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Proposed Metric for Evaluation
of Solar Forecasting Models
This work presents an alternative metric for evaluating the quality of solar forecasting
models. Some conventional approaches use quantities such as the root-mean-square-
error (RMSE) and/or correlation coefficients to evaluate model quality. The direct use of
statistical quantities to assign forecasting quality can be misleading because these met-
rics do not convey a measure of the variability of the time-series for the solar irradiance
data. In contrast, the quality metric proposed here, which is defined as the ratio of solar
uncertainty to solar variability, compares the forecasting error with the solar variability
directly. By making the forecasting error to variability comparisons for different time
windows, we show that this ratio is essentially a statistical invariant for each forecast
model employed, i.e., the ratio is preserved for widely different time horizons when
the same time averaging periods are used, and therefore provides a robust way to com-
pare solar forecasting skills. We employ the proposed metric to evaluate two new fore-
casting models proposed here, and compare their performances with a persistence
model. [DOI: 10.1115/1.4007496]

1 Introduction

One of the leading impediments for achieving higher market
penetration and power grid connectivity of solar and wind tech-
nologies is the variable nature of such resources. Recent studies
on higher penetration impact of renewables have emphasized the
need for accurate forecasts if large variable capacities are to be
achieved [1–3]. Historically, most of the power grid variability
has been on the load (demand) side because fossil and nuclear
generation are designed to operate in stable, dispatchable and con-
trollable fashion. In order to increase renewable power capacity
penetration, independent system operators must now cope with
generation variability. Therefore load forecasting errors have eco-
nomic consequences on electricity markets, as well as other opera-
tional impacts [2].

Current efforts in developing forecast models include the devel-
opment of artificial neural networks (ANNs) for time series pre-
dictions, semi-empirical models based on satellite images and
predictions based on national or regional weather predictions (see,
e.g., Refs. [4–6]). Many of the existing forecast models have been
shown to predict the 1-h integrated solar irradiance 1 - or 2-h
ahead to good accuracy [7–9] and forecast models for same-day
[4,6], 1–5 days ahead have also been developed with good accu-
racy and reliability. Effective forecasting methodologies and rele-
vant inputs considered can vary widely depending on the time
horizons considered.

However, consideration of the relative advantages of different
forecasting methodologies is not straightforward because different
authors use different evaluation criteria, and also because the solar
radiation data sets are dependent on geographic location, time of
year, and climate. The second issue is particularly significant as it
is relatively easier to forecast the solar irradiance during clear day
periods, and therefore an oversimplistic forecast model can yield
very good conventional statistical metrics for those conditions
when solar irradiation is highly predictable. The same oversimplis-
tic forecast model would certainly fail under different geoclimatic
conditions. The purpose of this work is to present an alternative
approach to evaluate the quality of forecast models by defining
and quantitatively comparing the solar resource variability (V) and

the forecast uncertainty (U). The observation that leads to the rela-
tionship between V and U is that forecast model errors are typically
higher during wet (cloudy) days than during dry (clear) days, as
clearly demonstrated in a few recent studies [4,6]. In this paper, we
analyze forecast models and quantify the relationship between
“variability” and “uncertainty” in order to produce a consistent
metric that is independent of the time horizon under consideration.

Since the forecast quality measures that is introduced depends
on using clear sky solar irradiation model as a normalization fac-
tor to compute V and U and to define a persistence model, we con-
sider two clear sky models. We also test a definition of V and U
and a persistence model based on the extraterrestrial solar irradi-
ance so that, unlike the clear sky models, location dependent
parameters can be avoided. The clear sky and persistence models
are described in Secs. 2 and 3, respectively. In Sec. 4, the solar
irradiance variability is defined and discussed following the work
from Refs. [10,11]. After these preliminaries, the goal here is to
evaluate the forecasting using a more robust and meaningful met-
rics which is based on determining the average forecasting skill
(hSi). In Sec. 5, we describe the forecasting model evaluation pro-
cedure. In Sec. 6, two forecasting models are developed and,
along with the persistence models, are evaluated in terms of the
conventional and proposed evaluation metrics. The rest of the pa-
per discusses further forecasting evaluations for various time-
horizons and other possible applications of understanding forecast
uncertainty and variability.

2 Clear-Sky Models

This section describes two clear sky models which are used for
persistence forecasts and for normalization in the evaluation met-
ric described later. The parameters of the clear sky models are site
specific to the location of the study (Merced, CA.) and for the pe-
riod of the study (Jan. 1–Oct. 31, 2010) and therefore may not be
accurate for other locations. The interested reader can find other
well studied clear sky models from [12]. Here we only choose two
clear sky models, one which is a based on a polynomial regression
and the other based on the European Solar Radiation Atlas
(ESRA) clear sky model, so that the sensitivity of the methods for
forecasting of clear sky days can be examined. The sensitivity
should be small since short-term forecasting involves the use of
previous irradiance values that can be used to adjust the clear sky
predictions. This particular feature of short-term forecasting is
shown using a persistence model in Sec. 3.
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2.1 CS Model 1: Polynomial Fit. The first clear sky model
that we are considering is a third degree polynomial function of
cosine of the solar zenith angle cosðhÞ

Iclr;poly ¼ c3ðcos hÞ3 þ c2ðcos hÞ2 þ c1ðcos hÞ þ c0 (1)

where the coefficients where determined as: c3 ¼ 688, c2 ¼ 1103,
c1 ¼ 518, c0 ¼ �3, and Iclr;poly is in W=m2

. This model was gen-
erated using selected clear sky days in the data set collected in the
year 2010 at the University of California Merced solar observa-
tory station. The accuracy for a few selected days is shown in
Table 1.

2.2 CS Model 2: ESRA. As a second clear sky model,
Iclr;ESRA is computed using the ESRA model adopted from Refs.
[13,14]. The algorithms used are developed by Ref. [13] and were
obtained from the accompanying c.d. to Ref. [14]. The ESRA
model only depends on a site dependent Linke-Turbidity factor
ðTLÞ. Here, TL is set to TL ¼ 4 so that the bias for all of the clear
sky days of the entire data set is minimized.

The polynomial and ESRA clear sky models are compared in
Fig. 1 which shows that models do not exactly match. Although
their correlation is high, there is a spread of RMSE ¼ 14:7W=m2

.
It is intentional to have a difference between the polynomial and
the ESRA clear sky models so that we can test the resulting sensi-
tivity to the evaluations of the developed forecasting models.

3 Persistence Models

3.1 Clear Sky Persistence Models. The clear sky persist-
ence models are defined as having the clear sky conditions (ratio
between the measured irradiance to the clear sky irradiance) per-
sist for the next time-step

k̂ðtþ DtÞ ¼ k�ðtÞ ¼ IðtÞ
IðtÞclr

(2)

From k̂ðtþ DtÞ, the prediction for the next value of solar irradi-
ance value Iðtþ DtÞ is computed as

Îðtþ DtÞp ¼ k̂ðtþ DtÞIðtþ DtÞclr (3)

This simple persistence model only relies on Iclr which is time and
location dependent. Since the persistence model only relies on Iclr,
there can also be several persistence models depending on how
Iclr is estimated. Here we consider two persistence models based
on the clear sky models already presented

Îðtþ DtÞpoly ¼ kpolyðtÞIclr;polyðtþ DtÞ (4)

and

Îðtþ DtÞESRA ¼ kESRAðtÞIclr;ESRAðtþ DtÞ (5)

An illustration of the persistence model, Îðtþ DtÞpoly, is shown in
Fig. 2 which shows two prominent characteristics of persistence
model in general. The first characteristic, is that large forecasting
errors mainly occur during abrupt changes in I(t) which are a
result of passing opaque clouds. The second characteristic is the
obvious lag of the abrupt change as can be clearly seen in the sec-
ond day in Fig. 2. During cloudless periods, the persistence model
is extremely effective as a forecast model as there is very little
error resulting from the persistence of the clear sky values.

3.2 Clearness Persistence Model. As a slight variation of
the persistence models just described, we also apply a clearness
persistence model which is based on the extraterrestrial solar radi-
ation ðI0Þ rather than Iclr, that is computed in W=m2

as

I0 ¼ G0 cosðhzÞ (6)

where G0 ¼ 1367 W=m2
is the solar constant. Moreover, this per-

sistence does not involve any location-dependent fitting parame-
ters as the clear sky models, however, when compared to
irradiance the I0 has a large positive bias I0. The resulting
clearness-based persistence model is similarly defined as

Îðtþ DtÞ0 ¼ k0ðtÞI0ðtþ DtÞ (7)

Table 1 Comparing clear sky and extraterrestrial models with
clear sky and clearness persistence models

RMSE (W=m2
) MBE (W=m2

)

Iclr Îp Iclr Îp

Polynomial 28.1 12.9 �12.8 �0.0906
ESRA 26.6 20.7 7.44 �0.186
Extraterrestrial 257 31.5 �252 7.28

Fig. 1 Comparison of ESRA and polynomial-fit clear-sky mod-
els. The coefficient of determination between the two models is
(R2)5 0.998 and the RMSE is RMSE5 14.7W/m2.

Fig. 2 Example of persistent model performance for a clear
and a partially cloudy day (Mar. 20–21, 2010). The clear day is
approximated very well by persistent model, whereas a “time
delay” is observed for the partially cloudy day.
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Applying this persistence model gives us an extreme case, where
the normalization factor has a large positive bias compared to
measured clear sky irradiance values and will be useful to evalu-
ate the sensitivity of how accurate clear sky models need to be for
short-term forecasting.

3.3 Clear Sky Modeling and Forecasting Accuracy. This
section is intended to clarify the difference between the accuracy
of clear sky models (Iclr) and persistence forecast models (Îp) dur-
ing clear days. The main difference is that the persistence models
utilize the clear sky (or clearness) index at time t as an indication
of the irradiance value at tþ Dt, whereas the clear sky model does
not use this information. Clear sky models are generally used with
satellite-based modeling to predict irradiance for location where
no other measurements exist, however, in forecasting applications,
on-site solar irradiance measurements are generally available. As
a result, the persistence models are more accurate than the clear
sky models.

To demonstrate, consider the arbitrarily selected clear days
shown in Fig. 3 which shows the measured hourly average val-
ues of the solar irradiance I(t), the polynomial based clear sky
model Iclr;poly, and the polynomial based persistence forecast
model Îpoly. As this graph shows, the clear sky model fails to
overlap well the irradiance values for a few of the days while
on other days there is close overlap. The persistence, on the
other hand, is fairly accurate for each of the days shown. The
same analysis can be done with other clear sky (or extraterres-
trial) and persistence models. Applying the RMSE (defined in
Sec. 5) and mean-bias-error (MBE) as levels of accuracy for
the days shown in Fig. 3, we get the results shown in Table 1.
According to the obtained values, the persistence-based fore-
casts are much more accurate than the accuracy of a clear sky
model indicate. Similar results can be obtained for other fore-
casting horizons besides 1-h. Based on our experience, clear
sky modeling accuracy is not critical for short-term forecasting
applications.

4 Solar Resource Variability

The variability of solar irradiance at the ground level is due to
several factors such as the presence of participating gases in the
atmosphere (CO2, H2O, etc.), aerosols, cloud cover, and solar
position [14]. Most of the solar variability, however, is due to the
latter two factors. The variability due to solar position is com-
pletely deterministic while the variability due to clouds is consid-
ered mostly stochastic because precise models for cloud dynamics
have been proven elusive. The portion of solar variability that is
of most concern to forecast models is the cloud-induced (or sto-
chastic) component [3,10,15], thus we refer to solar variability as
the standard deviation of the step-changes of the ratio of the meas-
ured solar irradiance to that of a clear sky solar irradiance so that
the diurnal variability is neglected

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

t¼1

IðtÞ
IclrðtÞ

� Iðt� 1Þ
Iclrðt� 1Þ

� �2

v

u

u

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

t¼1

DkðtÞð Þ2
v

u

u

t (8)

In the above definition for V, k is either the clear sky or clearness
index depending on whether we use the Iclr;poly, Iclr;ESRA or I0. This
formulation of variability is essentially the same as in Refs.
[11,16], except for the modification to include the deterministic
changes ðDkðtÞÞ as is done in Refs. [10,15]. For very small time
intervals of less than 5min this modification is not too important
because the deterministic (solar position dependent) variations are
small. Figure 4 shows values of DkðtÞ for a sequence of clear and
cloudy days. For clear days, the fluctuations DkðtÞ are much
smaller than for the cloudy days where large ramps are apparent
in the DkðtÞ time-series signal.

5 Uncertainty in Solar Resource: Forecasting Errors

5.1 Conventional Statistical Metrics to Characterize
Model Quality. The coefficient of determination is a comparison
of the variance of the errors to the variance of the data which is to
be modeled

R2 ¼ 1� VarðÎ � IÞ
VarðIÞ (9)

where the denominator in the second term of the right hand side
of the equation is the calculated variance VarðIÞ of the data set,
not to be mistaken for the variability (�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðDkÞ
p

).
Another common evaluation metric is the RMSE which yields

a measure of the average spread of the forecasting errors. The
RMSE is calculated as,

Fig. 3 Measured, modeled, and forecasted clear sky days arbitrarily selected for
2010. This figure illustrates the improved accuracy of a clear sky persistence fore-
cast model over original clear sky model. The RMSEs are, respectively, 20:7 W=m2

and 26:6 W=m2 for the clear sky persistence forecast model and the original
model.

Fig. 4 Time series of global horizontal irradiance (I) values,
estimated clear-sky I and calculated values of stochastic step
changes, Dk (Data for May 8–10, 2010 in Merced, CA)
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

t¼1

ÎðtÞ � IðtÞ
� �2

v

u

u

t (10)

where the summation is carried over the entire data set. Typically
night values are removed in the above calculations of R2 and
RMSE and only 1 value is given to summarize the entire data set.
Both the RMSE and the R2 do not help to quantify the amount of
variability actually in the irradiance data. Other solar forecasting
metrics include normalization of RMSE (relative RMSE), the
MBE, the mean absolute error, the mean absolute percentage
error, and the correlation coefficient (q). Again, none of these
metrics embed a sense of variability of the irradiance time-series
data.

5.2 Proposed Metric. Here we define the uncertainty as the
standard deviation of a model forecast error divided by the esti-
mated clear sky value of the solar irradiance over a subset time
window of Nw data points

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nw

X

Nw

t¼1

ÎðtÞ � IðtÞ
IclrðtÞ

� �2

v

u

u

t (11)

This definition is related to the commonly used RMSE [4,6,8,9]
where sometimes relative or normalized RMSE is used [4,6,9]
with respect to the average irradiance. The present definition of
solar resource uncertainty is closely related to those except that in
our definition, the normalization is made with respect to Iclr for
which we will use Iclr;poly, Iclr;ESRA or I0 in our evaluations.

The following metric directly evaluates the variability that is
effectively reduced by the forecasting models by taking the differ-
ence between U and V and normalizing it with respect to V

s ¼ V � U

V
(12)

where U and V are calculated over the same data set. The metric
for evaluating the quality of forecast models is more simply com-
puted by considering the ratio between uncertainty, U, and vari-
ability, V, such that

s ¼ 1� U

V
(13)

The forecast quality measure is defined above is such that when
s¼ 1 it means that the solar irradiance is perfectly forecasted, and
when s¼ 0 the solar irradiance variability dominates the forecast.
By definition, the persistence model should have a forecast quality
measure of s¼ 0, as can be shown by comparing Eqs. (3), (8), and
(11). The ratio U/V would be then defined as a measure of the ben-
efit of a forecast method with respect to the persistency forecast
based on the clear sky index. If s is negative for a developed fore-
cast model, then that model performs worse than a persistence
forecast. A typical forecast model should be characterized with
values between 0 and 1, with higher values indicating better
forecasting.

Since U and V are random variables, it follows that s is also a
random variable. To obtain a representative value of s, we take
the average value hsi as the indication of forecast skill. The aver-
age is obtained by calculating U and V for various time-window
subsets. If a time window contains a large number of clear days,
then both U (forecasting error) and V (the solar irradiance vari-
ability) will be small for that time window, thereby, the relative
amount of error to variability is preserved. The time windows are
selected by fixing Nw (the window size) and computing Uj and Vj

over each jth window in the time series. The window partitioning
is illustrated in Fig. 5, showing solar irradiance and calculated

values of Dkpoly for the data set spanning Jan. 1–Oct. 31. Low con-
fidence experimental values due electrical power issues that
occurred in May and July were removed from the calculations. In
the case shown in Fig. 5, the window size is Nw ¼ 500 and are
separated by the dashed vertical bars. As mentioned above, night
values are not included in Fig. 5, nor are they used in the calcula-
tions below.

6 Application of Proposed Metric to Forecast Model
Evaluation

The metric proposed is now applied to solar forecasting models
based on ANNs. We employ feedforward ANNs to approximate
future hourly values of the I(t) using lagged values of the time se-
ries. In the first case, we use only the time-series of hourly averaged
I(t), and in the second case, we use more information of I(t) by
including 30-min and 6-min moving averages and standard devia-
tions computed from 30-s interval data. In this work, we do not con-
sider applying an input selection scheme to determine the most
relevant inputs (see e.g., Ref. [4]), but rather limit the scope to
determining whether or not including several more inputs than just
the hourly averaged values of I(t) time series alone will improve the
forecasting performance of the models. The forecasting performan-
ces are evaluated based on the conventional and the proposed met-
ric (s) in order to compare and contrast the quality of the models.

6.1 NAR and NARX Forecasting Models. The forecast
model including only the hourly averaged I(t) time-series as an
input is referred to as the nonlinear autoregressive (NAR) fore-
casting model, and the model including additional inputs is
referred to as the nonlinear autoregressive with exogenous inputs
(NARX) forecasting model. The NAR model for 1-h ahead pre-
dictions can be mathematically expressed as

Îðtþ DtÞ ¼ f IðtÞ; Iðt� DtÞ;…; Iðt� nDtÞð Þ (14)

where nþ 1 is the number of time delays of the time series I(t)
which are included as inputs to predict Iðtþ DtÞ. For this applica-
tion, we set the number of time delays to 2 (e.g., I(t), Iðt� DtÞ are
used to predict Iðtþ DtÞ). The function (f) is based on a feed-
forward ANN structure where the number of hidden neurons is set
to 10. The values of the network weights are determined by the
“early-stopping” method for ANN training where the data is split
into three sets—a training set for computing directional deriva-
tives of the errors in weight space, a testing set for determining

Fig. 5 Time series of solar irradiance and Dk . The figure illus-
trates the partition of the time series into window sizes of
Nw 5 500 h. Each dashed vertical line represents the bounda-
ries of the 500-h time windows.

011016-4 / Vol. 135, FEBRUARY 2013 Transactions of the ASME

Downloaded From: http://solarenergyengineering.asmedigitalcollection.asme.org/ on 04/09/2014 Terms of Use: http://asme.org/terms



when to stop training, and a validation set which is not used at all
during the ANN training [14,17]. Data from Oct. 15–31, 2010 is
used for validation and the rest of the data from Jan. 1, 2010–Oct.
14, 2010 is split randomly into 80% for the training set and 20%
for the testing sets. The ANNs are implemented using the MATLAB

Neural Network Toolbox Version 7.0.
The NARX model is similar to the NAR model except that

more time-series signals are utilized in the forecast scheme

Îðtþ DtÞ ¼ f IðtÞ; Iðt� DtÞ;…; Iðt� nDtÞð
u1ðtÞ; u1ðt� DtÞ;…; u2ðtÞ;…; umðt� nDtÞÞ

(15)

where m is the number of exogenous inputs. In this case, the u’s
are 30-min and 6-min backwards moving averages (MA) and
standard deviations (SD) of clearness index values which were
calculated from 30-s interval data, denoted as k0 to distinguish
from k which is the clear sky index for hourly averages of I. For
example, the 30-min MA and SD is calculated as

uMA30min
ðtÞ ¼ 1

N

X

t

s¼t�30min

k0ðsÞ (16)

and

Fig. 6 Scatter plot of U and V using various clear sky models including a polynomial-based, the ESRA-based, and the clear-
ness index model which uses extraterrestrial irradiance for normalization

Journal of Solar Energy Engineering FEBRUARY 2013, Vol. 135 / 011016-5

Downloaded From: http://solarenergyengineering.asmedigitalcollection.asme.org/ on 04/09/2014 Terms of Use: http://asme.org/terms



uSD30min
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

t

s¼t�30min

ðk0ðsÞ � k0ðtÞÞ2
v

u

u

t (17)

where �k0ðtÞ ¼ uMA30minðtÞ. The 6-min MA and SD are similarly
defined. These inputs are an attempt to use the trends at the last
moments of the current hour to forecast the next 1-hour time step.
Again, f in Eq. (15) is also a feedforward ANN which contains
more input neurons than the NAR model and the number of time
delays are set to 2 for each signal. The number of hidden neurons
are set to 10, and the early-stopping method is used for adjusting
the weights.

6.2 Comparison Between Persistent and Forecasting
Models. The forecast quality evaluations were performed for the
data set collected from Jan. 1–Oct. 31 of 2010. Figure 6, shows
scatter plots of Uj versus Vj computed for each jth time-window
partitioning of the data set for Nw ¼ 50; 100; 150; and 200. These
plots allow us to visualize the forecasting performance over vari-
ous time window subsets with different variability values. The dif-
ference between each of the evaluations is the normalization
factor in the calculations of U and V, where we used on separate
occasions Iclr;poly, Iclr;ESRA, and I0. These plots show that the per-
sistence models (also distinctive in terms of the normalization
variable) all result in s¼ 0, since Uj ¼ Vj for any window j. Note
that, for the extraterrestrial case, Uj and Vj have a smaller numeri-
cal range than the cases for using Iclr;poly and Iclr;ESRA. This is
because I0 > Iclr;poly and Iclr;ESRA. In all cases, the general trends
and conclusions are the same which can be visualized by the scat-
ter points in Fig. 6. The NAR model forecast quality seems to be
not much better than persistence, while the NARX model does
show some significant forecasting benefit since many of the scat-
ter points fall below the 1:1 line.

The results are quantitatively evaluated by computing an
approximation of hsi. As mentioned earlier, s is a random vari-
able which depends on the ratio U/V. The statistical average of
this the slope of the scatter points as shown in Fig. 5, since the
scatter plots from each of the models form almost a linear
relationship. The slopes calculations are repeated using
Nw ¼ 10; 11;…; 200 and the results are plotted in Fig. 7, where
we can see that, values of hsi converge to a certain value as Nw

increases. For the persistence models hsi ¼ 0, for the NAR
model 2% < hsi < 5%, and for the NARX model 10% < hsi
< 15%. Again, there is very little difference in the resulting
approximation of hsi amongst which normalization factor is
used in the evaluation procedures.

Numerical values of hsi obtained using Nw ¼ 200 are given in
Table 2, along with the more common forecast quality metrics,
the R2 and the RMSE. Considering first R2, which range
0.964–0.977 on the validation data set, this forecasting quality
measure gives the impression that the forecasts are very accurate
even for the persistence models. This performance measure, how-
ever, is misleading because, by definition, the persistence model
does not capture any of the solar irradiance variability. Similarly,
the RMSEs, which range from 48.8–59.4 W=m2

, give misleading
conclusions if compared to other RMSEs in the literature (e.g.,
Refs. [4,6–9,18]) without first knowing about the solar irradiance
variability conditions in those studies. By using the R2 or RMSEs,
it is not clear either how much those difference actually translate
to differences in forecast quality. In terms of the hsi metric, it is
clear that each persistence model has no forecasting quality since
hsi ¼ 0 which means that U¼V (all the uncertainty is due to the
variability).

Comparing the hsi values for the NAR and NARX models the
hsi values are slightly different depending on the normalization
factor. When the Iclr;poly and Iclr;ESRA are used, the difference of
the computation of hsi leads us within 61%, there is some,
although small, sensitivity on forecasting quality when using dif-
ferent normalization factors.

The time series of the developed forecasting models, the persis-
tent model and the measured I(t) values are shown in Fig. 8. The
lines of the measured values and NARX model predictions are in
bold in order to reduce clutter and also to emphasize the perform-
ance of the NARX model which seems to perform the best. This
figure illustrates that the models perform similarly well over the
clear day. In general, each model performs very well on clear
days as opposed to the highly variable days where most of the
larger errors occur.

Fig. 7 Evaluation of hsi5 1� U=V versus Nw (time-window
sizes) after modifying algorithm with different clear sky and per-
sistence models
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6.3 Comparison With a Previously Validated Forecast
Model. In this section, we show how the NAR and NARX mod-
els can be compared to a previously validated forecast model by
Perez et al. [6]. The Perez et al. model is based on cloud motion
forecasts (CMF) and was used to validate solar irradiance fore-
casts of 1–5 h ahead for several climatically distinct sites for a pe-
riod spanning from Aug. 23, 2008–Aug. 31, 2009. In the CMF
technique, satellite derived images are used to extract pixel values
of clearness index (k(t)) at time t. The motions of the clouds are
then predicted and are used to determine future images from
which values of kðtþ 1Þ are inferred. From the kðtþ 1Þ predic-
tions, solar irradiance forecasts are obtained. The study in Ref. [6]
is relevant for comparisons here because the persistent model is
defined equivalently to the present work. Specifically, both persis-
tent models make use of the current clearness index value to pre-
dict future values of solar irradiance.

The models are compared by observing the improvements
over persistency and, furthermore, the improvement over the
persistent models are approximate to the proposed metrics, that
is, U=V � RMSE=RMSEp, where RMSEp is the RMSE of the
persistence model. To empirically show this, the RMSEs of the
persistent, NAR, and NARX models were calculated using
Nw ¼ 200 hours then we plot the RMSEs of the NAR and NARX
forecasts versus the RMSEs for the persistent model as shown
in Fig. 9(a). The slopes obtained by the regression fits are equiv-
alent to the slopes describing the average of the ratio U/V.
Taking the slope quantities to estimate hsi we get values:
hsi ¼ 1� 1:004 ¼ �0:4% and hsi ¼ 1� 0:863 ¼ 13:7%, which
are approximately equally to those in Table 2 for the NAR and
NARX models, respectively. The approximate equivalence
between U/V and RMSE/ RMSEp can also be established from
the definitions of U, V, and RMSE and realizing that the normal-
ization factors effectively cancel out when taking the ratios. Esti-
mating U/V with RMSE/ RMSEp is much easier than the
procedure used to produce the graphs in Fig. 9, so this approach

is recommended. However, we emphasize here the rationale for
proposing the metric, which is that the metric gives a rigorous
measure of the effective probing into the random variability
(Eq. (13)).

In Table 2 of Ref. [6], RMSEs for 1-h ahead forecasts of the
CMF model and the persistent model are given. These values
are used to produce Fig. 9(b), where we calculate a regression
line after setting the intercept value at zero. The point inside
the red circle was considered an outlier and neglected from the
fit (for this datum, the persistent model performed much better
than the CMF model in terms of the RMSE). Just as the value
of hsi for the NAR and NARX models from Fig. 9(a), the hsi
value of the CMF model is estimated to be 1� 0:923 � 8%.
This value is close to the value obtained by NARX model value
reported here, therefore, a NARX-type approach seems to pro-
duce comparable forecasting performance to the CMF model
approach.

7 Testing With a Numerical Weather Prediction
Forecast Study

Here we consider an interesting case to test our proposition that
forecasting errors are mainly due to solar variability and to affirm
using performance measures that directly compare solar irradiance
forecast errors with solar irradiance variability. In Ref. [19], solar
irradiance forecasts were developed a spatially distributed array of
sensors over Germany. An important result highlighted in this study,
is the reduction of overall forecasting errors, as evaluated using the
RMSE, when averaged over all the sensors. Here we explain their
observations of the error reductions using the framework recently
proposed by Ref. [15] for studying variability for an ensemble of
PV systems. According to Refs. [15,10], the variability for a fleet of
PV systems can be determined from knowledge of the individual
standard deviations ri

Dt of the fluctuations and the correlation coeffi-
cients q

i;j
Dt of the fluctuations for each pair of stations from

Table 2 Forecasting quality metrics for the persistent, NAR, and NARX models on validation and training data sets. For compari-
sons, the metric s51 – U/V is based on three normalization factors.

Training set
Model R2 RMSE (W/m2) spoly sESRA s0

Ip;0 0.964 59.4 0 – –
Ip;ESRA 0.969 55.5 – 0 –
Ip;poly 0.973 52.4 – – 0
NAR 0.972 53.2 1.74% 2.27% 3.71%
NARX 0.977 48.8 11.56% 12.02% 13.1%

Validation set
Model R2 RMSE (W/m2) spoly sESRA s0

Ip;0 0.918 62.4 0 – –
Ip;ESRA 0.926 59.5 – 0 –
Ip;poly 0.934 56.5 – – 0
NAR 0.924 60.2 �2.56% �2.53% 2.66%
NARX 0.949 49.4 16.12% 16.25% 20.1%

Fig. 8 Hourly forecasting comparisons for five consecutive days (Oct. 27–31,
2010) in the validation data set with night values removed
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Based on the results obtained in Secs. 4, 5, and 6 of this paper, we
anticipate that U / V, thus we make the assumption that for the
forecasts in Ref. [19], Dk / e, where e is a forecast error. Using
this assumption, we proceed by adapting Hoff and Perez’s vari-
ability model to the ensemble average solar irradiance forecasting
error and also assume that, for all i, ri

Dt ¼ r1
Dt where now we let

ri
Dt and q

i;N
Dt represent the forecast RMSE and the cross correlation

of the forecast errors, respectively. After expanding the first sum-
mation we get

rFleet
Dt

r1
Dt

¼ 1

N
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 !
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u

t (19)

Each summation term can be represented as an average N times

the average ðNh…i ¼P…Þ and, after assuming hqi;1
Dt i ¼ hqi;2

Dt i
¼ … ¼ hqi;N

Dt i ¼ hqi, we reexpress Eq. (19) as

fR ¼ rFleet
Dt

r1
Dt

¼
ffiffiffiffiffiffiffi

hqi
p

: (20)

This equation, which only depends on the cross correlations
(hqi), gives us a very simple expression for estimating the
reduced combined uncertainty for a network of spatially distrib-
uted solar irradiance measurements sites. As it turns out, hqi
(the cross correlations of Dk or e) can very accurately be mod-
eled as a function of distance x between stations. In fact, when
plotting hqi of Dk (as in Ref. [15]) or e (as in Ref. [19]) versus
x the plots appear to follow a similar decreasing trend. In
Ref. [19], qðxÞ was modeled with an exponential parametric
function, q ¼ expðða1xÞa2Þ, however, the parameters were not
given. The fitting function was re-estimated here by selecting
points on the model fit of their graph, but this time using the
parametric exponential function expða3x3 þ a2x

2 þ a1xþ a0Þ.
The results are shown in Fig. 10 where the selected points are
indicated by the square markers and the dashed line is the fit.
Using the fit, we approximate the reduced error factor fR given
by Eq. (20) as

fRðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=x

ðx

0

qðx0Þdx0
s

(21)

Applying this equation gives the solid line in Fig. 10 which
matches closely the observed values obtained from Ref. [19].

It is also interesting to point a possible lower bound for fR
which occurs when all the forecast errors are uncorrelated. In this
situation, fR ¼ 1=

ffiffiffiffi

N
p

as can be verified from Eq. (20). This is the
same result for reduced solar irradiance variability predicted in
Refs. [11,10] and observed approximately from experiments in
Refs. [20,21].

8 Applications of the Forecast Metric

As compared to a single site, the solar variability can be sig-
nificantly reduced by distributing solar power generation sites
over geographically diverse locations [11,16]. Building distrib-
uted solar power sites can take some time however due to a num-
ber of reasons (building permits, capital costs, etc.). One
immediate way to avert negative impacts of variability of the so-
lar resource is through reliable forecasting. We demonstrated
that a well trained forecasting model has the effect of reducing
stochastic variability which is the real concern for solar power.
In one sense, the purpose of forecasting is to reduce the amount
of stochastic variability because this type of variability is diffi-
cult to manage. By applying the proposed metric, we can provide
an estimate on the amount of reduced stochastic solar variability
and therefore provide some reassurance that some of the solar
variability could be handled. If the solar variability is reduced

Fig. 9 Root mean square errors (RMSEs) for different forecast
models versus RMSE of persistent model: (a) NAR and NARX
model and (b) CMF model [6]. The outlier point within the dashed
circle was ignored for calculating the regression line in (b).

Fig. 10 Empirical data compared with modeling predictions of
uncertainty (forecast errors) reduction
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by geographically distributed generation, then the gains are com-
pounded by improved forecasting, as shown in Sec. 7. In
Ref. [19], the “relative” RMSE (rRMSE) for one location are
found to be on the order 36%, where as for an ensemble of sites
the rRMSE is dramatically reduced to 13% for one-day ahead
forecasts.

As recent renewable energy integration studies have reported
[1–3], the variability and intermittency of renewables will
likely have significant impacts on reserve and storage require-
ments. Assuming that the amount of reserve and storage
capacity needed to back-up solar energy is proportional to the
solar variability, then we can potentially reduce these require-
ments with reliable forecasting. The forecast metric allows one
to estimate by how much a forecasting model will save in stor-
age and reserve requirements. Because the variability of solar
irradiance is an important quantity to characterize (e.g., proba-
bility of large ramp rates, frequency of fluctuations, etc.) for the
purposes of estimating future impacts of including solar energy,
it is beneficial to examine historical solar irradiance data sets in
order to characterize solar irradiance variability on a temporal
and spatial basis. Based on the observations provided here, it
can be reasonably expected that a forecasting model, if it is
trained well enough over data sets that thoroughly represent the
climatology for a given location, should retain their perform-
ance in terms of the forecast metric when applied to locations
with similar climates. This kind of analysis would be valuable
information for simulating impacts due to the uncertainty and
variability of solar availability over certain geographical
regions of interest.

9 Conclusions

A new forecasting metric is proposed and compared to conven-
tional forecasting performance metrics such as the RMSE and the
coefficient of determination (R2). We showed that the proposed
metric is a good indicator of the extent to which a forecast model
effectively predicts the stochastic variability of solar irradiance.
The purpose of forecasting models is essentially to prescribe the
nontrivial component of the solar irradiance, and hence improve
our understanding of the solar resource variability. The concept is
illustrated by comparing three forecast models. A persistent clear-
ness index model is used as baseline, so that improvement over
the baseline model would only occur when the forecast models
demonstrate predictability for the stochastic variability of solar
irradiance. As expected, persistent models are characterized by
low forecast quality when the solar irradiance exhibits cloud-
induced fluctuations, but perform very well for clear sky periods.
Two other models based on artificial neural networks were also
applied, one of which included short-range moving averages as
inputs which did produce effective forecasts by reducing the sto-
chastic variability by 12–20%. In terms of the conventional statis-
tical metrics, each model performs well with R2 above 90% and
RMSEs below 65 W=m2

over the entire data sets. The advantage
of the the proposed metric over existing metrics is that the forecast
quality is robust since the ratio U/V is preserved over all time win-
dow subsets.
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