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Abstract. A standardized approach for the definition and re-

porting of vertical resolution of the ozone and temperature

lidar profiles contributing to the Network for the Detection

for Atmospheric Composition Change (NDACC) database is

proposed. Two standardized definitions homogeneously and

unequivocally describing the impact of vertical filtering are

recommended.

The first proposed definition is based on the width of

the response to a finite-impulse-type perturbation. The re-

sponse is computed by convolving the filter coefficients with

an impulse function, namely, a Kronecker delta function for

smoothing filters, and a Heaviside step function for derivative

filters. Once the response has been computed, the proposed

standardized definition of vertical resolution is given by

1z = δz × HFWHM, where δz is the lidar’s sampling resolu-

tion and HFWHM is the full width at half maximum (FWHM)

of the response, measured in sampling intervals.

The second proposed definition relates to digital filtering

theory. After applying a Laplace transform to a set of filter

coefficients, the filter’s gain characterizing the effect of the

filter on the signal in the frequency domain is computed,

from which the cut-off frequency fC, defined as the fre-

quency at which the gain equals 0.5, is computed. Vertical

resolution is then defined by 1z = δz/(2fC). Unlike com-

mon practice in the field of spectral analysis, a factor 2fC

instead of fC is used here to yield vertical resolution values

nearly equal to the values obtained with the impulse response

definition using the same filter coefficients. When using ei-

ther of the proposed definitions, unsmoothed signals yield the

best possible vertical resolution 1z = δz (one sampling bin).

Numerical tools were developed to support the implemen-

tation of these definitions across all NDACC lidar groups.

The tools consist of ready-to-use “plug-in” routines written

in several programming languages that can be inserted into

any lidar data processing software and called each time a fil-

tering operation occurs in the data processing chain.

When data processing implies multiple smoothing oper-

ations, the filtering information is analytically propagated

through the multiple calls to the routines in order for the stan-

dardized values of vertical resolution to remain theoretically

and numerically exact at the very end of data processing.
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1 Introduction

As part of the Network for the Detection of Atmospheric

Composition Change (NDACC, website: http://www.ndsc.

ncep.noaa.gov/), over 20 ground-based lidar instruments are

dedicated to the long-term monitoring of atmospheric com-

position and to the validation of space-borne measurements

of Earth’s atmosphere from environmental satellites (e.g.,

EOS-Aura, ENVISAT, NPP, the Sentinels). In networks such

as NDACC, the instruments use a wide spectrum of method-

ologies and technologies to measure key atmospheric param-

eters such as ozone, temperature, and water vapor. One en-

suing caveat is the difficulty of archiving measurement and

analysis information consistently within such a varied en-

semble of passive and active remote-sensing instruments;

yet the need for consistent definitions has strengthened as

datasets of various origins (e.g., satellite and ground-based)

need higher quality control and thorough validation before

they can be used for long-term trend studies or be assimilated

into global systems. For example, recommendations were re-

cently made for the use of specific effective vertical resolu-

tion schemes within the European Aerosol Research Lidar

Network (EARLINET; Iarlori et al., 2015), and efforts were

made to produce aerosol lidar retrievals with a prescribed

level of standardization (D’Amico et al., 2015). Within the

NDACC lidar working group, a few studies have shown the

impact on ozone concentration and uncertainty of using dif-

ferent definitions of vertical resolution (e.g., Beyerle and Mc-

Dermid, 1999; Godin et al., 1999), or have estimated the im-

pact of various corrections on temperature (e.g., Leblanc et

al., 1998), but little work has been done to facilitate a stan-

dardization of the definitions and approaches relating to ver-

tical resolution and uncertainty budget in NDACC lidar re-

trievals.

To address these and other lidar retrieval issues, a group of

lidar experts formed an International Space Science Institute

team of experts in 2011 (http://www.issibern.ch/aboutissi/

mission.html). The objective of this working group (hence-

forth the ISSI team) was to provide scientifically meaning-

ful recommendations for the use of standardized definitions

of vertical resolution and standardized definitions and ap-

proaches for the treatment of uncertainty in the NDACC

ozone and temperature lidar retrievals. Ultimately, the rec-

ommendations compiled in an ISSI team report (Leblanc et

al., 2016a) were designed to be implemented consistently by

all NDACC ozone and temperature lidar investigators.

The present article is the first of three companion papers

that provide a comprehensive description of the recommen-

dations made by the ISSI team to the NDACC lidar commu-

nity for the standardization of vertical resolution and uncer-

tainty. The present article (Part 1) is exclusively dedicated

to the description of the proposed standardized vertical res-

olution. A second paper (Part 2) (Leblanc et al., 2016b) re-

views the proposed standardized definitions and approaches

for the ozone differential absorption lidars’ uncertainty bud-

get. The last paper (Part 3) (Leblanc et al., 2016c) reviews

the proposed standardized definitions and approaches for the

NDACC temperature lidars’ uncertainty budget. Details that

appear beyond the scope of the present three companion pa-

pers may be found in the ISSI team report (Leblanc et al.,

2016a).

Though the ISSI team focus has been on the retrieval of

ozone using the differential absorption technique (Mégie et

al., 1977), and the retrieval of temperature using the den-

sity integration technique (Hauchecorne and Chanin, 1980;

Arshinov et al., 1983), most recommendations made in the

present and two companion papers can be followed for the

retrieval of other NDACC lidar species such as water vapor

(Raman and differential absorption techniques), temperature

(rotational Raman technique), and aerosol backscatter ratio.

One exception is when using an optimal estimation method

(OEM) for the retrieval of temperature or water vapor mixing

ratio as recently proposed by Sica and Haefele (2015, 2016),

for which vertical resolution is implicitly determined from

the full width at half maximum of the OEM’s averaging ker-

nels.

Vertical resolution, as provided in the lidar data files, is

an indicator of the amount of vertical filtering applied to the

lidar signals or to the measured species profiles. This filter-

ing is applied in order to reduce high-frequency noise typi-

cally produced at the signal detection level. A higher vertical

resolution means that the instruments are able to detect fea-

tures of small vertical extent, while a lower vertical resolu-

tion implies a reduced ability to detect features of small verti-

cal scale. Typically, vertical resolution is provided in a unit of

vertical length (e.g., meter). Because the lidar signal-to-noise

ratio strongly varies with altitude, the amount of filtering typ-

ically applied also varies with altitude, with more filtering

applied at higher altitude ranges unless specific geophysical

processes are investigated (e.g., gravity waves, stratospheric

intrusions).

Here the word “filtering” is preferred to the word “smooth-

ing” because it is more general and applies to both smoothing

and differentiation processes, the former process being rele-

vant to both temperature and ozone lidar retrievals, and the

latter process being relevant to the ozone differential absorp-

tion technique. To optimize the useful range of lidar measure-

ments, most lidar signals or profiles are digitally filtered at

some point in the retrieval process. Over the years, NDACC

lidar investigators have provided temperature and ozone pro-

files using a wide range of vertical resolution schemes and

values, where the definition of vertical resolution appears to

differ significantly. The objective of the present work is not

to recommend a specific vertical resolution scheme, but in-

stead to ensure that the definition used by the data providers

to describe their scheme is reported and interpreted consis-

tently across the entire network. The approaches and rec-

ommendations in this article were designed so that they

can be implemented consistently by all NDACC lidar in-

vestigators and beyond (e.g., the Tropospheric Ozone Lidar
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Network, TOLNet, website: http://www-air.larc.nasa.gov/

missions/TOLNet/, or the GCOS Reference Upper Air Net-

work, GRUAN, website: http://www.dwd.de/EN/research/

international-programme/gruan/home.html). We therefore

recommend two well-known definitions, one definition based

on the full width at half maximum (FWHM) of a finite im-

pulse response, and the other definition based on the cut-off

frequency of digital filters. These definitions allow a clear

mapping of the amount of filtering applied to the lidar sig-

nal or species profile with the values of vertical resolution

actually reported in the data files.

Section 2 summarizes the basics of digital signal filtering,

and provides a few examples of how vertical resolution can

be expressed in terms of impulse response and digital filter

cut-off frequency. Section 3 reviews a number of vertical res-

olution definitions used by the NDACC ozone and tempera-

ture lidar community. The results from Sects. 2 and 3 are

used in Sect. 4 to recommend and detail two practical, well-

known definitions of vertical resolution that can be easily

linked to the underlying filtering processes. The numerical

values of vertical resolution computed using these two def-

initions are compared for several types of digital filters. For

the sake of completeness, a Supplement to the present paper

provides additional characteristics of several commonly used

smoothing and derivative filters.

Numerical tools were developed by the ISSI team to facil-

itate the implementation of the proposed standardized defini-

tions. The tools consist of subroutines written in four scien-

tific programming languages (IDL, MATLAB, FORTRAN,

and Python) that can be inserted in the lidar investigators’

data processing software in order to compute the numerical

values of the standardized vertical resolution. The plug-in

routines are available upon request from the corresponding

author.

2 Brief review of signal filtering theory

In this section we briefly review the mathematical back-

ground that allows us to link vertical resolution to the lidar

signal (or profile) filtering process. Signal filtering for lidar

data processing consists of either smoothing, differentiating

or smoothing, and differentiating at the same time. To de-

scribe the filtering process, a signal S is defined in its gen-

eral sense; i.e., it can be either a raw lidar signal from a sin-

gle detection channel, the ratio of the corrected signals from

two detection channels, or an unsmoothed ozone profile, tem-

perature profile, calibrated or uncalibrated water vapor pro-

file, etc. The only common requirement is that the signal is

formed of a finite number of equally spaced samples in the

vertical dimension S(k) with k = [1, nk]. The constant inter-

val between two samples, δz = z(k+1)−z(k) for all k, is the

sampling width, or sampling resolution, and corresponds to

the smallest vertical interval that can be resolved by the lidar

instrument.

The signal filtering process at an altitude z(k) consists of

convolving a set of 2N + 1 coefficients cn with the signal

S over the interval 1z = 2Nδz of boundaries z(k − N) and

z(k + N) (e.g., Hamming, 1989):

Sf(k) =

N
∑

n=−N

cnS(k + n), (1)

where Sf is the signal after filtering. The transformation as-

sociated with this process is known as a non-recursive digital

filter and is the simplest kind of digital filter. The elements of

the vector, cn, are the coefficients of the filter. A simple ex-

ample of this type of filter is the arithmetic average for which

all coefficients take the same value cn = 1/(2N +1). Several

other filter names exist for this particular example, for exam-

ple, boxcar smoothing filter, boxcar function, or smoothing

by [2N + 1]s (Hamming, 1989).

The number of filter coefficients and the values of these

coefficients determine the actual effect of the filter on the

signal. Three critical aspects of the effect of the filter on the

signal are (1) the amount of noise reduction due to filtering,

(2) the nature and degree of symmetry/asymmetry of the co-

efficients around the central value which determines whether

the filter’s function is to smooth, sum, differentiate, or in-

terpolate, and (3) whether the magnitude of specific noise

frequencies are being amplified or reduced after filtering. In

the particular case of an unfiltered signal comprised of in-

dependent samples, and assuming that the variance of the

noise for the unfiltered signal is constant through the filter-

ing interval considered (σ 2
S (k′) = σ 2 for all k′ in the interval

[k−N,k+N ]), we obtain a simple relation that estimates the

variance of the output signal:

σSf

2(k) = σ 2
S

N
∑

n=−N

c2
n. (2)

This relation reveals the importance of the sum of the squared

coefficients to determine the amount of noise reduction.

However, it does not provide any information on the ability of

the filter to distinguish what is noise and what is actual signal.

To illustrate this problem, Fig. 1 shows an example of a noisy

signal before and after filtering, processed using two differ-

ent filters. We start from a modeled signal represented by the

green dash-dotted curve. To this ideal signal, we add ran-

dom noise, whose amplitude is distributed following Poisson

statistics (signal detection noise). The noisy unfiltered sig-

nal is represented in this figure by a dark gray dotted curve.

The signal is then processed using two different filters, i.e.,

two different sets of coefficients. The blue curve shows the

filtered signal using least-squares linear fitting (identical to

boxcar average, labeled LS-1), while the red curve shows

the filtered signal, this time using least-squares fitting with

a polynomial of degree 2 (LS-2). The number of terms used

by both filters is the same (2N + 1 = 11). The values of the

coefficients, and not the number of coefficients, are responsi-

ble for the observed performance trade-off, here the trade-off
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Figure 1. Example of the differing impact of two smoothing filters

of identical number of terms (2N + 1 = 11). The green dash-dotted

curve is the modeled signal (with no noise), the gray dotted curve is

the modeled input signal containing Poisson noise, the blue and red

curves are the smoothed signal using an 11-point boxcar average

(LS-1), and the least-squares fitting method with a polynomial of

degree 2 (LS-2), respectively.

between a smoother signal and a noisier signal where the dip

in the measurements is better reproduced.

In the real world, we typically do not know the exact nature

or behavior of the measured signal. Consider the example in

Fig. 1: if the definition used to report vertical resolution in

the data files were based on the number of points used by the

filter, we would not be able to attribute the differences ob-

served between the blue and red curves to a difference in the

filtering procedure. We therefore need to find some analytical

way to characterize a specific filter if we want to understand

its exact effect on the signal and properly interpret features

observed on the smoothed signal. We will see thereafter that

it is indeed possible to determine the resolution of the filter

by either quantifying the response of a controlled impulse in

the physical domain, or by using a frequency approach and

studying the frequency response of the filter.

2.1 Classical approach: unit impulse response and unit

step response

The impact of a specific filter on the signal can be character-

ized by computing the unit impulse response in the physical

domain (usually called the time domain in time series anal-

ysis). This can be done by using a well-known, controlled

input signal, e.g., an impulse, and by studying its response

after being convolved by the filter coefficients. Considering a

finite impulse response is equivalent to considering the out-

put signal IOUT formed by the convolution of an impulse IINP

with a finite number of coefficients cn:

IOUT(k) =

N
∑

n=−N

cnIINP(k + n). (3)

For smoothing non-derivative filters, this impulse is the dis-

crete Kronecker delta function δk0 (also called unit impulse

function), which takes a value of 1 at coordinate k = k0 and

0 elsewhere:

δk0(k) = 1 for k = k0

δk0(k) = 0 for all k 6= k0. (4)

Using our smoothing interval of 2N + 1 points centered at

altitude z(k), the input impulse for which the response is

needed will have a value of 1 at the central point, and 0 at

all other points:

IINP(k + n) = 1 for n = 0

IINP(k + n) = 0 for 0 < |n| ≤ N. (5)

For derivative filters, it is more adequate to calculate the re-

sponse of a discrete Heaviside step function HS (also called

unit step function), which takes a value of 0 for all strictly

negative values of k, and a value of 1 elsewhere:

HS(k) = 0 k < 0

HS(k) = 1 k ≥ 0. (6)

Again using an interval of 2N +1 points centered at z(k), the

input step for which the response is needed will have a value

of 0 for all samples below the central point z(k), and a value

of 1 for the central point and all samples above it:

IINP(k + n) = 0 − N ≤ n < 0

IINP(k + n) = 1 0 ≤ n ≤ N. (7)

Though we considered an impulse (delta function) for

smoothing filters and a step function (Heaviside step) for

the derivative filters, for brevity we will hereafter call both

types of response an “impulse response”. For each altitude

location considered, the impulse response consists of a vec-

tor whose length is at least as large as twice the number of

filter coefficients used to smooth the signal at this location.

The magnitude of the impulse response typically maximizes

at the central point z(k) of the filtering interval, and then de-

creases apart from this central value to a value of 0 for points

outside the smoothing interval. Unlike the number of coeffi-

cients used by the filter, the width of the response (measured

in number of bins) provides a quantitative measure of the

actual smoothing impact of the filter on the signal at this lo-

cation. The impulse response of a boxcar average is shown

in Fig. 2 for several filter widths. Additional examples of im-

pulse response for several smoothing and derivative filters are

provided throughout this article and in the Supplement. Later

in this paper, we will link vertical resolution, as it is often re-

ported in lidar data files, to the impulse response width, and

more precisely, to its full width at half maximum (FWHM).

2.2 The frequency approach: transfer function and

gain

As in many signal processing applications, the frequency ap-

proach applied to lidar signal filtering or lidar-retrieved pro-
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Figure 2. Impulse response (left) and gain (right) for a digital fil-

ter equivalent to fitting an unsmoothed signal with a polynomial of

degree 1 or 2 using the least-squares method over an interval com-

prising 2N + 1 points (full width). Full widths represented in this

figure range from 3 to 25 points. This least-squares filtering pro-

cedure is equivalent to a running average over 2N + 1 points (full

width).

file filtering is a convenient mathematical framework. It is

a more abstract, but very powerful tool allowing us to un-

derstand many hidden features of the smoothing and dif-

ferentiation processes. A succinct, yet clear discussion of

the required mathematical background is provided by Ham-

ming (1989). Here, we will provide a brief review of this

background relevant to our applications.

1. Aliasing: Any signal consisting of a finite number of

equally spaced samples in the physical domain is an

aliased representation of a sine and cosine function of

frequency ω. Using the usual trigonometry formulae

and the Euler identity, we can therefore express a single-

frequency signal with unity amplitude in a complex

form:

S(k) = eiωk. (8)

In the case of lidar, the signal (or the ozone or temper-

ature profile) is a function of altitude range. The dis-

cretized independent variable is the vertical sampling

bin k. The angular frequency ω (unit: radian bin−1) is

then connected to the frequency f (unit: bin−1) and ver-

tical wavelength L (unit: bin) by the relations as fol-

lows:

ω = 2πf =
2π

L
. (9)

2. Eigenfunctions and eigenvalues of a linear system: Any

vector x of length M can be formed by linear combina-

tion of M linearly independent (orthogonal) eigenvec-

tors xi :

x =

M
∑

i=1

aixi . (10)

Furthermore, any nonzero and non-unity matrix A of

dimension M by M multiplied by this vector can be ex-

pressed as the sum of the products of its elements by the

corresponding eigenvalues λi :

Ax =

M
∑

i=1

aiAxi =

M
∑

i=1

aiλixi . (11)

3. Invariance under translation: The property of invariance

under translation for the sine and cosine functions im-

plies a direct relation between the signal expressed in

its complex form and the eigenvalue λ(ω) for a given

translation:

S(k + n) = eiω(k+n) = eiωneiωk = λ(ω)S(k). (12)

Using the above mathematical background, the filtered

signal Sf presented in its classical form as a linear com-

bination of the input signal S (Eq. 1) can be re-written

in its frequency-approach form:

Sf(k) = eiωk
N

∑

n=−N

cne
iωn = λ(ω)eiωk = λ(ω)S(k). (13)

The eigenvalue λ(ω) is independent of k and is called

the transfer function, which can be computed in the fre-

quency domain over a full cycle [−π , π ], or over half

a cycle [0, π ] without losing information (symmetry of

translation):

λ(ω) =

N
∑

n=−N

cne
iωn 0 ≤ ω ≤ π radian.bin−1. (14)

We can express the transfer function more conveniently

as a function of the frequency f :

H(f ) =

N
∑

n=−N

cne
2iπf n 0 ≤ f ≤ 0.5bin−1. (15)

The maximum value f = 0.5 bin−1 is the Nyquist fre-

quency, which corresponds to L = 2 bins, and which ex-

presses the fact that the lidar instrument is unable to
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exactly reproduce any feature of vertical wavelength

smaller than twice the sampling resolution (2δz). The

transformation described in Eq. (15) can easily be rec-

ognized as a well-known discrete Laplace transform,

applied to the filter coefficients.

For a typical smoothing filter, the coefficients have even

symmetry, i.e., cn = c−n for all values of n. The com-

plex transfer function can then be reduced to its real

part. The gain of the filter G, which is the ratio of the

actual transfer function H(f ) to the ideal transfer func-

tion I (f ) can then be written as follows:

G(f ) =
H(f )

I (f )
=

H(f )

1
= c0

+ 2

N
∑

n=1

cn cos(2πnf ) 0 ≤ f ≤ 0.5bin−1. (16)

For a derivative filter, the 2N + 1 coefficients have odd

symmetry, i.e., cn = −c−n for all values of n and c0 =

0. The complex transfer function is then reduced to its

imaginary component:

H(f ) = 2i

N
∑

n=1

cn sin(2πnf ). (17)

With the complex notation of Eq. (8), the ideal vertical

derivative of the signal can be written as follows:

Sf(k) = iωeiωk = 2iπf eiωk. (18)

The gain of the filter, then takes the following form:

G(f ) =
H(f )

2iπf

=
1

πf

N
∑

n=1

cn sin(2πnf ) 0 ≤ f ≤ 0.5bin−1. (19)

Referring back to Eq. (1), the gain provides a quantita-

tive measure of the actual smoothing impact of the filter

on the signal at a particular location z(k) and for a given

spectral component f .

Examples of gain for several smoothing and derivative filters

are shown in Fig. 2 (right), and throughout the rest of this

article as well as in the Supplement. Just like for the impulse

response, later in this paper we will link vertical resolution

as it is often reported in lidar data files to the cut-off fre-

quency of digital filters, which is computed from the gain

(see Sects. 3 and 4).

2.3 Example 1: least-squares fitting and boxcar average

Least-squares fitting is a well-established numerical tech-

nique used for many applications such as signal smoothing,

differentiation, and interpolation. The relation between the

number and values of the filter coefficients and the type of

polynomial used to fit the signal can be found in many text-

books and publications (e.g., Birge and Weinberg, 1947; Sav-

itsky and Golay, 1964; Steinier et al., 1972). In this paragraph

we show that least-squares fitting with a straight line and

boxcar averaging are the same filter. We start with the simple

case of fitting five points with a straight line. We therefore

look for the minimization of the following function:

F(a0,a1) =

2
∑

n=−2

[S(k + n) − (a0 + a1n)]2. (20)

This minimization is done by differentiating F with respect

to each coefficient a0 and a1 and finding the root of each

corresponding equation:


















5a0 + 0a1 =
2
∑

n=−2

S(k + n)

0a0 + 10a1 =
2
∑

n=−2

nS(k + n).

(21)

The value of the signal after filtering Sf is the mid-point value

of the fitting function a0 + a1n, which corresponds to the

value of a0 (n = 0):

Sf(k) = a0 =
1

5

2
∑

n=−2

S(k + n). (22)

Identifying this equation to the generic Eq. (1), we deduce

the five coefficients of the filter:

cn =
1

5
− 2 ≤ n ≤ 2. (23)

We recognize this result as the coefficients of a five-point

boxcar average (five-point running average). The impulse re-

sponse of this filter takes a value of 1 for all |n| comprised

between 0 and N , and a value of 0 elsewhere (see Fig. 2

left plot). Not surprisingly, all impulse response curves max-

imize at the central point (n = 0), and their full width at half

maximum (FWHM) increases with the number of filter coef-

ficients used.

Now switching to the frequency domain and using

Eq. (14), the transfer function λ(ω) can be written in com-

plex form:

λ(ω) =
1

5

[

e−2iω + e−iω + 1 + eiω + e2iω
]

. (24)

The gain of the filter can be expressed as a function of fre-

quency f :

G(f ) = H(f ) =
1

5
+ 2

2
∑

n=1

1

5
cos(2πnf ), (25)
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which simplifies to

G(f ) = H(f ) =
1

5

[

sin(5πf )

sin(πf )

]

. (26)

We can generalize the above equation by fitting 2N+1 points

with a straight line, and we find

cn =
1

2N + 1
− N ≤ n ≤ N (27)

λ(ω) =
1

2N + 1
(28)

[

e−Niω + e−(N−1)iω + . . . + e−iω + 1 + eiω + . . . + e(N−1)iω + eNiω
]

.

Alternatively, as a function of frequency, we find

G(f ) = H(f ) =
1

2N + 1
+ 2

N
∑

n=1

cos(2πnf )

2N + 1
, (29)

which simplifies to

G(f ) = H(f ) =
1

2N + 1

[

sin((2N + 1)πf )

sin(πf )

]

. (30)

The gain functions for 3-point through 25-point boxcar av-

erage filters are plotted on the right-hand side of Fig. 2. The

gain provides a more complete description of the smoothing

ability of the filters because it provides a measure of noise

attenuation as a function of frequency. All curves show a

gain close to 1 for frequency values near 0 (low-pass filters),

but they also show large ripples at larger frequencies when

we approach the Nyquist frequency. The frequency f0 of the

first zero crossing (zero gain) is determined by the number of

points used:

f0 =
1

2N + 1
. (31)

The ripples observed on the right-hand side plot of Fig. 2 (the

Gibbs phenomenon) are undesirable if the filter’s objective

is to remove the highest frequencies from the signal, which

is the case for the lidar signal impacted by detection noise.

The Gibbs ripples are predicted by Fourier theory because

these digital filters have a finite number of coefficients, the

equivalent in the physical domain of truncated Fourier series

in the frequency domain. The strength of the frequency ap-

proach is to use Fourier theory, often refined by the concept

of windowing, to minimize the Gibbs ripples. Detailing the

underlying theory behind this behavior is beyond the scope of

the present paper. Instead, below and in the Supplement, we

simply provide the most common examples of modifications

made to the filter coefficients, allowing an optimized design

of a noise-reduction filter. More details on filters’ windows

can be found in, for example, Rabiner and Gold (1975).

2.4 Example 2: low-pass filter and cut-off frequency

If we were to consider an ideal low-pass filter with an infi-

nite number of terms, the theoretical transfer function would

have values between 0 and 1, representing the perfect gain

of the filter (no ripples). The so-called transition region cor-

responds to the region where we want the transfer function

to drop from a value of 1 at lower frequencies to a value of

0 at higher frequencies. The width of the transition region

is the bandwidth. We can define the cut-off frequency of a

low-pass filter as the frequency at which the transfer func-

tion equals 0.5. For most low-pass filters this is at the center

of the transition region. To design a low-pass filter with the

desired cut-off frequency fC, we start with the initial condi-

tions defining an ideal low-pass filter:

G(f ) = 1 for 0 < |f | < fC

G(f ) = 0 for fC < |f | < 0.5

G(f ) = G(−f ). (32)

Without getting into mathematical details, we find that these

conditions are always true for a family of untruncated Fourier

series with the following transfer function (Hamming, 1989):

H(f ) = 2fC + 2

∞
∑

n=1

sin(2πnfC)

πn
cos(2πnf ). (33)

Since we have to work with a finite number of samples, we

truncate the series to a finite number of terms at the expense

of producing Gibbs ripples. The real-world low-pass filter

thus created has the following 2N + 1 coefficients and trans-

fer function:

cn = 2fC
sin(2πnfC)

2πnfC
− N ≤ n ≤ N (34)

G(f ) = H(f ) = 2fC + 2

N
∑

n=1

sin(2πnfC)

πn
cos(2πnf ). (35)

An example for fC = 0.15 is shown for reference in Fig. 3.

The impulse response (left) and gain (right) are shown for a

filter full width comprised between 3 and 25 points. The first

few Gibbs ripples always have the largest amplitude. Using

a higher number of terms causes the ripples to be more con-

centrated near the transition region, and causes higher order

ripples with a smaller amplitude to occur near the Nyquist

frequency.

The gain curves show that the transition region is nar-

rower than that observed for the boxcar average filters, but

the Gibbs ripples appear on both sides of the transition re-

gion. Just like for the modified least-squares fitting, we can

reduce the magnitude of the Gibbs ripples by modifying the

filter coefficients, specifically by applying additional weights

to the filter coefficients, a process called “windowing”. Sev-

eral examples of smoothing filters using Lanczos, von Hann,

Hamming, Blackman, and Kaiser windows are provided for

reference in the Supplement.
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Figure 3. Impulse response and gain of low-pass filters using 2N+1

coefficients (full width), and designed to have a cut-off frequency

fC = 0.15. Full widths range from 3 to 25 points.

2.5 Example 3: central difference derivative filter

The simplest approximation of the derivative of a signal S at

altitude z(k) without a phase shift is the so-called three-point

central difference, which can be written as follows:

Sf(k) =
1

2
(S(k + 1) − S(k − 1)) . (36)

Here we work in units of sampling bins rather than physical

units; i.e., we assume the sampling resolution is δz =1. We

recognize the set of coefficients:

cn =
n

2
− 1 ≤ n ≤ 1. (37)

The transfer function, obtained from Eq. (36) is

λ(ω) =
1

2

[

−e−iω + 0 + eiω
]

= i sinω. (38)

Following the notation of Eq. (19) (odd symmetry), and us-

ing the values of the coefficients cn (Eq. 37), we then com-

pute the gain, i.e., the ratio of the value approximated by the

central difference (Eq. 38) to the value of the ideal derivative

(Eq. 18):

G(f ) =
H(f )

2πf
=

1
∑

n=1

n
2

sin(2πnf )

πf
=

sin2πf

2πf
. (39)

This equation shows that the central difference conserves the

slope of the original signal for f = 0 only, and underesti-

mates this slope for all other frequencies. Figure 4 shows

the transfer function H (red solid curve) and gain G (blue

solid curve) for the three-point central differences. Just like

for the smoothing filters, we can design derivative low-pass

Figure 4. Transfer function (TF) and gain of the central differ-

ence digital filter. The gain (blue curve) is the transfer function (red

curve) normalized by 2πf , which is the real part of the ideal differ-

entiator iω.

filters that will conserve the slope of the signal for low val-

ues of frequency and attenuate the slope (or noise) for higher

frequency values. Several examples are given in the Supple-

ment.

3 Review of vertical resolution definitions used by

NDACC lidar investigators

The filtering schemes or methods of several NDACC lidar

investigators have been reviewed and compared in previous

works, e.g., Beyerle and McDermid (1999) and Godin et

al. (1999). These studies concluded that vertical resolution

was not consistently reported between the various investiga-

tors. Here we briefly review the filtering schemes or meth-

ods used by various NDACC lidar investigators, and how

vertical resolution is reported in their data files, as of 2011.

This review provided critical input to the ISSI team to deter-

mine which definitions of vertical resolution are appropriate

for use in a standardized way across the entire network (see

Sect. 4).

– Observatoire de Haute-Provence (OHP, France), strato-

spheric ozone differential absorption lidar: A second-

degree polynomial derivative filter (Savitsky–Golay

derivative filter) is used (Godin-Beekmann et al., 2003).

Vertical resolution is reported following a definition

based on the cut-off frequency of the digital filter.

– Table Mountain (California) and Mauna Loa (Hawaii)

stratospheric ozone and temperature lidars operated by
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the Jet Propulsion Laboratory: Filtering is done by

applying a fourth-degree polynomial least-squares fit

(Savitsky–Golay derivative filter) to the logarithm of the

signals for ozone retrieval. For the temperature profiles,

a Kaiser filter is applied to the logarithm of the relative

density profile. In both ozone and temperature cases, the

cutoff frequency of the filter, reversed to the physical

domain, is reported as vertical resolution (Leblanc et al.,

2012).

– NASA GSFC mobile ozone DIAL STROZ instru-

ment (United States): For ozone, a least-squares fourth-

degree polynomial fit derivative filter (Savitsky–Golay

derivative filter) is used. The definition of vertical res-

olution in the NDACC-archived data files is based on

the impulse response of a delta function, by measuring

the FWHM of the filter’s response. For the temperature

retrieval (Gross et al., 1997), the profiles are smoothed

using a low-pass filter (Kaiser and Reed, 1977), and a

simple ad hoc step function is used to define the values

of the vertical resolution.

– Lauder (New Zealand) ozone lidar operated by RIVM

(Netherlands): The definition of vertical resolution is

based on the width of the fitting window used for the

ozone derivation (Swart et al., 1994).

– OHP and Réunion Island (France) tropospheric ozone

DIAL: A second-degree polynomial least-squares fit

(Savitsky–Golay derivative filter) is used to filter the

ozone measurements. The vertical resolution is reported

as the cut-off frequency of the corresponding digital fil-

ter.

– Réunion Island (France) temperature lidar: A Hamming

filter is applied to the temperature profile. The width of

the window used is reported as the vertical resolution.

– University of Western Ontario (Canada) Purple Crow

Lidar: For climatology studies, the temperature algo-

rithm applies a combination of three-point and five-

point boxcar average filters or a Kaiser filter on the tem-

perature profiles (e.g., Argall and Sica, 2007). Similar

filters are used in space or time for spectral analysis of

atmospheric waves (e.g., Sica and Russell, 1999). Filter

parameters are reported in the data files that are locally

produced and distributed to the scientific user commu-

nity. Previously, files were distributed to users with the

type of filter and full bandwidth of the filter. The vari-

ance reduction of the filter is folded into the random

uncertainties provided. The product of the data spacing

and the filter bandwidth gives the full influence of the

filter at each point. With the development of a tempera-

ture retrieval algorithm based on an optimal estimation

method, vertical resolution of the temperature profile is

now available as a function of altitude (Sica and Hae-

fele, 2015).

– Tsukuba (Japan) ozone DIAL and temperature lidar:

The algorithm uses second- and fourth-degree polyno-

mial least-squares fits (Savitsky–Golay derivative filter).

The vertical resolution is calculated from a simulation

model that determines the FWHM of the impulse re-

sponse to an ozone delta function. The FWHM is then

mapped as a function of altitude. For temperature, a von

Hann (or Hanning) window is used on the logarithm of

the signal (B. Tatarov, personal communication, 2010).

– Garmisch-Partenkirchen (Germany) tropospheric ozone

DIAL operated by IFU: The algorithm initially used

linear and third-degree polynomial fits (Kempfer et al.,

1994), and then since 1996 a combination of a linear fit

and a Blackman-type window (Eisele and Trickl, 2005;

Trickl, 2010). The latter filter has a reasonably high cut-

off frequency and does not transmit as much noise as

the derivative filters used earlier at IFU (Kempfer et al.,

1994). To report vertical resolution in the data files, a

Germany-based standard definition of vertical resolu-

tion is used, following the Verein Deutscher Ingenieure

DIAL guideline (VDI, 1999). This definition is based on

the impulse response to a Heaviside step function. The

vertical resolution is given as the distance separating the

positions of the 25 and 75 % in the rise of the response,

which is approximately equivalent to the FWHM of the

response to a delta function. In the case of the ozone

DIAL, the vertical resolution of both the Blackman-

type filter used and the combined least-squares deriva-

tive plus Blackman filter. A vertical resolution of 19.2 %

of the filtering interval was determined. For small inter-

vals the latter value may change; i.e., the least-squares

fit for determining the derivative is executed over just

a few data points. For comparison, an arithmetic aver-

age yields a vertical resolution of 50 % of the filtering

interval.

Having reviewed the vertical resolution definitions and

schemes used across NDACC and elsewhere, three defini-

tions or approaches can be clearly identified. The first def-

inition is the number of filter coefficients used, the second

definition is based on the cut-off frequency of the filter used,

and the third definition is based on the width of the impulse

response of the filter used. Those definitions were already

mentioned by Beyerle and McDermid (1999), but no deci-

sion was made within NDACC to find a standardized ap-

proach across the network. The present article and its Sup-

plement show that not all filters have the same properties,

and that the characteristics of a filter do not simply depend

on the number of coefficients used, but instead on a combi-

nation of the number of coefficients and their values. Indeed,

Fig. 5 below shows the gain of several filters having the same

number of coefficients (five points for the smoothing filters

on the left-hand plot, and seven points for the derivative fil-

ters on the right-hand plot). It is obvious that, depending on

the filter and/or window used, the transition region between
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Figure 5. Transfer function (gain) of several smoothing (left) and

derivative (right) filters, all with exactly the same number of coef-

ficients, 2N + 1 (five-point full width for the smoothing filters and

seven-point full width for the derivative filters).

passband and stopband is located at very different frequen-

cies. In the examples shown, it is located between f = 0.12

and f = 0.35 for smoothing filters, while the derivative fil-

ters show considerably more variability.

Finding transition regions at different frequencies means

that the smoothing effect of the filters on the signal is dif-

ferent, even though the number of coefficients is the same.

A vertical resolution definition based on the number of co-

efficients is therefore not reliable. Instead we need to choose

a standardized definition based on objective parameters that

are directly related to the effect a filter has on the signal.

Two such definitions are proposed thereafter, definitions that

are similar or closely related to the two remaining definitions

identified in the present section.

4 Proposed standardized vertical resolution definitions

for the NDACC lidars

The two definitions proposed here were chosen because they

provide a straightforward characterization of the underlying

smoothing effect of filters (see Sect. 2), and they appear to

have already been used by a large number of NDACC in-

vestigators (see Sect. 3). The first definition is based on the

width of the impulse response of the filter. The second defi-

nition is based on the cut-off frequency of the filter. Further

justification for the choice of either definition is provided at

the end of the present section.

4.1 Definition based on the FWHM of a finite impulse

response

The full width at half maximum (FWHM) of an impulse re-

sponse, as introduced in Sect. 2, is computed by measuring

the distance (in bins) between the two points at which the

response magnitude falls below half of its maximum am-

plitude. The NDACC lidar standardized definition of verti-

cal resolution proposed here is computed from the response

IOUT of a Kronecker delta function for smoothing filters and

a Heaviside step function for derivative filters. Because of

the dynamic range of the lidar signals (or ozone or tempera-

ture profiles), we assume that the number of filter coefficients

could vary with altitude. Therefore, the standardized vertical

resolution is estimated separately for each altitude z(k) in the

following manner.

1. Define and/or identify the 2N(k) + 1 filter coefficients

c(k,n) used to perform the smoothing or differentiation

operation on the signal (lidar counts, ozone or tempera-

ture profile):

Sf(k) =

N(k)
∑

n=−N(k)

c(k,n)S(k + n)

for N(k) < k < nk − N(k). (40)

2. Construct an impulse function of finite length 2M(k)+1

to be convolved with the filter coefficients. The value of

M(k) is not critical but has to be greater than or equal

to N(k). For smoothing filters, the impulse function is

the Kronecker delta function which can be written as

follows:

IINP(k,m) = δ0(m) with − M(k) ≤ m ≤ M(k)

and N(k) ≤ M(k) ≤
nk − 1

2
. (41)

This function equals 1 at the central point (m = 0) and

equals 0 everywhere else. For derivative filters, the im-

pulse function is the Heaviside step function which can

be written as follows:

IINP(k,m) = HS(m) with − M(k) ≤ m ≤ M(k)

and N(k) ≤ M(k) ≤
nk − 1

2
. (42)

This function equals 0 at all locations below the central

point (m < 0) and equals 1 everywhere else.

3. Convolve the filter coefficients with the impulse func-

tion in order to obtain the impulse response IOUT:

IOUT(k,m) =

N(k)
∑

n=−N(k)

c(k,n)IINP(k,m + n). (43)

4. Estimate the full width at half maximum (FWHM) of

the impulse response IOUT by measuring the distance

1mIR, in bins, between the two points (located on each
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Figure 6. Schematics summarizing the procedure that should be followed to compute the standardized vertical resolution with a definition

based on the impulse response FWHM 1zIR.

side of the central bin) where the response magnitude

falls below half of the maximum amplitude:

IOUT(k,m1(k)) = 0.5max(IOUT(k,mi))

for all − M(k) ≤ mi ≤ 0

IOUT(k,m2(k)) = 0.5max(IOUT(k,mi))

for all 0 ≤ mi ≤ M(K) (44)

1mIR(k) = |m1(k) − m2(k)| . (45)

For a successful identification of the FWHM, the im-

pulse response should have only two points where its

value falls below half of its maximum amplitude, which

is normally the case for all smoothing and derivative fil-

ters used within their prescribed domain of validity (see

examples in Sect. 2 and in the Supplement). In the event

that more than two points exist, the two points farthest

from the central bin should be chosen in order to yield

the most conservative estimate of vertical resolution.

5. Compute the standardized vertical definition 1zIR as

the product of the lidar sampling resolution δz and the

estimated FWHM:

1zIR(k) = δz1mIR(k). (46)

Figure 6 summarizes the estimation procedure. The un-

smoothed signal yields a FWHM of one bin. This result

is derived by considering null coefficients everywhere

except at the central point (m = 0), where the coeffi-

cient equals 1. The intercept theorem within the trian-

gles formed by the impulse response at the central point

and its two adjacent points (m = −1 and m = 1) yields

a FWHM of one bin, and the standardized vertical reso-

lution using the present impulse-response-based defini-

tion will always be greater than or equal to the sampling

resolution:

1zIR(k) ≥ δz for all k. (47)

When several filters are applied successively to the signal,

the response of the filter must be computed each time a filter-

ing operation occurs, and vertical resolution needs to be com-

puted only after the last filtering occurrence. The process can

be summarized as follows: a first impulse response is com-

puted with the first filtering operation. If no further filtering

occurs, the impulse response is used to determine the FWHM

and vertical resolution. If a second filtering operation occurs,

the impulse response is used as input signal, and a second re-

sponse is computed from the convolution of this input signal

with the coefficients of the second filter. If no further filtering

occurs, the second response is used to determine the FWHM

and vertical resolution. If a third filtering operation occurs,

the response output from the second convolution is used as

input signal of the third convolution, and so on until no more

filtering is applied to the signal. Vertical resolution is always
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Figure 7. Schematics summarizing the procedure that should be fol-

lowed to compute the standardized vertical resolution with a defini-

tion based on impulse response when the signal or profile is filtered

multiple times.

computed from the final output response, i.e., after the final

filtering operation. Figure 7 summarizes the procedure.

4.2 Definition based on the cut-off frequency of digital

filters

The cut-off frequency of digital filters is defined as the fre-

quency at which the value of the filter’s gain is 0.5, typi-

cally located at the center of the transition region between

the passband and the stopband (see Sect. 2). The NDACC li-

dar standardized definition proposed here is computed from

the cut-off frequency fC, which is determined from the gain

of the filter obtained by applying a Laplace transform to the

coefficients of the filter used. Once again, because of the dy-

namic range of the lidar signals, filtering a lidar signal (or

ozone/temperature profile) often requires using a number of

filter coefficients which vary with altitude. Starting with a li-

dar signal (or ozone or temperature profile) S composed of

nk equally spaced elements in altitude, the standardized ver-

tical resolution is estimated separately for each altitude z(k).

The procedure can be summarized as follows for each alti-

tude considered.

1. Define and/or identify the 2N(k) + 1 filter coefficients

c(k,n) used to perform the smoothing or differentiation

operation on the lidar signal (or on the ozone or temper-

ature profile) at altitude:

Sf(k) =

N(k)
∑

n=−N(k)

c(k,n)S(k + n)

for N(k) < k < nk − N(k). (48)

2. Apply the Laplace transform to the coefficients to de-

termine the filter’s transfer function and gain. For non-

derivative smoothing filters, the coefficients have even

symmetry, i.e., c(k,n) = c(k,−n), and the gain is writ-

ten as follows:

G(k,f ) = H(k,f ) = c(k,0)

+ 2

N(k)
∑

n=1

c(k,n)cos(2πnf ) 0 < f < 0.5. (49)

For derivative filters, the coefficients have odd symme-

try, i.e., c(k,n) = −c(k,−n), and if δz is the sampling

resolution, the gain can be written as follows:

G(k,f ) =
H(k,f )

2πf

= 2

N(k)
∑

n=1

c(k,n)
sin(2πnf )

2πf
0 < f < 0.5. (50)

For a successful cut-off frequency estimation process,

the gain must be computed with normalized coefficients

cn; that is, the coefficients must meet the following nor-

malization condition:

N(k)
∑

n=−N(k)

c(k,n) = 1 for smoothing filters

2

N(k)
∑

n=1

nc(k,n) = 1 for derivative filters. (51)

3. Estimate the cut-off frequency, i.e., the frequency fC at

which the gain equals 0.5:

G(k,fC(k)) = 0.5 0 < fC(k) ≤ 0.5. (52)

For a successful identification, the gain should have

only one crossing with the 0.5 line, typical for the

smoothing and derivative filters used within their pre-

scribed domain of validity for lidar retrieval systems.

In the event that several crossings exist, the frequency

closest to zero should be chosen to ensure that the most

conservative estimate of vertical resolution is retained.
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Figure 8. Schematics summarizing the procedure that should be followed to compute the standardized vertical resolution with a definition

based on cut-off frequency 1zFC.

4. Calculate the cut-off length 1mFC (unit: bins), i.e., the

inverse of the frequency fC normalized to the sampling

width:

1mFC(k) =
1

2fC(k)
. (53)

5. Compute the standardized vertical definition 1zFC as

the product of the lidar sampling resolution δz and the

cut-off length 1mFC at that altitude:

1zFC(k) = δz1mFC(k) =
δz

2fC(k)
. (54)

Figure 8 summarizes this estimation procedure. The factor of

2 present in the denominator of Eq. (53) is usually not used in

spectral analysis, when it is normally assumed that the mini-

mum vertical scale that can be resolved by the instrument is

twice the sampling resolution (Nyquist criterion). However,

it is included here in order to harmonize the numerical values

with the values computed using the impulse response defini-

tion. Using the present proposed definition, an unsmoothed

signal yields a vertical resolution of δz and the standardized

vertical resolution will always be at least equal to the sam-

pling resolution:

1zFC(k) ≥ δz for all k. (55)

When several filters are applied successively to the signal, the

transfer function must be computed each time a filtering op-

eration occurs, but vertical resolution needs to be computed

only after the last filtering occurrence. The process can be

summarized as follows: a first transfer function (or gain) is

computed with the first filtering operation. When the second

filtering operation occurs, the gain computed using the co-

efficients of the second operation is multiplied by the gain

computed during the first filtering operation. If no further fil-

tering occurs, the result of this product is the gain that should

be used to determine the cut-off frequency and vertical reso-

lution. If a third filtering operation occurs, the product of the

first and second gain must be multiplied by the third gain,

and so on until no more filtering occurs. When the final fil-

tering operation is reached, vertical resolution can be com-

puted from the final output gain. Figure 9 summarizes the

procedure.

4.3 Comparison between the impulse-response-based

(IR) and cut-off frequency-based (CF) definitions

In Sects. 4.1 and 4.2, we showed that, when using the

proposed definitions based on impulse response and cut-

off frequency, the standardized vertical resolution of an un-

smoothed lidar signal (or profile) is equal to the lidar sam-

pling resolution. However, this equality between the two def-

initions is not perfect for all filters. Here, we show that for

most filters, there is a well-defined proportionality relation
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Figure 9. Schematics summarizing the procedure that should be fol-

lowed to compute the standardized vertical resolution with a defini-

tion based on cut-off frequency when the signal or profile is filtered

multiple times.

between the two definitions, but we also show that the pro-

portionality factor depends on the type of filter used. In the

rest of this section, for convenience, we will work with verti-

cal resolutions normalized by the sampling resolution (unit:

bins). The results are therefore shown as cut-off width 1mFC

and impulse response FWHM 1mIR instead of 1zFC and

1zIR respectively, which is equivalent to assuming δz = 1.

Figure 10 shows, for the smoothing filters introduced in

Sect. 2 and in the Supplement, the correspondence between

the standardized vertical resolutions (in bins) computed us-

ing the cut-off frequency and the impulse response, for full

widths comprised between 3 and 25 points. The black solid

circle at coordinate (1,1) indicates the vertical resolution

for the unsmoothed signal (or profile). The gray horizontal

and vertical dash-dotted lines indicate the highest possible

vertical resolutions for the impulse-response-based and cut-

off frequency-based definitions respectively. The gray dot-

ted straight lines indicate the result of the linear regression

fits between the two definitions, and the numbers at their

extremities are the values of the slope for three of the four

types of filters used. There is no proportionality between the

two definitions for the low-pass filters (diamonds) because

the cut-off frequency is prescribed for this type of filter. Note

Figure 10. Comparison between the cut-off frequency-based and

the impulse-response-based standardized vertical resolutions for

several smoothing filters introduced in Sect. 2 and in the Supple-

ment. The numbers at the end of the dotted straight lines indicate

the proportionality constant (slope) between the two definitions for

three of the four types of filters used. There is no such proportion-

ality for the low-pass filter (prescribed cut-off frequency).

that the factors of 1.2 and 1.39 do not correspond to the ra-

tio of 1.0 that is assumed for the unsmoothed signal. Very

similar conclusions can be drawn for the derivative filters, as

demonstrated by Fig. 11 (which is similar to Fig. 10 but for

the derivative filters introduced in Sect. 2 and in the Supple-

ment).

Figure 12 is similar to Fig. 10, but this time shows the

period after the filters were convolved with the windows in-

troduced in the Supplement. The windows change the pro-

portionality constant between the two definitions, but this

constant appears to be approximately the same for a given

window, specifically around 1.04 for Lanczos, 1.0 for von

Hann, 0.92 for Blackman, and 1.0 for Kaiser (50 dB). Ta-

ble 1 summarizes the proportionality constants for all filters

and all windows introduced in Sect. 2 and in the Supplement.

Figure 13 shows, for the filters introduced in Sect. 2 and

in the Supplement, the correspondence between the two pro-

posed standardized vertical resolutions (in bins) and the num-

ber of filter coefficients used (full widths comprised between

3 and 25 points). The dashed gray line represents unity slope

(i.e., one bin for one filter coefficient), and the numbers at the

end of the red and blue dotted straight lines indicate the slope

of the linear fit applied to the paired points for each defini-

tion. As expected for a boxcar average, the impulse-response-

based definition yields a vertical resolution (in bins) that is

equal to the number of terms used (see Fig. 2). This is a par-

ticular case for which reporting vertical resolution using the

number of filter terms yields a result identical to the impulse-

response-based standardized definition. Note that for low-

pass filters with a prescribed cut-off frequency, the vertical

resolution does not depend at all on the number of filter terms

used (right-hand plot).
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Table 1. Proportionality factor between the impulse-response-based and the cut-off frequency-based definitions of vertical resolution for the

filters and windows introduced in Sect. 2 and in the Supplement.

Ratio 1zIR/1zFC LSa and MLSb LS LS deriv. LS deriv. LS deriv.

deg. 0–1 deg. 2–3 deg. 1–2 deg. 3–4 deg. 5–6

No window 1.20 1.39 1.12 1.23 1.24

w/ Lanczos window 1.03 1.04 0.98 0.97 1.07

w/ von Hann window 1.00 0.98 / / /

w/ Blackman window 0.92 0.94 0.92 0.92 0.95

w/ Kaiser 50 dB window 0.98 1.02 0.97 0.98 1.05

a LS: least-squares. b MLS: modified least-squares.

Figure 11. Same as Fig. 10, but for derivative filters (Sect. 2 and the

Supplement).

Figure 14 is similar to Fig. 13, but this time shows the pe-

riod after convolution by a von Hann window. Except for the

low-pass filter, there is a factor of approximately 2 between

the number of terms used by the filter and the vertical reso-

lution for both definitions. Figure 15 is similar to Fig. 13, but

for three selected derivative filters.

The factors between the vertical resolutions (in bins) and

the number of filter coefficients are compiled in Tables 2

and 3 for the cut-off frequency-based and the impulse-

response-based definitions, respectively.

In this section, it was shown that each recommended def-

inition of vertical resolution yields its own numerical val-

ues; i.e., for the same set of filter coefficients, the reported

standardized vertical resolution will likely have two different

numerical values depending on the definition used. Unfortu-

nately, there is no unique proportionality factor between the

two definitions that could be used for all digital filters in or-

der to obtain a unified homogenous definition yielding identi-

cal values. However, after reviewing this homogeneity prob-

lem, the ISSI team concluded that both definitions should

still be recommended because the computed values remain

close, specifically within 10 % if using windows and within

20 % if not using windows, and because each definition is in-

Figure 12. Same as Fig. 10, but for the filters being convolved with

the four windows introduced in the Supplement.

deed useful for specific applications. For example, the cut-off

frequency-based definition is particularly useful for studies

of gravity waves from lidar temperature measurements be-

cause it can provide, through the transfer function, spectral

information that can help interpret quantitative findings on

the amplitude and wavelength of lidar-observed waves. This

type of information is not available when using the impulse-

response-based definition. On the other hand, the impulse-
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Figure 13. Correspondence between cut-off frequency-based (red) and impulse-response-based (blue) vertical resolution (in bins), and the

number of filter coefficients used (full width), for three filters introduced in Sect. 2. The dashed gray line represents unity slope (i.e., one bin

for one point), and the numbers at the end of the red and blue dotted straight lines indicate the slope of the linear fit applied to the paired

points for each definition.

Figure 14. Same as Fig. 13, but this time for the period after convolution by a von Hann window.

response-based definition is widely used in atmospheric re-

mote sensing, and it provides information in the physical do-

main similar to that provided through the averaging kernels

of optimal estimation methods (e.g., microwave radiometer

measurement of ozone or temperature).

4.4 Additional recommendations to ensure full

traceability

When archiving the ozone or temperature profiles, report-

ing values of vertical resolution using a standardized defi-

nition such as 1zFC or 1zIR constitutes an important im-

provement from other non-standardized methods, such as the

number of points used by the filter. However, using one stan-

dardized definition or even both standardized definitions pro-

posed here still does not characterize the complete smooth-

ing effect of the filter on the signal. For full traceability, it is

necessary to provide, for each altitude point, either the set of

filter coefficients used (for one-time smoothing cases) or to

provide the complete transfer function or impulse response.

This information can be critical when comparing the lidar

profiles with profiles from other instruments, or when work-

ing with averaging kernels used for other measurements.

If the data provider chooses to report standardized vertical

resolution information based on the impulse response def-

inition, the complete vertical resolution information should

include the following:
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Table 2. Proportionality factor between the number of filter coefficients (full width) and vertical resolution based on cut-off frequency (in

bins) for the filters and windows introduced in Sect. 2 and in the Supplement.

Ratio 1mFC/(2N + 1) LSa and MLSb LS LS deriv. LS deriv. LS derive.

deg. 0–1 deg. 2–3 deg. 1–2 deg. 3–4 deg. 5–6

No window 0.83 0.40 0.63 0.34 0.26

w/ Lanczos window 0.58 0.42 0.51 0.40 0.30

w/ von Hann window 0.50 0.43 / / /

w/ Blackman window 0.43 0.36 0.40 0.35 0.30

w/ Kaiser 50 dB window 0.57 0.41 0.50 0.39 0.30

a LS: least-squares. b MLS: modified least-squares.

Table 3. Proportionality factor between the number of filter coefficients (full width) and vertical resolution based on impulse response

FWHM (in bins) for the filters and windows introduced in Sect. 2 and in the Supplement.

Ratio 1mIR/(2N + 1) LSa and MLSb LS LS deriv. LS deriv. LS derive.

deg. 0–1 deg. 2–3 deg. 1–2 deg. 3–4 deg. 5–6

No window 1.00 0.56 0.71 0.42 0.33

w/ Lanczos window 0.60 0.43 0.50 0.38 0.32

w/ von Hann window 0.50 0.39 / / /

w/ Blackman window 0.41 0.34 0.37 0.31 0.29

w/ Kaiser 50 dB window 0.56 0.42 0.49 0.37 0.31

a LS: least-squares. b MLS: modified least-squares.

1. a vector 1zIR of length nk containing the standardized

vertical resolution values at each altitude, as proposed

in Sect. 4.2;

2. a two-dimensional array of size nk × nm containing

the full impulse response used to estimate the FWHM

(nm = 2M + 1 is the full length of the impulse func-

tion convolved with the filter coefficients, and a recom-

mended value is nm = nk);

3. a vector m of length nm containing the distance (in bins)

from the central bin at which the response is reported;

4. metadata information clearly describing the nature of

the reported vectors and arrays.

If the data provider chooses to report standardized vertical

resolution information based on the cut-off frequency def-

inition, the complete vertical resolution information should

therefore include the following:

1. a vector 1zFC of length nk containing the standardized

vertical resolution values at each altitude, as proposed

in Sect. 4.1;

2. a two-dimensional array of size nk × nf containing the

gain used to estimate the cut-off frequency (nf is the

number of frequencies used when applying a Laplace

transform to the filter coefficients, and a recommended

value is nf = nk);

3. a vector f of length nf containing the values of fre-

quency at which the gain is reported;

4. metadata information clearly describing the nature of

the reported vertical resolution vector, frequency vector,

and two-dimensional gain array.

If the data provider chooses to report standardized vertical

resolution based on both the impulse response definition and

the cut-off frequency definition, the complete vertical resolu-

tion information should include the following:

1. a vector 1zIR of length nk containing the standardized

vertical resolution values at each altitude, as proposed

in Sect. 4.2;

2. a two-dimensional array of size nk × nm containing

the full impulse response used to estimate the FWHM

(nm = 2M + 1 is the full length of the impulse func-

tion convolved with the filter coefficients, and a recom-

mended value is nm = nk);

3. a vector m of length nm containing the distance (in bins)

from the central bin at which the response is reported;

4. a vector 1zFC of length nk containing the standardized

vertical resolution values at each altitude, as proposed

in Sect. 4.1;

5. a two-dimensional array of size nk × nf containing the

gain used to estimate the cut-off frequency (nf is the
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Figure 15. Same as Fig. 13 but for selected derivative filters and windows from Sect. 2 and the Supplement.

number of frequencies used when applying a Laplace

transform to the filter coefficients, and a recommended

value is nf = nk);

6. a vector f of length nf containing the values of fre-

quency at which the gain is reported;

7. metadata information describing clearly the nature of all

reported vectors and arrays.

4.5 Practical implementation within NDACC

Numerical tools were developed and provided to the NDACC

principal investigators (PIs) in order to facilitate the imple-

mentation of the network-wide use of the proposed standard-

ized definitions. These tools consist of easy-to-use plug-in

routines written in IDL, MATLAB and FORTRAN, which

convert a set of filter coefficients into the needed standard-

ized values of vertical resolution following one or the other

proposed definitions. The tools are written in such a way that

they can be called in a lidar data processing algorithm each

time a smoothing and/or differentiating operation occurs.

The routines can handle multiple smoothing and/or differen-

tiating operations applied successively throughout the lidar

data processing chain, as described in Sects. 4.1 and 4.2. The

routines are available on the NDACC lidar working group

website (http://ndacc-lidar.org/), or upon request from the

first author (thierry.leblanc@jpl.nasa.gov).

The routine “NDACC_ResolIR” computes vertical resolu-

tion values with a definition based on the FWHM of the fil-

ter’s impulse response. When the routine is called for the first

time in the data processing chain, the sampling resolution and

the coefficients of the filter are the only input parameters of

the routine. The routine convolves the coefficients with an

impulse (delta function for smoothing filters and Heaviside

function for derivative filters) to obtain the filter’s impulse

response, and then identifies the full width at half maximum

(FWHM) of this response. The response and the value of ver-

tical resolution are the output parameters of the routine. The

product of the response full width by the sampling resolution

is performed inside the routine. When a second call to the

routine occurs (second smoothing occurrence), the vertical

resolution output from the first call is no longer used. Instead,

the response output from the first call is used as input param-

eter for the second call, together with the sampling resolution

and the coefficients of the second filter. The input response

is convoluted with the coefficients of the second filter to ob-

tain a second response. The routine identifies the FWHM of

this new response. Once again the vertical resolution is com-

puted inside the routine by calculating the product of the new

FWHM and the sampling resolution. The new response and

the new vertical resolution are the output parameters of the

routine after the second call. The procedure is repeated as

many times as needed, i.e., as many times as a smoothing or

differentiation operation occurs.

The routine NDACC_ResolDF computes vertical resolu-

tion values with a definition based on the cut-off frequency

of a digital filter. When the routine is called for the first time

in the data processing chain, the sampling resolution and the

coefficients of the filter are the only input parameters of the

routine. The routine applies a Laplace transform to the coef-

ficients to obtain the filter’s gain, and then identifies the cut-

off frequency. The inverse of the doubled cut-off frequency

is multiplied by the sampling resolution to obtain the verti-

cal resolution. The gain and the vertical resolution are the

output parameters of the routine. When a second call to the

routine occurs (i.e., a second smoothing operation occurs),

the cut-off width output from the first call is not used any-

more. Instead, the gain output from the first call is used as

input parameter for the second call, together with the sam-
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pling resolution and the coefficients of the second filter. The

product of the input gain and gain computed from the sec-

ond filter is the new gain from which the routine identifies

the cut-off frequency. A new vertical resolution is obtained

by multiplying the inverse of the newly computed doubled

cut-off frequency by the sampling resolution. The new gain

and the new vertical resolution are the output parameters of

the routine after the second call. The procedure is repeated as

many times as needed, i.e., as many times as a smoothing or

differentiation operation occurs.

The standardization tools became available in sum-

mer 2011. They were distributed to several members of the

ISSI team for testing and validation. Using simulated lidar

signals and a series of Monte Carlo experiments, their im-

plementation was validated for several NDACC ozone and

temperature lidar algorithms. Several examples of this val-

idation are provided in the ISSI team report (Leblanc et al.,

2016a). Ideally, an NDACC-wide implementation should fol-

low. The implementation will not be considered complete

until the vertical resolution outputs of all contributing data

processing software have been quantified and validated fol-

lowing the same procedure as that described in Leblanc et

al. (2016a).

5 Summary and discussion

In the present work, we recommended using one or two stan-

dardized definitions of vertical resolution that can unequiv-

ocally describe the impact of vertical filtering on the ozone

and temperature lidar profiles. The coefficients of the filter

used in the vertical smoothing operation are chosen by the li-

dar investigator, and therefore constitute the key information

for the derivation of vertical resolution using a standardized

definition.

The first standardized definition recommended for use in

the NDACC ozone and temperature lidar algorithms is based

on the width of the response to a finite-impulse-type pertur-

bation. The response is computed by convolving the filter

coefficients with an impulse function, namely, a Kronecker

delta function for smoothing filters and a Heaviside step

function for derivative filters. Once the response has been

computed, the standardized definition of vertical resolution

proposed by the ISSI team is given by 1z = δz × HFWHM,

where δz is the lidar’s sampling resolution and HFWHM is

the full width at half maximum (FWHM) of the response,

measured in sampling intervals. Following this definition, an

unsmoothed signal yields the best possible vertical resolu-

tion 1z = δz (one sampling bin). This definition was recom-

mended by the ISSI team because it is already widely used

within the NDACC community, and it has many points of

commonality with the averaging kernels reported for the re-

trieval of atmospheric species using optimal estimation meth-

ods. This definition also allows multiple smoothing occur-

rences to be treated analytically in a simple and exact man-

ner.

The other recommended definition relates to digital filter-

ing theory. After applying a Laplace transform to a set of

filter coefficients, we can derive the filter transfer function

and gain, which characterize the effect of the filter on the

signal in the frequency domain. A cut-off frequency value

fC can be defined as the frequency at which the gain equals

0.5, and vertical resolution can then be defined by the relation

1z = δz/(2fC). Unlike common practice in the field of spec-

tral analysis, a factor 2fC instead of fC was indeed used here

to yield values conveniently close to those obtained with the

impulse response definition. The present definition therefore

yields vertical resolution values expressed as multiples of

sampling intervals rather than multiples of Nyquist intervals,

and an unsmoothed signal yields the best possible vertical

resolution 1z = δz (one sampling interval). This result maps

to the frequency domain as twice the Nyquist frequency. Like

in the impulse response case, the values of vertical resolution

computed for multiple, successive smoothing operations are

conceptually, theoretically, and numerically exact.

The ISSI team developed numerical tools to support the

implementation of these definitions across the NDACC lidar

groups. The tools consist of ready-to-use “plug-in” routines

written in IDL, FORTRAN, MATLAB, C++, and PYTHON

that can be inserted into any lidar data processing software

each time a smoothing operation occurs in their data pro-

cessing chain. The routine’s input parameters are the lidar

sampling resolution and the coefficients of the smoothing

filter locally applied, and the output parameter is the ver-

tical resolution following the impulse-response-based stan-

dardized definition or the cut-off frequency-based standard-

ized definition. When multiple smoothing operations occur

within the same data processing chain, the plug-in routines

must be called each time smoothing occurs, but the final ver-

tical resolution to be reported is computed only at the final

occurrence. The values output by the routines after the last

call are reported in the lidar data files together with the ozone

or temperature profiles. These standardized values of vertical

resolution are theoretically and numerically exact, even after

multiple filtering occurrences. Using simulated lidar signals

and a series of Monte Carlo experiments, their implemen-

tation was validated for several NDACC ozone and temper-

ature lidar algorithms. Examples of this validation are pro-

vided in the ISSI team report (Leblanc et al., 2016a).

6 Conclusion

Over the years, NDACC lidar PIs have been providing tem-

perature and ozone profiles using a wide range of vertical res-

olution schemes and values, and these values were reported

using different definitions. Here we did not recommend us-

ing a specific vertical resolution scheme, but instead we rec-

ommended using standardized definitions of vertical resolu-
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tion that can be used consistently across lidar observation

networks. The proposed approach was designed so that the

standardized definitions can be implemented easily and con-

sistently by all lidar investigators (e.g., NDACC, TOLNet).

Though the recommendations apply to the retrieval of ozone

by the differential absorption technique and temperature by

the density integration technique, they can likewise apply to

the retrieval of other NDACC species such as water vapor

(Raman and differential absorption techniques), temperature

(rotational Raman technique), and aerosol backscatter ratio

with the exception of the optimal estimation method (OEM)

for the retrievals of temperature and water vapor recently pro-

posed by Sica and Haefele (2015, 2016), for which vertical

resolution is determined from the FWHM of the OEM’s av-

eraging kernels.

In our two companion papers (Leblanc et al., 2016b, c),

the ISSI team provided recommendations on the standard-

ized treatment of uncertainty for the NDACC ozone and tem-

perature lidars (Part 2 and Part 3 respectively). It is antici-

pated that the widespread use of the standardized definitions

and approaches proposed in our three companion papers will

significantly improve the interpretation of atmospheric mea-

surements, whether these measurements are made for valida-

tion purposes (e.g., comparison of correlative measurements)

or scientific purposes (e.g., studies of vertical structures ob-

served in the measured profiles).

7 Data availability

The data shown here are not publicly available. How-

ever, they can be obtained by contacting the first author at

thierry.leblanc@jpl.nasa.gov.

The Supplement related to this article is available online

at doi:10.5194/amt-9-4029-2016-supplement.
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