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ABSTRACT 

 

Reinforced concrete frames infilled with masonry panels constitute an important part of the high-risk 

structures in different regions of high seismicity. In some developing countries, they are still used as main 

structural system for low to medium rise buildings.  Consequently, reliable methods to analyse infilled 

frames are required in order to reduce the loss of life and property associated with a possible structural 

failure. 

  

The equivalent strut model, proposed in the 1960s, is a simple procedure to represent the effect of the 

masonry panel. Several improvements of the original model have been proposed, as a result of a better 

understanding of the behaviour of these structures and the development of computer software. This paper 

presents a new macro-model for the evaluation of the global response of the structure, which is based on a 

multi-strut formulation,.  The model, implemented as 4-node panel element, accounts separately for the 

compressive and shear behaviour of masonry using a double truss mechanism and a shear spring in each 

direction. The principal premises in the development of the model are the rational consideration of the 

particular characteristics of masonry and the adequate representation of the hysteretic response.  

Furthermore, the model is able to represent different modes of failure in shear observed for masonry infills.  

The comparison of analytical results with experimental data showed that the proposed model, with a proper 

calibration, is able to represent adequately the in-plane response of infilled frames. 
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1. INTRODUCTION 

Infilled frames are complex structures which exhibit a highly 

nonlinear inelastic behaviour.  The most important factors 

contributing to this behaviour arise from material nonlinearity, 

namely, (i) cracking and crushing of the masonry panel, (ii) 

cracking of the concrete, yielding of the reinforcing bars and 

local bond slip in the surrounding frame, and (iii) degradation 

of the bond-friction mechanism and variation of the contact 

length along the panel-frame interfaces.  Geometric nonlinear 

effects can also occur in infilled frames, especially when the 

structure is able to resist large horizontal displacements.  

However, these effects do not present any particularity and can 

be considered in the analysis using the same methodologies 

applied to reinforced concrete or steel structures.  The nonlinear 

effects mentioned above introduce analytical complexities 

which required sophisticated computational techniques to be 

properly considered in the modelling.  Furthermore, some 

mechanical properties are difficult to define accurately, 

especially those of masonry and of the panel-frame interfaces.  

These facts complicate the analysis of infilled frames and 

represent one of the principal reasons to explain why infill 

panels has been considered as "non-structural elements", despite 

their strong influence on the global response. 

 

Different modelling techniques have been used for the analysis 

of infilled frames, which can be divided into two main groups: 

(i) local or micro-models and (ii) simplified or macro-models, 

Crisafulli, et al., 2000.   The first group involves the models in 

which the structure is divided into numerous elements (usually 

of different types) to take account of the local effects in detail, 

whereas the second group includes simplified models based on 

a physical understanding of the behaviour of the infill panel.  In 

the later case, a few elements are used to represent the effect of 

the masonry infill as a whole.  Both types of models present 

advantages and disadvantages, and the selection of the more 

adequate option should consider the characteristics of each case 

and the objectives of the analysis. The typical example of the 

macro-model for infilled frames is the diagonal strut model, see 

Fig. 1 (a), developed several decades ago based on the 

analytical work conducted by Polyakov (as reported by Mallick 

and Severn, 1967). Later, Holmes, 1961, proposed that the 

equivalent diagonal strut should have a width equal to one third 

of the length of the panel and Stafford Smith, 1962, improved 

the approach based on experimental data.  This task was 

continued by many other researchers, who refined the model, 

mainly by considering several struts to represent the panel (a 

more complete description can be found elsewhere, Crisafulli, 

2000).  
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In order to analyse large structures or complete buildings, it 

seems that a simple, but physically reasonable model constitutes 

the best alternative.  Consequently, this paper presents the 

development and implementation of a macro-model for the 

representation of the masonry panel in infilled frames.  This 

model considers a multi-strut formulation, which can be useful 

when the objective of the analysis focuses on the global 

response of the structure. 

 

 

2. PRELIMINARY STUDY 

A preliminary study was conducted to investigate the 

limitations of the single strut model and the influence of 

different multi-strut models on the structural response of the 

infilled frame.  The study focussed on the lateral stiffness of the 

structure and on the actions induced in the surrounding frame. 

Figure 1 illustrates the three strut models considered in the 

study, which are referred as Model A, B and C, respectively.  

The total area of the equivalent masonry strut, Ams, was the 

same in all the cases.  It was assumed in Model C that the 

sectional area of the central strut was the double of that 

corresponding to the off-diagonal struts.  The separation 

between the struts in Models B and C was adopted as a fraction 

of the contact length, z, defined by Stafford Smith, 1966, 

 

  It must be noted that the models shown in Figure 1 are valid 

for static analysis because the struts are located in order to 

represent the diagonal compressive field that develops in the 

panel.  When the structure is subjected to cyclic or dynamic 

loading, the diagonal struts should change according the 

direction of the loading.  

 

 The use of only one diagonal strut resisting compressive and 

tensile forces cannot describe properly the internal forces 

induced in the members of the frame.  In this case, at least two 

struts following the diagonal directions of the panel must be 

considered to represent approximately the effect of the masonry 

infill.  It is usually assumed that the diagonal struts are active 

only when subjected to compressive forces. However, 

compression-only elements are not available in common elastic 

computer programs.  In this case, it is recommend the use of 

tension-compression truss members in both directions with half 

of the equivalent strut area in each diagonal direction.  The use 

of this simplified model results in significant changes in the 

internal forces in the surrounding frame, especially the axial 

forces in the columns (tensile forces decrease, whereas 

compressive forces increase).  The assumption of a 

compression-only strut is acceptable on the basis that the bond 

strength at the panel-frame interfaces and the tensile strength of 

the masonry are very low.  Tensile forces, therefore, can be 

transferred through the interfaces only for small levels of 

seismic excitation.  This consideration may not be valid when 

either shear connectors are used at the interfaces or the masonry 

panel is reinforced with horizontal or vertical bars.  Refined 

models, however, can consider the tensile behaviour, which 

usually does not affect significantly the results. 

 

 

Ams

msA    /2

msA    /2

msA    /4

A    /4ms

A    /2ms

(a) Model A (b) Model B

(c) Model C

z/
 2

z/
3

 
 

Figure 1. Strut models considered in the preliminary study. 

 

Numerical results obtained from the strut models A, B and C 

were compared with those corresponding to a refined finite 
element model (FEM) implemented with the program 

ABAQUS. The general characteristics of this model are 

described by Crisafulli, 1997. The lateral stiffness of the 

structure was similar in all the cases considered, with smaller 

values for models B and C.  It must be noted that, for the multi-

strut models, the stiffness may significantly change depending 

on the separation between struts.  Figure 2 compares the 

bending moment diagrams obtained from one typical example 

according to the different models used in this study.  Model A 
underestimates the bending moment because the lateral forces 

are primarily resisted by a truss mechanism.  On the other hand, 

Model B leads to larger values than those corresponding to the 

finite element model.  A better approximation is obtained from 

Model C, although some differences arise at the ends of both 

columns. Similar conclusions can be drawn regarding the shear 

forces. The maximum axial forces in the frame members are 

approximately equal in all the models, even though the 

variation of the axial forces along the columns shows some 

discrepancy at the top end of the tension column and at the 

bottom end of the compression column.  
 

FEM

Model A

Model B

Model C

 
Figure 2.  Bending moment diagrams obtained from different 

models . 

 

It can be concluded that the single strut model, despite its 

simplicity, can provide an adequate estimation of the stiffness 

of the infilled frame and the axial forces induced in the frame 

70 



members by lateral forces.  However, a more refined model, 

Model C, is required in order to obtain realistic values of the 

bending moments and shear forces in the frame.  

 

 

3. FAILURE MODES OF THE MASONRY PANEL 

According to the literature, the most common types of failure 

are, Crisafulli, 1997:  

• shear failure due to debonding of the mortar-brick 

interfaces (shear-friction failure), which can occur 

following a stepped cracking pattern or by horizontal 

sliding along a mortar joint, 

• diagonal tension failure of the masonry units, as a result of 

a combination of compressive and shear stresses in the 

masonry, and  

• crushing of the masonry at the corners due to high 

compressive stresses.  

 

Macro-models, due to their simplicity, cannot represent 

precisely all the different types of failure observed for masonry 

panels. For this reason, a preliminary study should be conducted 

before modelling the structure in order to estimate the expected 

mode of failure of the masonry panel.  This can be achieved by 

applying the failure theory proposed by Mann and Müller 

(1982) or by Crisafulli et al. (1995) and (2002). After this 

preliminary study, the failure of masonry can be adequately 

considered in the model using a proper combination of strut and 

shear springs. 

 

The failure due to crushing of the masonry at the corners is 

uncommon for infilled reinforced concrete frames, although it 

has been observed in infilled steel frames.  In this case, the 

surrounding frame is more flexible and the contact length 

between the panel and the frame is smaller.  This situation can 

be also represented with the triple strut model illustrated in Fig. 

3, in which the central strut is divided into two elements with 

different areas, in order to consider approximately the increase 

of axial stresses occurring in the corners of the panels.  It is 

worth noting that this idea is presented here in a general sense.  

The practical application of this model requires further research 

in order to investigate the values of the area and length of the 

reduced element of the central strut. 
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Figure 3.  Multi-strut model proposed to represent the 

crushing of the masonry at the corners of the 

panel. 

 

 

 

4. PROPOSED MACRO-MODEL 

4.1 General description of the model 

A new macro-model is proposed in this paper in order to 

represent, in a rational but simple way, the effect of masonry 

infill panels. The model is implemented as a 4-node panel 

element which is connected to the frame at the beam-column 

joints.  Internally, the panel element accounts separately for the 

compressive and shear behaviour of the masonry panel using 

two parallel struts and a shear spring in each direction, see Fig. 

4. This configuration allows an adequate consideration of the 

lateral stiffness of the panel and of the strength of masonry 

panel, particularly when a shear failure along mortar joints or 

diagonal tension failure is expected.  Furthermore, the model is 

easy to apply in the analysis of large infilled frame structures.  

The main limitation of the model results from its simplicity, 

since the panel is connected to the beam-column joints of the 

frame it is not able to predict properly the bending moment and 

shear forces in the surrounding frame. 

 

It is assumed in the model that the stiffness of the shear spring, 

ks, is equal to a fraction, γs, of the total stiffness of the masonry 

strut  

 θγ 2cos
   

m

mms
ss

d

EA
k =  (1) 

where Ams is the total area of the equivalent strut (defined by 

several researchers based on experimental and analytical data, 

see Crisafulli, 1997), Em is the elastic modulus of masonry and 

dm is the diagonal length of the masonry panel.  The term cos2 θ 

is introduced in Eq. (1) to express the stiffness in the horizontal 

direction, being θ the inclination of the diagonal of the infill 

panel. The factor γs usually varies from 0.50 to 0.75, according 

to the results obtained by the authors when calibrating the 

model. 
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 Figure 4. Proposed multi-strut model (only the struts and 

shear spring active in one direction are 

represented). 

 

The hysteretic response of the shear spring is modelled 

following an elasto-plastic rule with variable shear strength 

(Crisafulli, 1997). The shear strength of the spring is controlled 

by a shear-friction mechanisms which can be adequately 

represented by the Mohr-Coulomb criterion.  Therefore, the 

strength is evaluated considering two different stages, namely, 

(i) elastic response before the bond-shear strength is reached, 
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and (ii) sliding, in which the strength depends on the 

compressive force of the struts.  In the latter case, the shear 

strength is limited in order to avoid large values due to high 

axial forces in the struts.  

 

The evaluation of the stiffness of the shear spring considered in 

the model, based on Eq. (1), does not reflect the actual shear 

behaviour of the masonry panel, but represents a practical 

approach which leads to adequate values of the lateral stiffness 

of the infilled frame.  In this way, it is possible to use the 

existing empirical expressions proposed for the calculation of 

the equivalent width of the masonry strut.  Additional 

experimental and analytical research is required in order to 

develop a more rational procedure which will be able to take 

into account the shear response of the infill panel not only in 

terms of strength but also in terms of stiffness. 

 

The axial stiffness of each strut, kai, accounts for the remaining 

fraction (1-γs) of the total stiffness which is assigned to two 

struts with equal area, see Fig. 1 (b):   

 

 
m

tmss
ai

d

EA
k

  2

   )1( γ−
=  (2) 

where Et is tangent modulus of the masonry defined according 

to an adequate hysteretic model for masonry. This is required in 

order to conduct nonlinear dynamic analyses of infilled frames 

subjected to earthquakes. In the proposed model, the response 

of the axial struts is represented according to a hysteretic stress-

strain relationship developed by Crisafulli, 1997.  The axial 

force and the axial displacement in the strut are related to the 

stress and strain of the masonry according to basic relationships 

of the structural analysis. 

 

The area of the equivalent strut, Ams, can decrease as the lateral 

displacement of the structure, and consequently the axial 

displacement of the strut, increases.  This is due to the reduction 

of the contact length between the panel and the frame, and due 

to the cracking of the masonry infill. It is assumed in the 

proposed model that the area of the equivalent varies as a 

function of the axial displacement ∆a, following the criterion 

illustrated in Fig. 5.  The variation of the strut area Ams is 

introduced in the model to gain generality, even though there is 

insufficient information to estimate the practical values of this 

variation.  According to experimental results reported by 

Decanini and Fantin (1986)  the equivalent width of the strut 

decreases by about 20% to 50% due to cracking of the masonry 

panel.  However, these values were derived under the 

assumption that the modulus Et remains constant, whereas the 

proposed model considers a variable modulus, which decreases 

as the axial compressive strain increases.  The main advantage 

of this approach is that the user can control the variation of the 

stiffness and the axial strength of the masonry strut. 

 

The response in the initial stage is primarily controlled by the 

shear spring and the bending moments and shear forces in the 

frame are similar to those obtained from the triple-strut model 

(Model C, Fig. 1). After the shear strength is reached and 

sliding starts, the mechanisms changes resulting in a significant 

increase of the actions induced in the frame. 
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Figure 5. Variation of the strut area considered in the model. 

 

 

4.2 Formulation of the model 

The practical implementation of the proposed model requires 

the use of several spring elements and beam or beam-column 

elements to represent the masonry panel and the surrounding 

frame.  In order to simplify the application of the proposed 

model, from the user point of view, a 4-node panel element has 

been formulated and implemented in the structural program 

RUAUMOKO (Carr, 2002).  In this way, the user only needs to 

define the characteristics of the masonry infill as a whole 

element, whereas the program evaluates internally the 

properties of the struts and the shear spring.  Fig. 6 illustrates 

the main characteristics of the proposed panel element. 

 

The vertical separation of both struts, hz, varies between z/3 and 

z/2, being z the contact length between the panel and the frame 

(Stafford Smith, 1966): 

 hz
hλ

π
  2

=  (3) 

where h is the storey height,  

 

 4   
4

sin   
 

mcc

m
h

 h I E

tE
h

θ
λ =  (4) 

 

t is the masonry thickness, Ec is the elastic modulus of the 

concrete, Ic is moment of inertia of the columns and hm is the 

height of the masonry panel. 

 

Three different sets of nodes are considered for the 

development of the panel element, namely, external nodes, 

internal nodes and dummy nodes.  The external nodes are those 

connected to the principal structure, whereas the internal nodes 

are defined by a horizontal and a vertical offset, xoi and yoi 

respectively, measured from the external node i. This is 

intended to represent the reduction of the dimensions of the 

panel due to the depth of the frame members.   
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Figure 6.  Proposed 4-node panel element. 

 

Three degrees of freedom, the translations u and v and the 

rotation θ, are considered in each of the external and internal 

nodes.  Four dummy nodes, with 2 translational degrees of 

freedom per node, are required to define the end of the strut 

members which is not connected to the corners of the panel. 

The formulation of the stiffness matrix and the nodal forces of 

the panel element is conducted considering the equilibrium and 

compatibility equations between the forces and displacement of 

the different coordinates systems.  These relationships, derived 

from the principle of Virtual Displacement (Livesly,1975), 

indicate that if a transformation matrix [Q] relates the 

displacements {u}A and {u}B expressed in two different systems 

of rectangular coordinates, the transpose of this matrix, [Q]T, 

also transforms the nodal forces {F}B to {F}A.  It can be shown 

that the stiffness matrix in the coordinates system “B” is equal 

to the double product of the matrix [Q] applied to the stiffness 

matrix in the coordinates system “A”: 

     

 { } [ ] { } { } [ ] { }ABBA FQFuQu       ,   
T==  (5a) 

 

 [ ] [ ] [ ] [ ]      A
T

QKQK B =  (5b) 

 

These relationships are successively applied to transform the 

structural parameters of each strut and spring of the model to 

the global system of coordinates, associated with the external 

nodes of the panel element.  

4.3 Axial behaviour of the struts 

Eq. (2) gives the axial stiffness of each strut in local coordinates 

(referred to the axial displacement). Consequently, a series of 

transformations are required to obtain the stiffness matrix in 

global coordinates and related to the displacements of the 

external nodes of the panel element. This process is developed 

according to the structural concepts presented in Section 4.2, 

and comprises three transformations, which are described in the 

following paragraphs. Each transformation will be referred 

using the sub-index A, B and C. 

 

The first transformation required in the analysis relates the axial 

displacement of the strut, ∆a, to the horizontal and vertical 

displacements, u and v, at the ends j and k of the strut:  
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where the matrix [Q]A is defined as a function of the inclination 

of the strut referred to the global system, θi, see Fig. 6 (a): 

 

[ ] [ ]iiiiAQ θθθθ sincossincos −−=  (7) 

 

The second transformation relates the displacements u and v at 

both ends of the strut to the global displacements, u, v and ϕ , at 

the internal nodes of the panel element.  It must be noted that 

each strut has one end connected to a dummy node and the 

other end connected directly to an internal node (see Fig. 7). 

Therefore the second transformation needs to be formulated in 

two steps.  The first step considers the relationship between the 

displacements at the internal dummy node j and the adjacent 

internal nodes m and n:   
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where the sub-indexes D and I refers to dummy and internal 

nodes, respectively.  The matrix [Q]ID (2x6) can be formulated 

using interpolation functions  which relates the displacements u 

and v corresponding to a point located at a distance s from the 

internal node.  It is found (Crisafulli, 1997) that the terms of this 

matrix are: 

 

Q(1,1)ID = Q1 cos
2
 θE + Q5 sen

2
 θE  

Q(1,2)ID = Q(2,1)ID = (Q1 - Q5) cos θE   sen θE  

Q(1,3)ID = Q2 cos θE   

Q(1,4)ID = Q3  cos
2
 θE + Q6 sen

2
 θE  

Q(1,5)ID = Q(2,4)ID = (Q3 - Q6) cos θE   sen θE  (9) 

Q(1,6)ID = Q4 cos θE   

Q(2,2)ID = Q1 sin
2
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2
 θE  

Q(2,3)ID = Q2 sin θE   

Q(2,5)ID = Q3 sin
2
 θE + Q6 cos

2
 θE  

Q(2,6)ID = Q4 sin θE   
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where θE is the inclination of the edge (see Fig. 7), 

Q1 = 1 – 3 χ2
 + 2 χ3

 

Q2 = (χ – 2 χ2
 + χ3

) LE 

Q3 = 3 χ2
 - 2 χ3 (10) 

Q4 = (– χ2
 + χ3

) LE 

Q5 = 1 – χ 

Q5 =  χ 

LE is the length of the edge and χ = s/LE. 
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Figure 7. Detail of one edge of the panel element. 

 

At the other end (node k) the strut is directly connected to an 

internal node and no special calculations are required for the 

second step in this transformation. Based on this consideration, 

and taking into account Eq. (8), the relationship between the 

displacement at u and v at the end of the strut and the global 

displacements at the three internal nodes (represented by sub-

index I) related to the strut is: 
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where the matrix  [Q]B includes the transformation defined by 

Eq. (11): 
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The final transformation relates the displacements of the 

internal nodes to the displacement of the external nodes.  This 

relationship for one node is given by: 
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where the matrix [Q]EI is a function of the horizontal and 

vertical offsets, xom and yom, corresponding to node m, see Fig. 

6 (b): 
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The transformation indicated by Eq. (14) needs to be applied 

three times, since each strut is related to three external nodes.  

For example, the strut 1 in Fig. 6(a) contributes to the external 

nodes 1, 2 and 4. Therefore, the complete transformation is: 
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where the transformation matrix is: 
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The complete procedure for the formulation of the stiffness 

matrix can be summarized in the following steps: 

   

a) Select the active struts in the model (1 and 3, or 2 and 4) 

depending on the direction of the loading. 

 

b) Evaluate the axial stiffness of the strut i, kai, using Eq. (2). 

 

c) Calculate the stiffness matrix referred to the global 

displacements u and v at both ends of the strut, according to 

Eqs. (5b) and (7): 

 

 [ ] [ ] [ ]Aai
T

Ai QkQK             
A

=  (17) 

          (4 x 4)           (4 x 1)              (1 x 4) 

 

d) Calculate the stiffness matrix of the strut referred to the 

three internal nodes (with three degrees of freedom at each 

θE 

⎥
⎦

⎤
⎢
⎣

⎡
                       IDQ
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node, u, v and ϕ), considering Eqs. (5b) and (12) 

 [ ] [ ] [ ] [ ]Bi
T

Bi QKQK                     
AB

=  (18) 

          (9 x 9)         (9 x 4)          (4 x 4)          (4 x 9) 

 

e) Calculate the stiffness matrix of the strut referred to the 

three external nodes (with three degrees of freedom at each 

node, u, v and ϕ), based on Eqs. (5b) and (16) 

 [ ] [ ] [ ] [ ]Ci
T

Ci QKQK                        
BC

=  (18) 

          (9 x 9)             (9 x 9)         (9 x 9)           (9 x 9) 

 

f) Assemble the terms of the matrix [Ki]C  into the matrix of 

the panel element, [Kp], (12 x 12), taking into account the 

nodes related to the strut. In the case of the strut 1, which is 

related to the external nodes 1, 2 and 4, the contribution of 

this strut to the total stiffness matrix is: 
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pK  (19) 

 

 

where the symbol * indicates a nonzero term in the matrix, 

which is obtained from matrix [Ki]C. 

 

g) Repeat the same process for the second strut in the model in 

order to complete the stiffness matrix of the panel element.  

 

A similar process of successive transformations should be 

applied in order to assemble the vector of nodal forces (12 

terms), based on Eq. (5a). 

 

4.4 Shear behaviour of the spring 

The consideration of the shear behaviour of the panel element is 

simpler, since only one spring element is used.  This spring is 

connected to two diagonally opposite internal nodes depending 

on the direction of the shear force, see Fig. 6(b).  It is worth 

noting that the implementation of the proposed model in a panel 

element allows the calculation of the axial forces in the struts to 

be used for evaluating the strength of the shear spring.  This 

inter-relationship between different members is not possible to 

be considered in most of the existing programs for structural 

analysis. 

 

The stiffness of the spring and the shear force are associated 

with the horizontal displacement, u, of the two diagonally 

opposite nodes (nodes 1and 3 or 2 and 4, depending on the 

loading direction).  Consequently, the stiffness matrix of the 

shear spring related to the displacements of the internal nodes n 

and k is: 
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where the term ks is defined by Eq. (1).  The only 

transformation required in this case is that given by Eqs. (13) 

and (14), which relate the internal nodes to the external nodes: 
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where the transformation matrix is: 
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Based on Eq. (5b), the stiffness matrix of the shear spring 

related to the external to two external nodes of the panel is: 

 [ ] [ ] [ ] [ ]Ds

T

Ds QKQK                        
D

=  (23) 

         (6 x 6)             (6 x 6)         (6 x 6)           (6 x 6) 

 

Finally, the terms of the matrix [Ks]D  need to be added to the 

total stiffness matrix [Kp] considering that the shear spring is 

connected to nodes 1and 3 or 2 and 4, depending on the loading 

direction.   

 

 

5. CONSIDERATIONS FOR 3-D MODELS 

In recent years there has been a significant increase in both the 

power of computers and the capacity of the software available 

for structural analysis. As a result, today it is possible to 

perform the nonlinear analysis of complete structures using 3D 

models. 

 

The strut model (single or multi-strut) has been developed and 

used to evaluate the in-plane behaviour of masonry infills, 

however, the out-of-plane response cannot be adequately 

represented because the infill behaves as an unreinforced slab.  

When implementing the proposed model in a 3-D computer 

program the following considerations should be taken into 

account. The masonry panel in the model should be a plane 

panel (in the undeformed state). This means than the four nodes 

of the panel should be in a plane.   If the panel is not plane, 

other effects can be important (shell or membrane behavior), 

which are not considered in the model presented here. When the 
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direction normal to the panel coincides with one of the global 

axes (e.g. the axis Z), the solution is simple.  It must be 

considered that the stiffness matrix of the panel (12 x 12) 

contributes only to the 12 global degrees of freedom in the 

plane of the panel (XY).  In this case, the displacements along Z 

and the rotations about X and Y should be ignored, because the 

model is not able to represent the out-of-plane behaviour. 

 

A more precise representation of the spatial behaviour of the 

infill frame will require the consideration of the out of plane 

response. For example, the panel can be considered as a “slab”, 

but this behaviour probably degrades rapidly as the 

displacement increases. This complex representation of the 

infill panel exceeds the scope of the strut model, which is 

applied as a simplified representation.  For more refined 

modeling, the use of 2-D or 3-D nonlinear finite elements to 

represent the entire panel could be a proper solution. 

 

 

6. NUMERICAL EXAMPLES 

The proposed model was applied to represent the response of a 

infilled frame tested at the University of Canterbury under 

vertical and cyclic lateral loading, in which a shear failure 

occurred (Crisafulli, 1997).   Using the computer program 

RUAUMOKO (Carr, 2000), the lateral and vertical forces were 

applied in successive increments, in which the mechanical 

properties of the structure were updated according to the strains 

and displacements induced in the different components of the 

model in the previous step.  The separation of the struts was 

adopted as hz = 0.23 m, which is equivalent to z/2.  The 

properties of the model associated with the axial cyclic 

behaviour of masonry were adopted from tests of the materials.  

 

Figure 8 compares experimental and analytical results in the 

range of small displacements in order to observe clearly the 

response in the initial stage.  The force level at which shear 

cracking occurs according to the analytical procedure, 59.8 kN, 

agrees very well with the measured value equal to 65.0 kN.  

The overall theoretical response is compared in Fig. 9 with the 

strength envelope measured during the test, indicating that the 

proposed model can estimate the lateral resistance of the infilled 

frame and the strength degradation observed for large 

displacements.  In addition, the failure mechanism is properly 

represented, being the analytical model capable of describing 

the shear cracking of the masonry panel and the yielding of the 

tension column of the frame. 
 

The proposed model has been also implemented in the program 

SesimiStruct (SesimiSoft, 2006) and numerical results were 

compared to experimental data by Smyrou et al. (2006), 

showing the accuracy of the model to evaluate the nonlinear 

response of the structure.  Furthermore, they conducted an 

interesting sensitivity analysis to evaluate the relative 

importance of the parameters used in the model to represent the 

cyclic response of masonry. 

 

 

7. CONCLUSIONS 

This paper describes a refined macroscopic model for infilled 

frames, in which the principal premises are the rational 

consideration of the particular characteristics of masonry and 

the adequate representation of the hysteretic response.   

 

Since shear failure of the masonry (shear friction and diagonal 

tension failure) is the most common type of failure observed in 

a masonry panel, a multi-spring model is developed to represent 

specifically this situation.  The model accounts separately for 

the compressive and shear behaviour of masonry using a double 

truss mechanism and a shear spring in each direction.  The 

proposed configuration allows the calculation of the axial forces 

in the strut to be used for the evaluation of the shear strength of 

the masonry panel. This concept is implemented in a 4-node 

panel element which is being incorporated in the computer 

program RUAUMOKO (Carr, 2000). 

 

The comparisons between experimental data obtained by the 

authors and other researchers and analytical results indicate that 

the cyclic response of infilled frames can be properly 

represented by the proposed model.  This, however, requires a 

fine calibration of the model, which is usually achieved after 

several adjustments, particularly the parameter defining the 

hysteretic behaviour of masonry. The need of these adjustments 

indicates that the detail prediction of the real cyclic response of 

infilled frames is still a difficult task. 

 

Recommendations are also given for the analysis of infilled 

frames when failure due to crushing of the corners is expected 

in the masonry panels.  Further research is required in order to 

implement this model. 
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Figure 8. Comparison between experimental and analytical 

data in the range of small displacements. 
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Figure 9. Comparison between experimental and analytical 

data in the range of small displacements. 
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