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Abstract

Object recognition has made great strides recently.

However, the best methods, such as those based on kernel-

SVMs are highly computationally intensive. The problem of

how to accelerate the evaluation process without decreas-

ing accuracy is thus of current interest. In this paper, we

deal with this problem by using the idea of ranking. We

propose a cascaded architecture which using the ranking

SVM generates an ordered set of proposals for windows

containing object instances. The top ranking windows may

then be fed to a more complex detector. Our experiments

demonstrate that our approach is robust, achieving higher

overlap-recall values using fewer output proposals than the

state-of-the-art. Our use of simple gradient features and

linear convolution indicates that our method is also faster

than the state-of-the-art.

1. Introduction

In object detection, we are interested in localizing in-

stances of an object within an image, typically providing as

output a set of windows containing object instances. Object

detection can be treated directly as a regression problem,

where the task is to predict the location and scale of a sin-

gle object from an image (or its absence), or a classification

problem, where the task is to classify every window in an

image as either containing an object or not. Recent methods

have followed both these approaches, e.g. support vector

machines (SVMs) [5], ranking SVM [2], latent SVM [9],

multiple kernel learning [17] and structural regression [1].

With the help of non-linear kernels, more training data,

more features etc., these methods have achieved better and

better detection performance on the public datasets (e.g. the

detection tasks in the PASCAL VOC challenge), but unfor-

tunately with longer and longer computational time.

The need to accelerate the evaluation process without

hurting detection accuracy is thus becoming more impor-

tant for a successful object detection system, and recently

this problem has attracted much attention [4, 8, 13, 14, 17].

Typically, we do not want to evaluate a complex classifier

at all possible positions, scales and aspect ratios in an im-

age, but only a limited number. We specifically address the

problem of generating proposals of bounding boxes rather

than presenting a full detection system, and our method can

be used as an initial step for any more complex classifier.

Using the same overlap-recall evaluation for this problem

as [13], we achieve state-of-the-art results.

Various methods have been proposed to handle this prob-

lem. Branch and bound techniques [13, 14] for instance

limit the number of windows that must be evaluated by

pruning sets of windows at a time whose maximal response

can be bounded above. The efficiency of such methods is

highly dependent on the strength of the bound, and the ease

with which it can be evaluated, which can cause the method

to offer limited speed-up for non-linear classifiers. Alterna-

tively, cascade approaches [4, 8, 17] use weaker but faster

classifiers in the initial stages to prune out negative exam-

ples, and only apply slower non-linear classifiers at the final

stages. In [17] a fast linear SVM is used as a first step, while

the jumping window approach [4] builds an initial linear

classifier by selecting pairs of discriminative visual words

from their associated rectangle regions. Felzenszwalb et

al. [9] propose a part-based cascade model using a latent

SVM in which part filters are only evaluated if a sufficient

response is obtained from a global “root” filter, and [8] pro-

pose a combination of cascade and branch and bound tech-

niques. Such approaches have been proved to be efficient,

and have generated the state-of-the-art results [9]. However,

the fact that in [8] the decision scores for detections must be

compared across the training data may limit the efficiency

of the early cascade stages, where we only need to compare

the scores of a classifier at any level of the cascade within a

single image. Further, such approaches learn a single model

which is applied at varying resolutions. Recent work [16]

strongly suggests that we should explicitly learn different

detectors for different scales.

We outline here a two-stage cascade model, onto which

further stages can be added for a complete detection sys-

tem. Our approach copes with the problems above as fol-
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Figure 1. Summary of our method. An image (a) is first convolved with

a set of linear classifiers at varying scales/aspect-ratios (b) producing re-

sponse images (c). Local maxima are extracted from each response image,

and the corresponding windows with top ranking scores are forwarded to

the second stage of the cascade. Each proposed window is associated with

a feature vector (d), and a second round of ranking orders these proposals

(e) so that the true positives (marked as black) are pushed towards the top

during training. Our method outputs the top ranking windows in this final

ordering.

lows. First, we learn a ranking SVM at each stage in our

cascade. The ranking SVM is a normal SVM with the ad-

ditional constraint that some data should be classified with

a higher score than others, e.g. those windows that better

overlap the object ground-truth bounding boxes. Ranking

SVMs have been used recently in object detection [2] and

segmentation [3, 11, 15]. In [2] the ranking objective is ap-

plied globally so that positive windows are ranked above

negatives across the training set, providing a principled way

of learning a one-stage detector with unbalanced training

data. For proposal generation, we require only that win-

dows are ranked consistently within a single image, and we

show that by adding ranking constraints into the training for

the early stages in a cascade we can achieve state-of-the-

art performance in terms of the overlap-recall metric intro-

duced in [13, 17]. Second, our two-stage cascade enables

us to incorporate variability in scale and aspect ratio, where

the first stage trains a set of classifiers separately for each

scale/aspect-ratio, and the second stage trains a classifier for

the windows proposed by the first to achieve a final ranking

list. Finally, the usage of simple gradient features and linear

convolution makes our method achieve the state-of-the-art

performance in terms of speed. Fig. 1 summarizes our ap-

proach.

The rest of the paper is organized as follows. We de-

scribe our cascade design in Section 2, where the first

stage finds and ranks local maxima independently at each

scale/aspect-ratio (Section 2.1), and the second ranks them

across all the scales/aspect-ratios (Section 2.2). In Sec-

tion 3, we compare our performance with that of [13] in

terms of detection quality and running time. Finally Sec-

tion 4 concludes the paper.

2. Cascaded Ranking SVMs

For ease of explanation of our cascade approach, we list

the main notation we use below:

Figure 2. Our scale/aspect-ratio quantization scheme can be represented

hierarchically. (a) superimposes the four window scales in a mini-

quantization scheme with η = 0.5, and (b) unfolds the scales into a tree

structure. The relative widths and heights of the windows are represented

by the (w, h) pairs. Such a hierarchy can represent all windows to η-

accuracy (see Section 2.1.1). This figure is best viewed in color.

• T : the set of all possible windows (i.e. bounding boxes) in

an image;

• S(w, h): the set of all the windows in an image with width

w and height h;

• o(t, s): the overlap between window t ∈ T and window

s ∈ S;

• η ∈ [0, 1]: overlap threshold for detection (see Sec. 2.1.1);

• k: a given scale/aspect-ratio combination in our quantization

scheme;

• Sk: the set of all the windows which can be represented to

η-accuracy at quantized scale/aspect-ratio k (see Sec. 2.1.1);

• wk: a classifier learned for quantized scale/aspect-ratio k.

In our training data, each image is annotated with the

bounding boxes of the objects of interest. Our goal is to

give a higher rank to the windows with a larger overlap with

a ground-truth bounding box within a single image such that

the windows at the top of the ranking list can be taken as our

object proposals.

2.1. Stage I: Scale/Aspect­ratio Specific Ranking

The first stage of our cascade aims to pass on a number

of object proposals based on different sliding windows at

each of a set of quantized scales and aspect ratios to the

next stage. This is done by learning a classifier for each

scale/aspect-ratio separately.

2.1.1 Scale/Aspect-ratio Quantization

We design our quantization scheme so that in each image

any window t ∈ T can be represented by at least one win-

dow s ∈ S in our quantization scheme. Precisely, the over-

lap between t and s is defined as their intersection area di-

vided by their union area, as shown in Eqn. 1, and we say

that s is represented to η-accuracy if o(t, s) ≥ η.

o(t, s) =
t
⋂
s

t
⋃
s

(1)

Given the smallest values of width and height, w0 and

h0, we include in our scheme all quantization levels of the
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form S(w0/η
a, h0/η

b), where (a, b) ∈ (0...A, 0...B) is nat-

urally limited by the image size. We can show that using

this scheme, a window t with wt ∈ [w0/η
a, w0/η

a+1] and

ht ∈ [h0/η
b, h0/η

b+1] can be represented to η-accuracy by

at least one window s ∈ S(w0/η
a, h0/η

b). The quantiza-

tion levels can be thought of as forming a tree structure, and

Fig. 2 gives an intuitive representation of the scheme. In

our experiments, we test η ∈ {0.5, 0.67, 0.75}, which lead

respectively to the maximum numbers of classifiers learned

at the first stage K ∈ {36, 121, 196} by limiting the sizes

of windows from 10 to 500 pixels.

2.1.2 Individual Classifier Learning

Since in an image I it is usual to find multiple objects with

different ground-truth bounding boxes g1···mI
, here we de-

fine the maximal overlap of a window t ∈ TI as:

ot = max
i∈{1,··· ,mI}

o(t, gi) (2)

Given η and a set of quantized scales/aspect-ratios, for

each scale k we wish to learn a linear classifier wk, as

suggested in [16], to rank the windows at that quantized

scale/aspect-ratio across the image I such that the rank-

ing score for any window si ∈ Sk

⋂
TI with osi ≥ η

is always higher than that of any window sj ∈ TI with

osj < η. That is, for wk we require that within the

image I all the corresponding positive training windows

I+k = {si ∈ Sk

⋂
TI |osi ≥ η} should be ranked above

all the training negatives I− = {sj ∈ TI |osj < η}. This

leads us to formulate the problem as a ranking SVM [12],

which can be expressed as below:

min
wk,ǫ

1

2
‖wk‖

2
2 + C

∑

i,j,n

ǫnij (3)

s.t. ∀n, i ∈ I+kn, j ∈ I−n , wk · (xn
i − x

n
j ) ≥ 1− ǫnij

ǫnij ≥ 0

Here, xn
i and x

n
j are the feature vectors associated with pos-

itive window i and negative window j in training image In
respectively, ǫ are the slack variables, C is a non-negative

constant, and “·” denotes the dot product operator. In our

implementation, for learning wk we simply select all the

object ground-truth bounding boxes which can be repre-

sented to η-accuracy at scale k as the positive windows, and

randomly select the patches from the image as the negative

windows. x
n
i are gradient based features using 4 different

orientation channels.

Recall that the purpose of learning the individual clas-

sifier is to build the proposal pool for further usage, so the

constraints in Eqn. 3 are restricted to one quantized scale in

one image. Therefore, the ranking scores from each classi-

fier are incompatible across scales/aspect-ratios, necessitat-

ing the second stage in the cascade.

2.1.3 Proposal Selection

To decide which proposals to forward from the first stage

to the second of the cascade, we look for the local maxima

in the response image of classifier wk, and set a threshold

on the maximum number of windows to be passed on. The

first stage thus has two controlling parameters. The first,

γ ∈ [0, 2] specifies the ratio between the size of the neigh-

borhood over which we search for the local maxima, and

the reference window size for each classifier. The second,

d1 ∈ {1 · · · 1000} specifies the maximum number of win-

dows, which are the top d1 ranked local maxima, that can

be passed on from any scale. We test the effects of varying

these parameters in Section 3.1.1.

2.2. Stage II: Ranking Score Calibration

The first stage of the cascade generates a number of pro-

posal windows at each scale k for image I . The second

stage then re-ranks these globally, so that the best proposals

across scales are forwarded. To achieve this, we introduce

a new feature vector for each window, v, which consists of

the channel responses of the classifier at the first stage. For

instance, in our implementation v is a 4-dimensional fea-

ture vector since feature x is generated using 4 orientation

channels, each of which gives a response to the correspond-

ing classifier. The reason for splitting x into different chan-

nels is that we can make full use of information in different

channels to improve the calibration performance.

Based on v, we can re-rank each window i by the de-

cision function f(vi) = zki
· vi + eki

, where ki denotes

the quantized scale/aspect-ratio associated with window i,
zki

is a set of coefficients for scale ki that we would like

to learn, and eki
is the corresponding bias term. Similar to

Section 2.1.2, we solve this learning problem using a rank-

ing SVM, and formulate it as an ℓ1-norm multi-class rank-

ing SVM as shown in Eqn. 4 due to its efficiency in com-

putation and tolerance to noisy data [10], which requires us

to learn a separate set of coefficients z for each classifier at

the first stage:

min
z,e,ǫ

∑

k

‖zk‖1 + C
∑

i,j,n

ǫnij (4)

s.t. ∀n, i ∈ Î+n , j ∈ Î−n ,
zki

· vn
i − zkj

· vn
j + eki

− ekj
≥ ∆(i, j)− ǫnij

ǫnij ≥ 0

Here, Î+n and Î−n denote the positive and negative windows

in image In forwarded from the first stage of the cascade

across different quantized scales/aspect-ratios. We note

that, as in Eqn. 3, we only generate constraints between pos-

itive and negative windows within a image: that is, we are

only concerned with generating scores that are locally con-

sistent. Unlike Eqn. 3 though, we introduce a loss function
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Figure 3. Cascade design evaluation: γ, d1, d2. Higher area under curve (AUC) scores are represented by warmer color. The effects of varying γ

(neighborhood size) and d1 (number of candidates selected from the first cascade stage) are tested under various recall regimes by varying d2 (number of

candidates selected from the second cascade stage). See Section 3.1.1 for commentary. This figure is best viewed in color.

Figure 4. Quantization and feature evaluation: η,W,H,R. The dimensions of the features are represented as W ×R (the classifier width × the number of

orientations, and we assume the classifier height H = W ). Performance is measured in terms of average area under recall-overlap curve (i.e. mean AUC),

and given under 4 recall regimes, d2 ∈ {1, 10, 100, 1000}. From left to right, the maximum number of classifiers at the first stage K is increased. In

general we outperform [13] significantly (also plotted). This figure is best viewed in color.

∆(i, j) which we define in terms of the maximum overlaps

of windows i and j:

∆(i, j) = oi − oj , i ∈ Î+n , j ∈ Î−n (5)

This forces the ranking scores to more closely mirror the

ordering of the overlap scores with respect to the object

ground-truth bounding boxes in images. In this way, all the

windows can be ranked in an image. The top d2 windows

are then considered as the final proposals generated at the

second stage of our cascade.

2.3. Implementation Details

We use simple zero-mean gradient features to learn each

classifier wk at the first stage. In detail, we first con-

vert all the images into gray scale, and represent all the

object ground-truth bounding boxes to η-accuracy using

our scale/aspect-ratio quantization scheme to provide pos-

itive windows. After randomly selecting negatives across

scales, all windows are resized to a fixed feature window

size (W,H), and then for each pixel, the magnitude and ori-

entation of its gradient is calculated. Orientation weights

are then calculated in a fixed set of R orientation chan-

nels for assigning the gradients to build sub-features xr

(r ∈ {1, · · · , R}) separately. Finally, by concatenating all

xr, a (W×H×R)-dimensional vector is generated consist-

ing of spatial and gradient information. To handle the differ-

ent illumination contrasts in images, we subtract the mean

value to produce a feature vector xi for window i, and the

learned classifiers are thus guaranteed to be zero-mean vec-

tors (avoiding the need for a bias in Eqn. 3). The features

used at the second stage, v, are produced by concatenat-

ing the classifier responses from each orientation channel

at the first stage, producing an R-dimensional vector where

vr = wk,r · xr. Besides the gradient based features and

ranking SVM, we tried simple pixel intensity based features

and a normal SVM as well. Due to the page limit, we did not

show the comparison in the paper, but the major improve-

ment comes from the ranking SVM rather than the features.

At test time, to generate features x, we simply resize the

image for each scale k by the ratio of its reference window

to (W,H), and then apply the learned classifier wk by 2D

convolution.

The remaining global parameters of the cascade are γ,

d1 and d2, which affect the trade-off between the number of

positive windows we retain at each stage, and the amount of

noise we allow through. We investigate the effects of these

parameters in Section 3.1.1

2.4. Computational Complexity

Our method involves the application of simple linear

classifiers to the images, and as such is dominated by the

complexity of 2D convolution which must be applied to

each image. The complexity can thus be approximated as

O(K × R × (W × H) × (WI × HI)), where (WI , HI )

is the resized image size. We note that our complexity is

therefore (largely) independent of the number of potential

proposals let through at each stage (d1, d2), unlike methods

which include non-linear classifiers [13, 17].

3. Experiments

We design a comprehensive set of experiments to as-

sess the impact of various parameters and design choices

in our model. We also compare our performance against a
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Figure 5. Recall-overlap evaluation for VOC2006. Recall-overlap curves are plotted for individual classes using d2 ∈ {1, 10, 100, 1000} from left to

right, and K ∈ {36, 121, 196} from top to bottom. All curves are plotted using (W,H,R) = (16, 16, 4). The numbers shown in the legends are the recall

percentages when the overlap threshold η is set to 0.5. This figure is best viewed in color.

(a) (b) (c)

Figure 6. Recall-proposal evaluation. (a) VOC2006 validation set, (b) VOC2006 test set, (c) VOC2010 validation set. Recall is measured against increasing

numbers of output proposals, d2. Other parameters are fixed at (W,H,R) = (16, 16, 4) and K = 36. Notice that the curves are similar for different

classes in all cases, implying we can generalize thresholds from one case to another. This figure is best viewed in color.

state-of-the-art method [13] and show substantial improve-

ment. We measure our performance in terms of recall-

overlap curves [13, 17], which provides a means of as-

sessing the potential information preserved for further pro-

cessing, and the speed of our method. We test on PAS-

CAL VOC2006 [7] and VOC2010 [6] datasets. VOC2006

consists of 10 object categories, 5304 images of natural

scenes, with object labels and their corresponding ground-

truth bounding boxes released for training, validation and

test sets. VOC2010 consists of 20 object categories, 21738

natural images, and object labels and their corresponding

ground-truth bounding boxes are available for training and

validation sets only. For training and testing, we split

VOC2006 into train/validation and (train+validation)/test,

and VOC2010 into train/validation, respectively.

3.1. VOC2006

3.1.1 Cascade Design: γ, d1, d2

We first evaluate the effects of the following cascade param-

eters: the neighborhood size for finding local maxima γ in

the first stage, and the number of windows to be passed on at

the first and second stages, d1 and d2. Fig. 3 shows the per-

formance of various parameter settings in terms of the area

under curve (AUC) (i.e. recall-overlap curve) for the class

bicycle in VOC2006. We can see that as we move from left

to right (increasing d2) the area with highest AUC scores

shifts from bottom right to top left. This implies more can-

didates selected from the first cascade stage (high d1) and

a higher γ are appropriate for low-recall regimes (low d2),

while the opposite is true for high-recall (high d2). For fur-
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Figure 7. Comparing the speed of our method in seconds at various parameter settings. This table is best viewed in color.

Figure 8. Comparing the performance of our method in terms of AUC (%) with that of [13]. We show our performance at two settings, the first

(W,H,R,K) = (2, 2, 1, 36) is our fastest setting, with lowest dimensionality. The second (W,H,R,K) = (8, 8, 4, 121) has a similar run time to

[13]. Both settings improve on [13] substantially. This table is best viewed in color.

ther experiments we choose values d1 = 50 and γ = 0.6,

which work well across the d2 settings.

3.1.2 Quantization and Features: K,W,H,R

We next assess the effects on the performance of the fea-

tures we use (i.e. the size of the classifiers (W,H) and the

number of orientations R), and the maximum number of

classifiers learned at the first stage K (determined by the

overlap threshold η as in Section 2.1.1). Fig. 4 summarizes

the results, considering 4 different recall regimes by vary-

ing the number of output proposals d2 ∈ {1, 10, 100, 1000},

and comparing them against the best results of [13] in these

regimes. Performance is again measured in terms of AUC

(averaged across classes). We can see that, as expected, per-

formance increases both as the size of the classifiers and

number of orientations increase (W , H , R), and as K in-

creases. However, both of these factors imply longer com-

putational time as discussed in Section 2.4. We see though

that even with the smallest feature size, 2×2 with 1 orienta-

tion (i.e. only 4-dimensional features), we improve substan-

tially on [13] in most cases and achieve comparable perfor-

mance otherwise. We will offer further comparison which

takes computational time into account.

3.1.3 Recall-Overlap Evaluation

Fig. 5 breaks the VOC2006 results down by class, and

displays the recall-overlap curves that were used to cal-

culate Fig. 4 for the case of (W,H,R) = (16, 16, 4).
We can see here the movement of the curves towards

the top-right both as we allow more output proposals

(d2 ∈ {1, 10, 100, 1000}) and as we increase K =
{36, 121, 196}. Another aspect can be observed from these

curves. We recall that our quantized scales/aspect-ratios

are designed to cover bounding boxes to a particular over-

lap threshold of η, so K ∈ {36, 121, 196} corresponds to

η ∈ {0.5, 0.67, 0.75} respectively. This affects the perfor-

mance observed, and on the K = 36 graph for instance,

we see that the curves are high for η ≤ 0.5, but then drop

quickly. Similar drops can be observed in the K = 121
and K = 196 graphs for the corresponding later points in

the curves, η = 0.67 and 0.75, implying our quantization

is capturing the desired information. The average recalls

when d2 = 1000 and η = 0.5 are 95.8%, 97.1%, 96.0% for

K ∈ {36, 121, 196} respectively.

3.1.4 Recall-Proposal Evaluation

In Fig. 6(a)-(b) we show how the recall is effected as

we increase the number of output proposals d2 from 1 to

1000 on the validation and test sets of VOC2006. We fix

(W,H,R) = (16, 16, 4) and K = 36. We can see that on

both validation and test datasets when d2 is beyond 400, the

curves hardly change, which means the AUC for d2 = 400
and d2 = 1000 will be very similar. We believe that this

property of our approach is useful for detection tasks, be-

cause it narrows down significantly the total number of win-

dows that classifiers need to check while losing few cor-

rect detections. In fact, some categories need far fewer pro-

posals to achieve good performance. For instance, for the

cat category, 100 output proposals saturates performance.

Since the behaviors of our approach on both validation and

test sets are quite similar, in practice we can utilize the for-

mer to choose a sufficiently small number of output propos-

als for good performance.

3.1.5 Computational Time

Details of our computational time are shown in Fig. 7. Our

implementation is a mixture of Matlab and C++, and is

run on a single core with 3.33 GHz. The computational

time shown here includes all the steps at the test stage,
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Figure 9. Comparing the performance of our method in terms of AUC (%) when no scale/aspect-ratio information is included during learning the classifiers

(i.e. single classifier), when only aspect ratio information is included, and when both scale and aspect ratio are included. This table is best viewed in color.

Figure 10. Recall-overlap evaluation for VOC2010. Recall-overlap curves are plotted for individual classes using d2 ∈ {1, 10, 100, 1000} from left to

right, and K ∈ {36, 121, 196} from top to bottom. All curves are plotted using (W,H,R) = (16, 16, 4). The numbers shown in the legends are the recall

percentages when the overlap threshold η is set to 0.5. This figure is best viewed in color.

i.e. calculating features, 2D convolution, proposal selec-

tion, and ranking score calibration. As we see, with in-

crease in the size of the feature windows (W,H), the num-

ber of orientation channels R, and the maximum number

of classifiers learned at the first stage K, computational

time grows roughly linearly in the log-scale. This demon-

strates that the computational complexity of our approach

can be approximated by the complexity of 2D convolution.

Moreover, we can compare our time with the 0.47 ± 0.01
in [13]1 (based on a 2.8 GHz PC). As mentioned, we already

1In [13], the computational time is only for training models without

considering the time for feature extraction.
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substantially outperform this method at our fastest setting,

(W,H,R) = (2, 2, 1) and K = 36. In Fig. 7 we highlight

the closest settings of our method to the speed of [13]. We

can see on Fig. 4 that these all offer further substantial im-

provements, and we make a closer comparison in Fig. 8 by

comparing AUC values of [13] with our results at (a) our

fastest setting, and (b) the best of our settings with simi-

lar computational time. Averaging across the four output

settings (d2 ∈ {1, 10, 100, 1000}), [13] achieves 39.9%,

while we achieve 44.5% at (W,H,R,K) = (2, 2, 1, 36),
and 50.8% at (W,H,R,K) = (8, 8, 4, 121). Our approach

is thus quicker, and offers a substantial improvement in out-

put quality to [13].

3.1.6 Contribution of Scale and Aspect Ratio

To verify that our two-stage ranking cascade, involving sep-

arate ranking of scales and aspect ratios followed by a cali-

bration, is contributing to our performance, we give further

results in Fig. 9 where during learning the individual clas-

sifiers we compare our full system against restricted cases

where we (a) use only one quantization level, and so do not

use scale and aspect ratio information (thus learning only

one classifier), and (b) use only aspect ratio information

(learning one classifier per aspect ratio). In each case, the

feature size is set to (W,H,R) = (16, 16, 4) and K = 36.

As shown, we have an average gain in performance as scale

and aspect ratio information is added (although in certain

classes the effect is less pronounced, and aspect ratio plays

a more important role than scale in some).

3.2. VOC2010

We repeat our recall-overlap and recall-proposal eval-

uations on VOC2010. In Fig. 6(c) we see a similar pat-

tern across classes to the VOC2006 validation and test sets,

implying that thresholds can be generalized (even for in-

dividual classes) across these datasets. In Fig. 10 we see

a similar pattern of results to Fig. 5 (also using the set-

ting (W,H,R) = (16, 16, 4)). The average recalls when

d2 = 1000 and η = 0.5 are 86.2%, 92.7%, 91.0% for

K ∈ {36, 121, 196} respectively, which are comparable to

those in Section 3.1.3. We therefore believe that our ap-

proach is robust and efficient across datasets.

4. Conclusion

We have introduced a two-stage cascaded model using a

ranking SVM framework to generate object detection pro-

posals, which we envisage can be used as the initial stages

of a complete object detection pipeline. Our framework nat-

urally incorporates scale and aspect ratio information about

objects, which are treated separately in the first stage of the

cascade, and we emphasize the flexibility of the framework,

where different types of features could easily be incorpo-

rated at this stage. Our method is both fast and efficient,

and we have shown a substantial improvement in speed and

recall over a state-of-the-art method [13], which also uses

a cascade design. Remaining problems for investigation in-

clude how to embed our ranking formulation into a global

cost function for a complete detection cascade.
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