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Abstract The goal of this group is to define the reporting

requirements associated with the statistical analysis

(including univariate, multivariate, informatics, machine

learning etc.) of metabolite data with respect to other

measured/collected experimental data (often called meta-

data). These definitions will embrace as many aspects of a

complete metabolomics study as possible at this time. In

chronological order this will include: Experimental Design,

both in terms of sample collection/matching, and data

acquisition scheduling of samples through whichever

spectroscopic technology used; Deconvolution (if

required); Pre-processing, for example, data cleaning,

outlier detection, row/column scaling, or other transfor-

mations; Definition and parameterization of subsequent
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Sweden

F. Wulfert

Division of Food Sciences, University of Nottingham, Sutton

Bonington Campus, Loughborough LE12 5RD, UK

R. Goodacre � D. Broadhurst (&) � D. B. Kell

School of Chemistry and Manchester Interdisciplinary

Biocentre, University of Manchester, 131 Princess Street,

Manchester M1 7ND, UK

e-mail: david.broadhurst@manchester.ac.uk

A. K. Smilde

Biosystems Data Analysis, Swammerdam Institute for Life

Sciences, University of Amsterdam, Nieuwe Achtergracht 166,

Amsterdam 1018 WV, Netherlands

A. K. Smilde

TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, Zeist

3700 AJ, Netherlands

B. S. Kristal

Department of Neurosurgery, Brigham and Women’s Hospital,

221 Longwood Ave, Boston, MA 02115, USA

J. D. Baker

Pfizer, Inc, Ann Arbor, MI, USA

R. Beger

Division of Systems Toxicology, National Center for

Toxicological Research, 3900 NCTR Road, Jefferson, AR

72079, USA

C. Bessant � C. Manetti

Cranfield University, Silsoe, Bedfordshire MK45 4DT, UK

S. Connor

Safety Assessment, GlaxoSmithKline, Park Road, Ware, Herts

SG12 0DP, UK

123

Metabolomics (2007) 3:231–241

DOI 10.1007/s11306-007-0081-3



visualizations and Statistical/Machine learning Methods

applied to the dataset; If required, a clear definition of the

Model Validation Scheme used (including how data are

split into training/validation/test sets); Formal indication on

whether the data analysis has been Independently Tested

(either by experimental reproduction, or blind hold out test

set). Finally, data interpretation and the visual representa-

tions and hypotheses obtained from the data analyses.

Keywords Chemometrics � Multivariate � Megavariate �
Unsupervised learning � Supervised learning � Informatics �
Bioinformatics � Statistics � Biostatistics �
Machine learning � Statistical learning

1 Introduction

It is clear that algorithms do not drive metabolomics

investigations; however the question(s) one seeks to answer

with metabolomics are clearly likely to dominate any

subsequent data analysis strategy. In many metabolomics

experiments, the number of samples collected is much

smaller than the number of metabolites or variables (fea-

tures) measured, and simple visual inspection of all the

data is not likely to be sufficient to complete the analysis.

Therefore, there is a need for some method to extract

information from the flood of data (Goodacre et al. 2004;

Hall 2006; Weckwerth and Morgenthal 2005). Thus, sta-

tistical (univariate, multivariate) or machine learning

analysis (for the difference see Breiman 2001) of metab-

olite data, as well as various attendant informatics analyses,

is necessary to produce knowledge that can be tested and

lead to new hypotheses and biological understanding.

Figure 1 shows the flow of information (pipeline) in a

metabolomics experiment (Brown et al. 2005). The first

step is judicious design of the experiment (DoE), followed

by data capture, followed by storage of the data and

associated metadata, followed by pre-processing, followed

by data analysis and followed by data interpretation. In

some cases, there may be iterative loops at one or more of

these stages (Paolucci et al. 2004a, b). This pipeline ends

in one or more report(s) that attempt(s) to chronicle this

process (or workflow), summarize the data analysis, then

derive some conclusions from the data analysis and test

those results. At present, this reporting process is per-

formed in a very ad-hoc manner, with different authors

reporting in very different ways (even within the same

institution, or same lab, across multiple publications), and

sometimes barely explaining at all exactly how the statis-

tical analyses were performed.

This document aims to formalize the reporting of met-

abolomics data analysis in two ways: (i) to define a

‘reporting’ scheme (detailed in Tables 1–6) so as to avoid

confusion about terminology, and; (ii) to present the first

publication of what is considered by this committee to

comprise the minimal reporting requirements for each

stage, from the pre-processing of the data to the validation

of the hypotheses obtained through initial data analyses. In

conjunction with this formal part of the document, at

several points the authors will also recommend some basic

strategies for performing the various stages of the data

analysis workflow being defined. These will be used to

illustrate the reporting ideas and to help guide the less

experienced members of our community. This committee

strongly seek and encourage feedback from the community

about these guidelines and asks for potential changes to

improve upon the guidelines.

2 Design of experiments (DoE)

Any good scientific study starts with rigorous experimental

design (Montgomery 2001). Formalizing this process is

both useful to the practitioner and to the reader of associ-

ated publications. There are generally two stages involved

in the study design. First, the biological study itself, this

can be as simple as collecting a set of biological replicates

for a steady state system or be as complex as a major

epidemiological project (Bland 2000; Rothman and

Greenland 1998) involving many thousands of subjects at

various levels of exposure to a factor of interest, multiple

ages, different genders and co-morbidities, and/or at all

stages of a disease process. Realistically, all currently

defined statistical and machine learning methods are only

capable of interpolation, that is to say they give answers

within their knowledge realm and can not accurately

extrapolate beyond this. Therefore, as much metadata as

possible should be made openly available, and all metadata

that has been used to discover information in the meta-

bolomics dataset must be made available. This will allow

Fig. 1 The initial linear flow diagram identifying the clear flow of

information (pipeline) in a typical metabolomics experiment. This is

necessarily simplified as the real situation is much more complicated:

However, in all cases it starts with a biological question and it ends

with data interpretation
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the scientific community to assess adequately the validity

of the study at large. This is particularly the case in met-

abolomics when the numbers of variables can exceed the

numbers of samples, and the statistical powering used;

consequently, the software used to calculate the statistical

power (under assumptions of normality or otherwise) must

be given. In larger studies, and longer-term longitudinal

investigations it may prove to be difficult to submit all of

the metabolomics and metadata at the time of publication,

so summaries of salient parts of such data should be

reported in a table and if possible full meta-data should be

available upon request; or via the author’s website, or

better (Kell 2007) by accompanying the manuscript as

supplementary information if that mechanism exists with

the journal publishing the work. However, where release of

full meta-data is not possible immediately, for example

where interim results are published, it would be accepted

that there may be a delay prior to the release of such data

and publication can proceed without it. An example of

essential data that does always need to accompany a pub-

lication is the patient characteristics table (Table 1) in

Sabatine et al. (2005). In ‘case’/’control’ clinical studies,

examples of such important metadata may be the way in

which ‘controls’ are matched to ‘cases,’ descriptive sta-

tistics about the distribution of ages in the sample cohort,

genetic single nucleotide polymorphisms (SNPs), or count

Table 1 Level 1

Term Explanation Remarks

Pre-processing Generic term for methods to go from raw instrumental data to clean data for data processing

Pre-treatment Transforming the clean data to make them ready for data processing (scaling, centering, etc) Bro and Smilde (2003)

Processing The actual data analysis (PCA, PLS, ASCA, GP etc.)

Post-processing Transforming the results from the processing for interpretation and visualization (e.g., antilog etc) Nicholson et al. (1999)

Validation All activities aimed at assuring the quality of the conclusions drawn from the data analysis

Interpretation Hypothesis generated, pathways affected, or visualization of the data.

Scheme for reporting metabolomics data analysis: The reporting scheme has several levels. Level 1 is the subdivision in several steps of the

metabolomics pipeline. Level 2 is a subdivision of the level 1 items

Notation: X has i = 1,...,I rows (the samples) and j = 1,...J columns (the metabolites, chemical shift regions, or m/z.rt channels). In case of

hyphenated methods (e.g., GC-MS, LC-MS, LC-NMR etc), the rows of X are strung out (or vectorized) GC-MS (or LC-MS) profiles

Table 2 Level 2: pre-processing

Term Explanation Remarks

Deconvolution Resolving overlapping peaks in an NMR spectrum or GC or

LC chromatogram using the second dimension (usually

MS). In the case of GC or LC this generates a peak table

where each metabolite is represented by one variable

Jonsson et al. (2004); Kvalheim and Liang

(1992); Tauler et al. (1992); Veldhuis et al.

(1987); Weljie et al. (2006)

Peak-picking Peaks in an NMR or GC or LC-MS chromatogram are

selected that may represent signals. This results in a table

with either ppm or m/z.rt channels and corresponding

intensities.

see CODA (Windig et al. 1996), and (Katajamaa

and Oresic 2005)

Target analysis Peaks in an NMR spectrum or GC or LC chromatogram at a

specific d or m/z channel are integrated and used in a

peak table

Andreev et al. (2003)

Alignment Synchronizing the chromatograms or NMR spectra such

that each metabolite signal has the same retention time or

chemical shift in each sample.

see Warping, COW, DTW, PLF (Forshed et al.

2005; Skov et al. 2007; Tomasi et al. 2004;

Vogels et al. 1996)

Apodization function

and weighting factors

Function and parameters used to multiply free induction

decays (FIDs) before Fourier transform to NMR spectra

Phasing Method used to phase-correct peaks in Fourier transformed

NMR spectra

Phasing can be done manually or automatically

by NMR software

Base-line Correction Method used to address baseline tilts and drifts in Fourier

transformed NMR spectra.

Methods used to correct baseline features in

NMR. Usually done automatically or semi-

automatically

Bucketing Method used to define chemical shift bins sizes and

integrate the bin intensities

Holmes et al. (1992); Nicholson et al. (1999)
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ratios for known sources of bias such as male/female or

smokers/non-smokers/ex-smokers etc are exhibited. An

important piece of meta-data is the method used to identify

the classes of the sample, including the expected accuracy

of that method. Many diagnosis methods (e.g., grade of

cancer Campbell et al. 2001) are far from 100% accurate,

and this is obviously going to affect the later data analysis.

In addition a particularly important issue that can cause

confounding or bias (Broadhurst and Kell 2006; Ioannidis

2005; Ransohoff 2005) is the likelihood that ‘cases’ will be

often be taking considerably more pharmaceutical drugs

than are the ‘matched’ ‘controls.’ Summation data may

also be necessary in some studies due to legal require-

ments, such as US HIPAA regulations, which restricts use/

release of some medical information.

The second part of the DoE is the analytical design.

Once samples are collected (or grown) the analysis pro-

cedure should be reported with enough detail so that the

Table 3 Level 2: pre-treatment

Term Explanation Remarks

Normalization Operation performed within or across rows to make the row profiles

comparable in size

E.g., for correcting dilution differences in

urine analysis by NMR or LC-MS

Centering Operation across the rows to translate the center of gravity of the dataset Also called reference subtraction.

SMART also centers, but not with a

mean (Keun et al. 2004)

Mean-centering Commonly used method for centering in which each column is expressed in

deviations from its mean (across the rows)

Subtracts the mean of the column, thereby

translating the center of gravity of the

data to the origin

Scaling Operation performed within a column to make the column profiles more

comparable

Autoscaling A form of scaling which mean-centers each value of the column followed by

dividing row entries of a column by the standard deviation within that

column

Also called UV (unit variance) or Z-

scaling

Range scaling Mean-centering followed by dividing row entries of a column through the

range within that column

van den Berg et al. (2006)

Pareto scaling Mean-centering followed by dividing row entries of a column through the

square root of the standard deviation within that column

Transformations

(Log, Square

Root, Box- Cox)

Transformations to linearize or otherwise change the scale of the data, e.g., to

remove heteroscedastic noise

Missing values Data in the table which are not available for the analysis Rubbin and Little (1987)

Outliers Data points (samples, variables or a specific combination of both) which

deviate from the distribution of the majority of the data

Table 5 Level 2: post-processing

Term Explanation Remarks

Back-

transformation

Transforming the data

back to the original

domain (if a

transformation was

performed prior to the

analysis)

Cloarec et al. (2005b)

Visualization Plots that represent the

original data or the

results from the data

analysis in a such a

way that facilitates

interpretation

Table 4 Level 2: processing

Term Explanation Remarks

Model The model selected for analyzing

the data (PCA, PLS, LDA, QDA

etc.)

Method The method selected for analyzing

the data (e.g. GP, etc.)

Parameter

estimation

Parameters in models/methods that

have to be fitted to the data

Meta-parameter

estimation

A parameter that helps define the

structure and optimization of the

model (e.g., number of LVs in

PLS, ridge parameter etc.)

Table 6 Level 2: validation

Term Explanation Remarks

Training set Subset of samples used to estimate the

parameters

Monitoring set Subset of samples used to estimate the

metaparameters

Test set Subset of samples used to establish the

generalizability of the model/method
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experiment can be replicated by others. This will include

the number of analytical replicates that were processed, the

protocol for loading samples into the respective analytical

instrument (e.g., randomized or designed), the instrumental

parameters and the duration of the experiment. At first

glance this may appear beyond the scope of the data ana-

lyst; however this information may prove crucial in the

interpretation of the data. For example, a particular study

might compare disease (‘case’ and ‘control’) samples

where all the ‘cases’ are measured on a Monday and all the

‘controls’ on a Tuesday; it would be impossible to know

whether any clustering was due to disease state or day of

data acquisition, until the hypothesis or biomarkers were

further validated with subsequent testing. Best of course is

to randomize the time of analysis equally between the two

cohorts (if sample numbers are small stratified random

sampling may be more reliable (Bland 2000)).

3 Data reduction/deconvolution

In the context of metabolomics, the term deconvolution

(the separation of overlapping signals into individual

chemical peaks) is mainly used in the realm of hyphenated

chromatography/mass spectrometry (MS) where raw 3D

matrices (time vs. mass vs. intensity) are particularly

complex. In the realm of nuclear magnetic resonance

(NMR), deconvolution may describe the separation of

overlapping peaks either into individual resonances (e.g.,

lipoproteins from lactate in serum/plasma spectra (see for

example Serrai et al. 1998) or to metabolite lists using

reference spectral libraries to aid deconvolution (for

example Provencher 1993; Weljie et al. 2006). In order to

avoid confusion and to expand the process to encompass

other methods of converting raw signal (from any mea-

surement technology) into a list of quantitative metabolite

concentrations, the term data transformation is preferred.

Thus, for a single study, the starting point for pre-pro-

cessing and then data analysis is a single matrix N · D,

where, N = the number of samples and D = the number of

variables. These variables may, for example, represent

actual metabolites, or conversely may correspond to binned

regions of a continuous property of the data (e.g., binned

chemical shifts in NMR, or wavenumbers in Fourier

transform infrared spectroscopy (FT-IR)).

There are examples of data analysis methods that can be

applied to more complex representations of metabolite

information; however, they are more the exception than the

rule and therefore will be treated as such. Practitioners of

these methods are encouraged to follow the reporting

standards described below as closely as possible. Minimum

reporting standards for ‘deconvolution’ are very much

instrument- (and even manufacturer-) dependent and are

discussed by the Chemical Analysis working group for MS

(with and without chromatography; viz. gas chromatogra-

phy (GC)-MS and liquid chromatography (LC)-MS), NMR

spectroscopy, and FT-IR spectroscopy in Sumner et al.

(2007).

4 Pre-processing and pre-treatment

We outline a proposed scheme to describe each step of the

metabolomics workflow in Table 1. In Table 1 we make a

distinction between pre-processing and pre-treatment. For

NMR data, raw free induction decay (FID) weighting,

phasing, baseline correction and referencing to an internal

standard, normalizing to spectral area, and conversion to

magnitude spectra are considered pre-processing proce-

dures. The process of defining the sizes of chemical shift

bins and integrating the intensities in the chemical shift

bins is pre-treatment. NMR peak alignment to account for

chemical shift variability, whether global over the whole

spectrum, or localized to specific regions is regarded as

pre-processing.

There are many methods for pre-processing data

matrices of the sort produced by metabolomics studies,

many of which are order-independent. In this light of this it

is necessary to report what pre-processing has been done,

in what order, and what software was used. The easiest way

to report this is in the form of a workflow. This can be

expressed in the text or preferably as a flow diagram

(especially if the workflow is unusual or complex).

Table 2 defines a list of the popular order-independent

pre-processing methodologies and their definitions, and

Table 3 lists of popular pre-treatment algorithms. These

definitions include whether the methods have any meta-

parameters, and whether the method operates per sample,

per variable, or on the total matrix. Any ‘new’ or unusual

method not listed here should be clearly explained (rather

than referencing this table) and should be reported in a

similar fashion to that shown here.

Order-dependent pre-processing methods are more dif-

ficult to report as they may need some level of

interpretation or assessment by the reader before the

analysis moves onto the next stage (such as outlier detec-

tion, e.g., by using principal components analysis (PCA) or

other techniques, missing value imputation etc.). More than

one workflow may need to be reported. For example, the

author could present one workflow for the outlier detection

and another for subsequent cluster/discriminant analysis.

The order of execution and contents of these sub-work-

flows should be made very clear (this could include

reference to previously published workflows). Any

assumptions made about the structure of the data should
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also be made clear, as should any decisions made at any

stage (e.g., on what basis were outliers removed).

5 Data analysis and algorithm selection

The sort of question that one wants to answer generally

drives the workflow, including the selection of the appro-

priate algorithm (or set of algorithms). See Fig. 2 for a

diagrammatic representation of the most popular ones.

However, algorithms are also likely to be specified based

on previous experiences and local expertise; it is not the

role of this article to suggest ‘preferred’ algorithms (and

anyway the best methods depend on the problem domain

Wolpert 1997). In addition, it is not feasible to discuss the

pros and cons of each method as these are often subjective,

but we can define a reporting structure based on the bio-

logical application. We can also suggest that a key step in

the validation of any statistical result of metabolomics data

is the visualization of the proposed result against the raw

data to confirm that it is not an artefact of data acquisition,

pre-processing, pre-treatment or noise magnified by the

statistical scaling method applied.

6 Univariate analysis

Although metabolomics experiments do generate multi-

variate data (see below); one can employ univariate

methods to test individually for metabolites that are

increased or decreased significantly between different

groups (note: consideration of the issues of multiple par-

allel hypothesis are needed when applying univariate tests

to multivariate data). These tests include parametric

methods for data that are normally distributed, the most

common being ANOVA (analysis of variance), t-tests, and

z-tests (for a review of univariate methods and a discussion

on the issues of multiple hypothesis testing see Broadhurst

and Kell 2006). When a normal distribution of the data

cannot be assumed, then non-parametric methods can be

used, e.g., the Kruskal–Wallis test. These tests produce a

test statistic from which statistical significance and confi-

dence can be calculated. Usage and reporting of these

univariate procedures is haphazard in publications across

the whole of science. It is suggested that the metabolomics

community take section IV.A.6.c. of the Vancouver

Guidelines (http://www.icmje.org/) as the starting point:

‘‘Describe statistical methods with enough detail to

enable a knowledgeable reader with access to the

original data to verify the reported results. When

possible, quantify findings and present them with

appropriate indicators of measurement error or

uncertainty (such as confidence intervals). Avoid

relying solely on statistical hypothesis testing, such as

the use of P values, which fails to convey important

quantitative information.’’

In their article entitled ‘Statistics with Confidence’ Altman

and colleagues (Altman et al. 2000) also suggest that:

‘‘For the major finding(s) of a study we recommend

that full statistical information should be given,

including sample estimates, confidence intervals,

tests statistics, and P values—assuming basic details

such as sample sizes and standard deviations have

been reported earlier in the paper.’’

In addition, graphics/visualizations should be accompanied

by sufficient metadata such that a knowledgeable reader

could reproduce them given access to the data and to

appropriate software.

An example: Suppose that in a study comparing samples

from 100 diabetic and 100 non-diabetic men of a certain

age, a difference of 6.0 mmHg was found between their

mean systolic blood pressures. This could be reported as

either: (i) a Student’s t test was performed after normality

was assessed using the ‘XYZ’ test. The test statistic was

2.4, with 198 degrees of freedom and had an associated

P-value of 0.02. The 95% confidence interval for this dif-

ference was calculated to be from 1.1 to 10.9 mmHg, or (ii)

these groups differed at P < 0.05 (Student’s t-test, after

normality was assessed using the XYZ test) mean ± SD

difference was 6.0 ± xx. Combinations of these may also

be used, either alone or conjunction with other measures

such as standard error of the mean.

Unsupervised [use X data only]
• Hierarchical clustering

– Agglomerative clustering

• Partitional clustering
– K-means, fuzzy c-means

• Principal components analysis
• Independent components analysis
• Kohonen neural networks

Supervised [use X & Y data]
• Artificial neural networks

– MLPs, RBFs

• Discriminant analysis
– LDA, PLS-DA, CVA, DFA, SVMs

• Regression analysis
– MLR, PCR, PLS, OPLS

• Evolutionary-based algorithms
– GA, GP (GC), EA, EP

• Regression trees
– CART, MARS, C4.5, Random Forests

• Inductive logic programming

Sample n

Sample i, …

Sample 1

Y-var 2

Second trait
to be 

predicted

Y-var 1

First trait
to be 

predicted

X-var 3

Metabolite
3

X-var 2

Metabolite
2

X-var 1

Metabolite
1

Objects (1-n)
going down in 
different rows

i

Y-var 2Y-var 1X-var 3X-var 2X-var 1

i, …

Y-var 2Y-var 1X-var 3X-var 2X-var 1

Input data Output data

Abbreviations: multilayer perceptrons(MLPs), radial basis 
functions (RBFs), support vector machine (SVMs), LDA 
(linear discriminantanalysis, PLS (partial least squares), 
CVA (canonical variates analysis), DFA (discriminant
function analysis), MLR (multiple linear regression), PCR 
(principal components regression), GA (genetic algorithm), 
genetic programming/computing (GP/GC), evolutionary 
algorithm (EA), evolutionary programming (EP), 
classification and regression tree (CART), multivariate 
adaptive regression splines (MARS).

Fig. 2 Typical multivariate algorithms used for unsupervised and

supervised analysis
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Methods of univariate data analysis are constantly being

developed and/or refined. Over the past 30 years accepted

ideologies have been repeatedly questioned and advances

in computational power have produced new ways of

interpreting established tests (for example, bootstrapping of

test statistics Efron and Gong 1983; Efron and Tibshirani

1993). It is strongly recommended that the author(s) to

provide sufficient information for novel method(s) to be

independently reproducible and verifiable.

7 Multivariate analysis

As mentioned earlier, metabolomics data are essentially

multivariate. For a single study, the starting point for data

analysis is a single matrix N · D where, N is the number of

samples (objects) and D is the number of variables

(metabolites/binned chemical shifts/wavenumbers/masses/

retention times etc.). Each independent variable may be

thought of as a single geometric dimension, such that each

sample may be considered to exist as a single point in an

abstract entity referred to as D-dimensional hyperspace.

The role of the analyst is to understand/interpret/query the

underlying properties of the data points distributed in this

hyperspace. This may be done in the form of unsupervised

dimensionality reduction (i.e., usually projection into a

space of significantly smaller dimensionality whilst trying

to minimize information loss), or clustering (identifying

groups of points which are more similar to each other than

to the rest of the data), or by correlation analysis, or by

supervised pattern recognition/machine learning (including

multivariate regression and discriminant analysis). It is

beyond the scope of this document to describe (or criticize)

all the available methods (good starting points are Duda

et al. 2001; Hastie et al. 2001). This would be an impos-

sible task given the current number and the speed in which

new methods are being developed. The central point of this

report is not to prescribe methodologies, but rather to

ensure that the methods used are reported consistently and

in detail. With this in mind, we have tried to distil the

salient features of unsupervised and supervised multivari-

ate analysis in order to unify the reporting process. There

are several excellent reviews on current multivariate

techniques (Beebe et al. 1998; Chatfield and Collins 1980;

Duda et al. 2001; Everitt 1993; Krzanowski 1988; Lavine

1998; Manly 1994; Martens and Næs 1989; Massart et al.

1997).

8 Unsupervised methods

Unsupervised methods can be split into two basic forms.

First, there is dimension reduction into a lower dimensional

space typified by principal component analysis (PCA;

Jolliffe 1986). This is fundamentally a multivariate linear

transformation and is often used as a pre-processing step

prior to application of a supervised method. One important

reporting method needed for such methods is a reference to

the software used or the theoretical source of the mathe-

matical algorithm (and possibly the related computer code)

should be included and a statement about any assumptions

made about the characteristics of the dataset before

transformation.

A second type of unsupervised method is Cluster

Analysis (see e.g., Everitt 1993). Here the algorithm

attempts to ‘find’ clusters of similarly characterized sam-

ples (i.e., points clustering together in the multi-

dimensional feature space). Once found they may be used

to classify each sample and similarities between clusters

may be assessed (for example using hierarchical cluster

analysis). Again, in terms of reporting, details of the

algorithm or software used must be given, including the

similarity measure used. It is also the case that pretty well

any clustering algorithm will perform a clustering, and it is

important to assess the validity of such clusters. A variety

of methods exist for this and if readers are to be persuaded

that the clustering has meaning then these should to be used

and reported. A recent reviewed describes the different

approaches available (Handl et al. 2005). Reporting of

other novel and standard unsupervised techniques, such as

self-organizing maps (Kohonen 1989), should follow sim-

ilar guidelines.

In both cases, the method for optimizing meta-parame-

ters such as the number of components in PCA or

architecture of the self-organizing map should be reported.

It is also possible to determine correlations between the

metabolites or variables measured by conducting Corre-

lation Analysis. In this case as well as generating

correlations usually depicted as nodes linked by edges

(Broadhurst and Kell 2006; Ebbels et al. 2006), often with

the correlation coefficient given, it is possible to construct

correlation matrix pseudocolor maps which can be use as

first step to explore the data (Cloarec et al. 2005a; Miccheli

et al. 2006) and integrate data from different sources

(Crockford et al. 2006). In terms of reporting, details of the

correlation algorithm or software used must be given, along

with any cut of point for what is considered a significant

correlation.

9 Supervised learning

When one knows the classes or values of the responses

that one is trying to predict (also known as the Y-data)

associated with each of the sample inputs (X-data), then

supervised methods may be used. Ideally, the goal here
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is to find a model (mathematical/rule based/decision tree)

that will correctly associate all of the X-data with the

target Y-Data. The desired responses may be categorical

(e.g., disease vs. healthy) or quantitative/continuous (e.g.,

blood glucose, body mass index, age, etc.). Usually,

supervised methods require some sort of meta-parame-

terization (Table 4). Meta parameters are parameters that

help define the structure and optimization of the model.

For example, in a PLS model (Eriksson et al. 2001;

Martens and Næs 1989; Trygg and Wold 2002), the

actual weights (loadings) are the parameters of the

model. The number of latent variables is a single meta

parameter. In neural networks (e.g., Bishop 1995; Ripley

1996), the learning rate and criteria for halting the

learning process are examples of meta parameters. In

genetic programming (Kell 2002; Koza 1992; Langdon

1998)—mutation rate, crossover type, operator lists and

maximum tree depth are examples of meta parameters.

In methods employing variable selection, the information

specifying which variables have been selected for a

particular model is also considered a meta-parameter,

since this is often used to optimize model performance.

All of these attributes must be reported alongside the

final model itself in order for other scientists to be able

to have a chance of reproducing the model.

Supervised methods often need to be reported in con-

siderably more detail than unsupervised ones. The more

meta-parameters involved, the more detailed the reporting

required (see example below). As with the unsupervised

methods, details of the algorithm or software used must be

given. In addition, all static meta-parameters should be

reported, and the method of optimizing the dynamic meta-

parameters described in detail—including internal model

validation (vide infra).

An example: Suppose that one was optimizing the

meta-parameters for a feed forward neural network using

the gradient descent back propagation algorithm (Wass-

erman 1989) which was being trained to differentiate

between diseased versus healthy patients. Although the

following list is not exhaustive, the meta-parameters that

one would have to optimize include: number of layers

the neural network contained, number of nodes in the

hidden layers, whether a bias node (set to +1) was used

or not, what the learning rate and momentum were, what

squashing function was used (e.g., sigmoidal, tanh,

linear, etc.), when the error was propagated (after

each training pair was presented to the network, or

after all presentations), and how many iterations/epochs

the neural network was trained for. Likewise, and of

equal importance, one should note the approaches

tried and discarded. Ideally, researchers could also

report a synopsis of the results of these discarded

approaches.

10 Model generality and model validation

If the results of a metabolomics study indicate some sort

of general model, or general biomarker discovery, for a

particular biological system/study then reports of this

assertion must be backed up by some sort of model

validation.

Model validation is needed in both supervised and

unsupervised analysis. Model validation is often misinter-

preted as simply model optimization through internal

validation. Internal validation is used in supervised meth-

ods to optimize meta-parameters (e.g., number of latent

variables in PLS, or number of training epochs in neural

networks). Even if internal validation appears to often

improve predictive capability of the final model chosen,

this model’s generalization capability tends to be overop-

timistic (overfitting), hence it is not a replacement for

extrinsic model validation.

Model validation in its simplest form involves split-

ting the available data into 3 sets: training, monitoring,

and test (Table 6). The training data are used to build

one or more possible models, the monitoring data are

then used to assess and optimize the quality of every

‘trained’ model (e.g., via meta-parameters) and the

independent test data are used to measure the general-

ization/predictive expectation of the final published

‘optimal’ model. There are several validation methods in

which the training and monitoring sets are initially

combined and then subsequently dynamically partitioned

into temporary training/monitoring datasets (e.g., boot-

strapping and K-fold cross-validation). Approaches which

make use of training and monitoring data can be said to

be examples of empirical model selection, however other

approaches exist which are theoretically justified. For

example a Bayesian approach might use the training data

to determine either a maximum posteriori point estimate

of the model parameters or their joint posterior distri-

bution. In this case no monitoring data is used as the

‘optimal’ model is selected automatically. The generality

of such a model of course still needs to be assessed with

the test data set. For a recent review of model selection

literature see http://www.modelselection.org. It is

important to note that in all cases the test set is ‘blind’

to the model building and selection process. The test

procedure involves applying the test data to the ‘optimal’

model. The subsequent model predictions are compared

to known (blind) responses and a test statistic calculated

(e.g., Q2 statistic Eriksson et al. 2001). Such models are

known to be extremely overoptimistic, especially for

K = 1 (Golbraikh and Tropsha 2002).

For unsupervised methods such a PCA, the monitoring

data set is not needed. However, care has to be taken in

how results are presented in publications. For example, if
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when using PCA no test set is applied then one cannot

make bold claims about data clustering when plotting

principal component y against principal component x

when x and y are anything other than 1 and 2 respec-

tively. Searching all possible component axes is a form

of multiple testing (supervised analysis) and therefore

requires the application of proper corrections to the

clustering statistic (e.g., Bonferroni).

Suggesting the best method of model validation is

beyond the scope of this document. Here we are concerned

with the reporting of methodologies and results. Thus, we

simply encourage authors to provide external (i.e., blind)

measures of model generality and/or avoid making false

claims of model (or test) generality beyond the scope of the

data presented.

Proposed minimum information reported for multivariate

analysis

• Description of workflow.

• Details of the algorithm used must be explicitly given

and include the software package and version number

or date employed for computation included. For

established algorithms, one should reference the

published literature but provide the meta-parameters.

State-of-the-art, radical or unconventional algorithms

should in general be avoided if they have not been

independently assessed and approved (by peer

review) and published in a methodology paper.

• Details of how data are split into training and external

validation sets, including, as far as possible, proof that

both sets are equally representative of the sample space/

data distribution (with respect to meta data).

• Details of how internal validation/meta-parameter

optimization is performed.

• Details about the chosen metric for assessing the

predictive ability of the model (supervised methods

only).

• Prediction scores for both training and external test sets.

• Details on data interpretation and visualization.

Additional recommended information reported for Multi-

variate analysis:

• Descriptive statistics about model prediction to accom-

pany the prediction scores. For example, in binary

response models (‘case’/’control’) most univariate tests

can be used for continuous prediction scores (produced

by PLS and LDA etc). Alternatively, present the

confusion matrices of binary outputs. For calibration

models plots of predicted vs. expected are useful for

readers.

• If many different model types are tested then a

summary of all results is recommended.

11 Discussion and conclusions

This document proposes the minimum level of reporting

required in order to account accurately for any chemometric/

statistical methods supporting the conclusions of metabolo-

mics studies. By using these standards the metabolomics

community as a whole will benefit by the subsequent dis-

semination of clear concise facts. Included here is a scheme

(proposed reporting vocabulary) of terms that will help

remove some of the confusion currently noted when com-

paring/reproducing various studies. Whilst we cannot be

prescriptive on the exact mechanism by which these are

reported, most data analyses start with the production of the

initial data matrix which will then be analyzed. It is worth

considering that the reporting structure should be split into

distinct sections. The first aggregates all the steps that were

taken to turn the raw analytical data into the initial data

matrix (each row being one sample and each column being

one feature). The next part should then describe the levels of

pre-processing used to clean and prepare the data for the

main modeling process. The final stage is the analysis the

clean (transformed) data matrix. The definition of workflows

at each of these stages is key to allowing the reporting

standard to be modular and flexible. Each stage may include

several sub-workflows in series (or parallel).

In conclusion, The Data Analysis Working Group

(DAWG) will continue to update this consensus document

that describes a minimum core set of necessary data related

to the data analyses associated with metabolomics experi-

ments. Further, the DAWG will work cooperatively with

other MSI groups to build an integrated standard. The pri-

mary motivation is to establish acceptable practices that will

maximize the utility, validity, and understanding of meta-

bolomics data. To achieve this objective we actively seek

input from specialists as well as generalists from the meta-

bolomics community. Only through active community

involvement will a functional solution be achieved. To this

end, we would strongly encourage all authors to make

available electronically, and as a condition of publication, all

data used in the making of a claim that the value of a meta-

bolic or spectroscopic biomarker is significantly different

between two classes. This is the easiest way to allow the

community swiftly to validate such claims (or otherwise),

and was instrumental in the rapid unmasking of artefacts in

some well-publicized proteomic biomarker experiments

(Baggerly et al., 2004).
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