4 + 0 36864 705152 439.38 ± 5.4639[4.3825] −9.9868 ± 434.79[4.3825]

level nel ndof drag lift

1 + 0 576 11536 416.83 ± 3.4023[4.3956] −23.897 ± 346.72[4.3956]
2 + 0 2304 44960 437.41 ± 5.5856[4.3956] −12.673 ± 434.74[4.3956]
3 + 0 9216 177472 439.05 ± 5.5804[4.3956] −11.837 ± 436.17[4.3956]
4 + 0 36864 705152 439.45 ± 5.6183[4.3956] −11.893 ± 437.81[4.3956]

ref. 439.45 ± 5.6183[4.3956] −11.893 ± 437.81[4.3956]
Table 7. Results for CFD3 with ∆t = 0.01 and 0.005

4.2 CSM tests

The structural tests are computed only for the elastic beam (without the
surrounding fluid) adding the gravitational force only(!) on the structural
part, g = (0, g) [m

s2 ]. The CSM3 test is computed as a time dependent case
starting from the undeformed configuration while the tests CSM1 and CSM2
are the steady state solutions.

par. dim. CSM1 CSM2 CSM3

�s [103 kg
m3 ] 1 1 1

νs 0.4 0.4 0.4

µs [106 kg
ms2

] 0.5 2.0 0.5

�f [103 kg
m3 ] 1 1 1

νf [10−3 m2

s
] 1 1 1

Ū [m
s
] 0 0 0

g [ m
s2

] 2 2 2

par. non-dim. CSM1 CSM2 CSM3

β = �s

�f 1 1 1

νs 0.4 0.4 0.4

Es [ kg
ms2

] 1.4 × 106 5.6 × 106 1.4 × 106

Re = Ūd
νf 0 0 0

Ū 0 0 0
g 2 2 2

Table 8. Parameter settings for the CSM tests
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level nel ndof ux of A [×10−3] uy of A [×10−3]

2 + 0 320 6468 −7.17301 −66.0263
3 + 0 1280 25092 −7.18372 −66.0817
4 + 0 5120 98820 −7.18656 −66.0965
4 + 1 6260 120512 −7.18738 −66.1008
4 + 2 8552 164092 −7.18766 −66.1023
4 + 3 13148 251448 −7.18777 −66.1029
5 + 0 20480 392196 −7.18739 −66.1009
5 + 1 22772 435776 −7.18767 −66.1023

ref. −7.187 −66.10
Table 9. Results for CSM1

level nel ndof ux of A [×10−3] uy of A [×10−3]

2 + 0 320 6468 −0.468011 −16.9536
3 + 0 1280 25092 −0.468734 −16.9684
4 + 0 5120 98820 −0.468925 −16.9723
4 + 1 6260 120512 −0.468980 −16.9735
4 + 2 8552 164092 −0.468999 −16.9739
4 + 3 13148 251448 −0.469006 −16.9740
5 + 0 20480 392196 −0.468981 −16.9735
5 + 1 22772 435776 −0.469000 −16.9739

ref −0.4690 −16.97
Table 10. Results for CSM2

CSM3: The displacement of the point A
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level nel ndof ux of A [×10−3] uy of A [×10−3]

2 + 0 320 6468 −14.384 ± 14.389[1.0956] −64.271 ± 64.595[1.0956]
3 + 0 1280 25092 −14.402 ± 14.406[1.0956] −64.352 ± 64.679[1.0956]
4 + 0 5120 98820 −14.404 ± 14.408[1.0956] −64.371 ± 64.695[1.0956]

level nel ndof ux of A [×10−3] uy of A [×10−3]

2 + 0 320 6468 −14.632 ± 14.636[1.0978] −64.744 ± 64.907[1.0978]
3 + 0 1280 25092 −14.645 ± 14.650[1.0978] −64.765 ± 64.946[1.0978]
4 + 0 5120 98820 −14.645 ± 14.650[1.0978] −64.766 ± 64.948[1.0978]

level nel ndof ux of A [×10−3] uy of A [×10−3]

2 + 0 320 6468 −14.279 ± 14.280[1.0995] −63.541 ± 65.094[1.0995]
3 + 0 1280 25092 −14.299 ± 14.299[1.0995] −63.594 ± 65.154[1.0995]
4 + 0 5120 98820 −14.305 ± 14.305[1.0995] −63.607 ± 65.160[1.0995]

ref −14.305 ± 14.305[1.0995] −63.607 ± 65.160[1.0995]
Table 11. Results for CSM3 with timesteps ∆t = 0.02, 0.01, 0.005

4.3 FSI tests

The following FSI tests are performed for two different inflow speeds. FSI1
is resulting in a steady state solution, while the other two tests (FSI2, FSI3)
result in periodic solutions and correspond to the final benchmark settings.

parameter FSI1 FSI2 FSI3

�s [103 kg
m3 ] 1 10 1

νs 0.4 0.4 0.4

µs [106 kg
ms2

] 0.5 0.5 2.0

�f [103 kg
m3 ] 1 1 1

νf [10−3 m2

s
] 1 1 1

Ū [m
s
] 0.2 1 2

parameter FSI1 FSI2 FSI3

β = �s

�f 1 10 1

νs 0.4 0.4 0.4

Ae = Es

�f Ū2 3.5 × 104 1.4 × 103 1.4 × 103

Re = Ūd
νf 20 100 200

Ū 0.2 1 2
Table 12. Parameter settings for the full FSI benchmarks
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level nel ndof ux of A [×10−3] uy of A [×10−3] drag lift

2 + 0 992 19488 0.022871 0.81930 14.27360 0.76178
3 + 0 3968 76672 0.022775 0.82043 14.29177 0.76305
4 + 0 15872 304128 0.022732 0.82071 14.29484 0.76356
5 + 0 63488 1211392 0.022716 0.82081 14.29486 0.76370
6 + 0 253952 4835328 0.022708 0.82086 14.29451 0.76374

ref. 0.0227 0.8209 14.295 0.7638
Table 13. Results for FSI1

FSI2: x & y displacement of the point A
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FSI2: lift and drag force on the cylinder+flag
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lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −14.00 ± 12.03[3.8] 1.18 ± 78.7[2.0] 209.46 ± 72.30[3.8] −1.18 ± 269.6[2.0]
3 −14.25 ± 12.03[3.8] 1.20 ± 79.2[2.0] 202.55 ± 67.02[3.8] 0.71 ± 227.1[2.0]
4 −14.58 ± 12.37[3.8] 1.25 ± 80.7[2.0] 201.29 ± 67.61[3.8] 0.97 ± 233.2[2.0]

lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −14.15 ± 12.23[3.7] 1.18 ± 78.8[1.9] 210.36 ± 70.28[3.7] 0.80 ± 286.0[1.9]
3 −13.97 ± 12.01[3.8] 1.25 ± 79.3[2.0] 203.54 ± 68.43[3.8] 0.41 ± 229.3[2.0]
4 −14.58 ± 12.44[3.8] 1.23 ± 80.6[2.0] 208.83 ± 73.75[3.8] 0.88 ± 234.2[2.0]

ref. −14.58 ± 12.44[3.8] 1.23 ± 80.6[2.0] 208.83 ± 73.75[3.8] 0.88 ± 234.2[2.0]
Table 14. Results for FSI2 with timestep ∆t = 0.002, ∆t = 0.001
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FSI3: x & y displacement of the point A
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FSI3: lift and drag force on the cylinder+flag
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lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −3.02 ± 2.78[10.6] 0.99 ± 35.70[5.3] 444.6 ± 31.69[10.6] 9.48 ± 151.55[5.3]
3 −3.02 ± 2.83[10.6] 1.43 ± 35.43[5.3] 457.1 ± 20.05[10.6] 1.23 ± 146.04[5.3]
4 −2.85 ± 2.56[10.9] 1.53 ± 34.35[5.3] 459.8 ± 20.00[10.9] 1.51 ± 148.76[5.3]

lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −3.00 ± 2.79[10.7] 1.19 ± 35.72[5.3] 445.0 ± 35.09[10.7] 8.26 ± 163.72[5.3]
3 −2.86 ± 2.68[10.7] 1.45 ± 35.34[5.3] 455.7 ± 24.69[10.7] 1.42 ± 146.43[5.3]
4 −2.69 ± 2.53[10.9] 1.48 ± 34.38[5.3] 457.3 ± 22.66[10.9] 2.22 ± 149.78[5.3]

ref. −2.69 ± 2.53[10.9] 1.48 ± 34.38[5.3] 457.3 ± 22.66[10.9] 2.22 ± 149.78[5.3]
Table 15. Results for FSI3 with timestep ∆t = 0.001, ∆t = 0.0005

5 Summary

The next step will be the specification of how to submit and to collect the
results, and the publication of the test configurations in an international
journal. Moreover, it is planned to prepare a webpage for collecting and pre-
senting the FSI results. As we have learned from [3], a very important aspect
will be the submission of the results on (at least) 3 different meshes and time
steps. Then, based on the collected results, quantitative ratings regarding the
main questions, particularly w.r.t. the coupling mechanisms and monolithic
vs. partitioned approaches, might get possible.
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