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Proposing a resolution to debates on diversity partitioning
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Abstract. There have been intense debates about the decomposition of regional diversity
(gamma) into its within-community component (alpha) and between-community component
(beta). Although a recent Ecology Forum achieved consensus in the use of ‘‘numbers
equivalents’’ (Hill numbers) as the proper choice of diversity measure, three related major
issues were still left unresolved. (1) What is the precise meaning of the ‘‘independence’’ or
‘‘statistical independence’’ of alpha diversity and beta diversity? (2) Which partitioning
(additive vs. multiplicative) should be used for a given application? (3) What is the proper
formula for alpha diversity, as there are two formulas in the literature? This paper proposes a
possible resolution to each of these issues. For the first issue, we clarify the definitions of
‘‘independence’’ and ‘‘statistical independence’’ from two perspectives so that confusion about
this issue can be cleared up. We also discuss the causes of dependence, so that the dependence
relationship between any two diversity components in both partitioning schemes can be
rigorously justified by theory and also intuitively understood by simulation. For the second
issue, both multiplicative and additive beta diversities based on Hill numbers are useful
measures and quantify different aspects of communities. However, neither can be directly
applied to compare relative compositional similarity or differentiation across multiple regions
with different numbers of communities because multiplicative beta diversity depends on the
number of communities, and additive beta diversity additionally depends on alpha
(equivalently, on gamma). Such dependences should be removed. We propose transformations
to remove these dependences, and we show that the transformed multiplicative beta and
additive beta both lead to the same classes of measures, which are always in a range of [0, 1]
and thus can be used to compare relative similarity or differentiation among communities
across multiple regions. These similarity measures include multiple-community generalizations
of the Sørenson, Jaccard, Horn, and Morisita-Horn measures. For the third issue, we present
some observations including a finding about which alpha formula produces independent alpha
and beta components. These may help to resolve the choice of a proper formula for alpha
diversity. Some related issues are also briefly discussed.

Key words: additive partitioning; alpha diversity; beta diversity; differentiation; gamma diversity; Hill
numbers; multiplicative partitioning; similarity.

INTRODUCTION

A recent Forum in Ecology (Ellison [2010] and papers

following it) has provided an excellent updated overview

of approaches to decomposing diversity. The diversity of

an extended region (the gamma diversity) can be

partitioned or decomposed into within- and between-

community components, the alpha and beta diversities,

respectively. Alpha diversity is a mean (not necessarily

the arithmetic mean) of the diversities of a set of

communities, whereas gamma diversity is the diversity

of the pooled communities. Beta diversity is then

obtained from alpha and gamma diversities based on

either multiplicative or additive decomposition. There

are other definitions or concepts of ‘‘beta diversity’’; see

Legendre and Legendre (1998), Vellend (2001), Jurasin-

ski et al. (2009), Gregorius (2010), Tuomisto (2010),

Anderson et al. (2011), Jost et al. (2011) and Magurran

and McGill (2011) for reviews and further references.

Also see Moreno and Rodrı́guez (2010) for discussions

on a consistent terminology about ‘‘beta diversity’’ and

related topics. This paper mainly focuses on the debates

about the fundamental concepts and theory of diversity

partitioning.

The Forum has helped to clarify some important

concepts and also has generated and stimulated fruitful

discussions. Surprisingly, there was complete agreement

on what had once been the most controversial point:

how to quantify biological diversity. Ellison (2010:1962)

summed up the Forum opinions on this point: ‘‘All of

the authors in this Forum agree that using numbers

equivalents instead of the classical diversity indices

(entropies) . . . should be used in any diversity partition-

ing. One could go further and suggest that, even if the

interest is only in describing the diversity of a single

assemblage, the numbers equivalent, not the entropy,

should be the diversity measure of choice. But my goal

in organizing this Forum was to move beyond this easy
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point of agreement . . . .’’ However, there are three

related major controversial issues still left unresolved

that deserve further investigation. (1) What is the precise

meaning of the ‘‘independence’’ or ‘‘statistical indepen-

dence’’ of alpha diversity and beta diversity? (2) Which

partitioning (additive vs. multiplicative) of Hill numbers

should be used in a given application? (3) What is the

proper formula for alpha diversity based on Hill

numbers? This paper proposes a possible resolution to

each of these issues.

For the first issue, we clarify the meaning of

‘‘independence’’ from two different perspectives. The

proposed views permit the dependence relationship

between alpha and beta in both partitioning schemes

to be visualized more transparently and explained more

intuitively.

We discuss the second issue because Ellison

(2010:1963) indicated ‘‘reaching consensus on how to

partition diversity measures will be harder than agreeing

on the measures themselves.’’ As long as diversity is

based on Hill numbers, both multiplicative and additive

decompositions produce useful and interpretable beta

components. The multiplicative and additive beta

components quantify different aspects of communities

and answer different questions. The controversial point

involved in this issue here is: can both additive beta and

multiplicative beta be used for assessing differentiation

or similarity among communities, which is the goal for

most diversity partitioning analysis? To compare mul-

tiple regions with different numbers of communities, we

show that neither can be directly applied to measure

relative compositional similarity (i.e., resemblance of

species’ relative abundances, species by species) or

differentiation. Proper normalization is needed for each

beta component. We prove that both partitioning

schemes lead to the same classes of relative composi-

tional similarity or differentiation measures.

In measuring regional heterogeneity, communities are

often weighted by their areas or sizes. When community

weights are considered, there are two proposed formulas

for alpha diversity, first developed by Routledge (1979)

and Jost (2007), respectively. This difference of opinion

is the third point of contention we discuss here. We

present some observations including a finding about

which alpha formula produces independent alpha and

beta components. These may help to resolve the choice

of a proper formula for alpha diversity. Some related

issues are also briefly discussed.

DIVERSITY DECOMPOSITION

Three diversity components

As we have just mentioned, there is now a consensus

among Forum participants that Hill numbers (Hill

1973), including species richness, exponential of Shan-

non entropy, and the inverse Simpson concentration

should be used instead of conventional complexity

measures (such as Shannon entropy itself or the Gini-

Simpson index). Therefore, our discussion will be

focused on the multiplicative and additive decompositions

based on Hill numbers. For diversity (D) calculations,

assume that there are S species, and pi denotes the

relative abundance of the ith species. Hill numbers of

order q, or ‘‘effective number of species,’’ are defined for

q 6¼ 1 as

qD ¼
X

S

i¼1

p
q
i

 !1=ð1�qÞ

: ð1Þ

We restrict ourselves to the cases q � 0 because Hill

numbers with q, 0 place so much weight on rare species

and have poor sampling properties. The Hill number is

undefined for q¼1, but its limit as q tends to 1 exists and

gives

1D ¼ lim
q!1

qD ¼ exp �
X

S

i¼1

pi log pi

 !

: ð2Þ

The parameter q determines the sensitivity of the

measure to the relative frequencies. When q ¼ 0, the

species abundances do not count at all and 0D ¼ S.

When q ¼ 1, the species are weighed in proportion to

their frequency and thus 1D (¼ exponential of Shannon

entropy) can be interpreted as the number of ‘‘typical

species’’ in the community. When q ¼ 2, abundant

species are favored and rare species are discounted, and

thus 2D (¼ inverse Simpson concentration) can be

interpreted as the number of ‘‘very abundant species’’

in the community. In general, if qD ¼ x, then the

diversity of order q of this community is the same as that

of a community with x equally abundant species. All

Hill numbers are in units of ‘‘species.’’ It is thus possible

to plot them all on a single graph as a continuous

function of the parameter q. This ‘‘diversity profile’’

characterizes the species–abundance distribution of a

community and provides complete information about its

diversity. Hill numbers have been extended to incorpo-

rate phylogenetic distance and also functional traits

among species (Chao et al. 2010, Chao and Jost 2012,

Leinster and Cobbold 2012). Thus, Hill numbers may

provide a unified framework for measuring biodiversity.

Assume that there are N communities, and there are S

species in the pooled communities. Let pij � 0 denote the

relative abundance of the ith species in the jth

community, i ¼ 1, 2, . . . , S, j ¼ 1, 2, . . . , N. Some of

the pij may be zero (i.e., if a species does not exist in a

community, then its relative abundance in that commu-

nity is 0.) When community weights are set equal (the

general case will be discussed later), the alpha and

gamma components based on Hill numbers of order q

are (Routledge 1979, Jost 2006, 2007):

qDa ¼
1

N

X

S

i¼1

p
q
i1 þ

1

N

X

S

i¼1

p
q
i2 þ :::þ

1

N

X

S

i¼1

p
q
iN

 !1=ð1�qÞ

q 6¼ 1 ð3Þ

and
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qDc ¼
X

S

i¼1

1

N
ð pi1 þ pi2 þ :::þ piNÞ

� �q
( )1=ð1�qÞ

q 6¼ 1: ð4Þ

When q tends to 1, we have the following limits:

1Da ¼ lim
q!1

qDa

¼ exp

�

�
1

N

X

S

i¼1

pi1 log pi1 �
1

N

X

S

i¼1

pi2 log pi2 :::

�
1

N

X

S

i¼1

piN log piN

�

ð5Þ

1Dc ¼ lim
q!1

qDc

¼ exp �
X

S

i¼1

1

N
ðpi1 þ :::þ piNÞlog

1

N
ðpi1 þ :::

"

þ piNÞ

#

:

ð6Þ

Jost (2007) proved that the partitioning of Hill numbers

into independent alpha and beta (within- and between-

group) components is necessarily multiplicative, as

follows:

qDb ¼ qDc=
qDa: ð7Þ

It takes the value of unity when all communities are

identical, and it takes the value of N when all the

communities are completely different from each other

(no shared species). Jost (2007) interpreted multiplica-

tive beta as ‘‘effective number of completely distinct

communities.’’ This beta measures ‘‘the extent of

differentiation of communities’’ (Whittaker 1972). This

will be discussed further in other sections.

MacArthur (1965), Lande (1996) and Veech et al.

(2002) proposed instead that beta be defined through an

additive relationship with alpha. This additive parti-

tioning was meant to apply to concave measures, such as

species richness, Shannon entropy, and the Gini-

Simpson index. However, the latter two measures may

lead to biologically inconsistent conclusions and mis-

leading interpretations (Jost 2006, 2007, Jost et al. 2010).

All authors in the Forum have agreed that diversity

measures should be based on Hill numbers instead of

Shannon entropy and the Gini-Simpson measure. Under

an additive framework based on Hill numbers, we

simply refer to the difference between gamma and alpha

as ‘‘additive beta’’ in order to be consistent with the

terminology used in the Forum. That is, additive beta is

defined as follows:

qDþ
b ¼ qDc �

qDa: ð8Þ

In future discussions, we would suggest that the

‘‘additive beta’’ be referred to as ‘‘diversity excess,’’

and the term ‘‘beta’’ be limited to the between-group

component of a complete partition. In the additive

framework, the alpha, beta, and gamma components are

all in the same units of ‘‘effective number of species.’’

The additive beta measures ‘‘absolute differentiation’’

and represents the absolute magnitude of diversity

‘‘increment’’ or ‘‘excess’’ between a local scale and a

regional scale. It can also be interpreted as the effective

number of regional species not contained in a typical

local community. Whittaker (1972) defined qDþ
b /(

qDa) as

‘‘species turnover’’; Jost (2007) used qDþ
b /(N – 1) to

measure the effective number of species unique to a

typical local community. See later sections for more

related measures.

A fundamental constraint

For notational simplicity, unless stated otherwise, we

hereafter use (a, c, b, bþ) for the diversities (qDa,
qDc,

qDb, Dþ
b ) defined in Eqs. 3–8. No matter which

partitioning is used, if the number of communities N is

fixed, then it follows from the definition of alpha and

gamma diversity in Eq. 3 and Eq. 4 that for any order q

� 0, (a, c) in the positive plane satisfies the following

inequality:

Na � c � a ð9aÞ

which is also equivalent to

c � a � c=N: ð9bÞ

The constraint in Eq. 9a or 9b denotes the only

fundamental constraint between alpha and gamma.

Here we consider a � 0 in our theory as a simple

starting framework. The restriction to the case a � L

(including a � 1, which is considered by all Forum

authors) and other restrictions will be discussed later.

We show later that all conclusions are valid if the

condition a � 0 is replaced by a � 1 and c � N. When q

¼2, the constraint Na � c is equivalent to HGS,c�HGS,a

� (1� 1/N )(1� HGS,a) where HGS,a and HGS,c denote,

respectively, the alpha and gamma Gini-Simpson index.

The inequality in Eq. 9a can be intuitively understood

by thinking about species richness (q ¼ 0), because Na

denotes the total number of species (including repeated

ones), c denotes the species richness (excluding repeated

ones) in the combined communities, and a denotes

average species richness in an individual community.

Similarly, a direct mathematical proof shows that the

inequality is also true for ‘‘typical species’’ (q ¼ 1) and

‘‘very abundant species’’ (q ¼ 2), and for all q � 0.

The two beta diversities as defined in Eqs. 7 and 8

measure different aspects; thus each has its own

advantages and limitations. As a simple example, if

two equally large communities have no shared species,

multiplicative beta gives a value of 2 for two commu-

nities having species richnesses 1 and 2, respectively. It is

also 2 if the species richnesses are 100 and 200,

respectively, or 100 and 2, respectively. It is a measure
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of pure relative differentiation. The ‘‘magnitude’’ of the

difference is lost in the multiplicative beta, whereas this

information is kept in additive beta (the additive beta

values are 1.5, 150, and 51 in these three cases). But this

also shows that additive beta depends on alpha for fixed

N; the additive decomposition does not produce a

complete partition of regional diversity into within- and

between-group components. This dependence will be

discussed further.

MEANING OF ‘‘INDEPENDENCE’’

Two perspectives

One of the most contentious issues in diversity

partitioning is about the meaning of ‘‘independence’’

or ‘‘statistical independence’’ of alpha and beta diversi-

ties. As Jost (2007:2428) indicated, alpha and beta

measure different aspects of communities; thus they

should be defined so that each is free to vary

‘‘independently’’ of the other. Otherwise, ‘‘if beta

depends on alpha, it would be impossible to compare

beta diversities of regions whose alpha diversity

differed.’’ This is the essence of a complete partitioning

of any quantity into within- and between-group

components; all the within-group information should

be contained in one component, and all the between-

group information should be contained in the other

component, with no cross-talk. Jost (2007) proved that

multiplicative alpha and beta defined in Eqs. 3 and 7 are

‘‘independent’’ in this sense.

Veech and Crist (2010a, b) commented that Jost never

claimed that ‘‘independence’’ means ‘‘statistical indepen-

dence’’ in his papers. They are correct; Jost was referring

to a different kind of independence. First, we clarify that

‘‘statistical independence’’ refers to independence among

random variables. All possible values that a random

variable can take are characterized or controlled by a

sampling scheme based on a probability distribution. To

determine whether any two random variables are

statistically independent, we must know the probability

distributions of the two random variables. The authors

in the Forum use two different statistical perspectives.

1. Fixed-parameter approach (diversities are regarded

as fixed parameters).—In Jost’s approach, he considered

all possible values that alpha, beta, and gamma can take

as fixed parameters. We call this model a fixed-

parameter model. There is no sampling scheme and no

probability structure involved. Therefore, as Jost indi-

cated in his Forum paper, ‘‘statistical independence of

alpha and beta is neither necessary nor desirable.’’

In Jost’s approach, the ‘‘independence’’ of alpha and

beta means that all possible values of alpha and beta are

not related to each other by any systematic/mathematical

constraints. That is, knowing only alpha diversity, one

has no information about the value of beta diversity, and

vice versa. Jost (2010:1970) further explained its mean-

ing: ‘‘. . . any value in the domain of alpha is compatible

with any value in the domain of beta, and vice versa’’ and

thus all possible values of alpha and beta form a

Cartesian product of two intervals (i.e., all possible

values when plotted in a two-dimensional (alpha, beta)

plane form a rectangle). In statistical terms, alpha and

beta are ‘‘unrelated parameters.’’ In order to avoid

confusion with ‘‘statistical independence,’’ a clearer and

better description of Jost’s sense of ‘‘independence’’ is

that alpha diversity and beta diversity are two ‘‘unrelat-

ed ’’ parameters. When we want to prove whether alpha

and beta are ‘‘unrelated,’’ we just search whether there

exist any systematic constraints between alpha and beta,

as we will show. Hereafter the terminology ‘‘related’’ or

‘‘unrelated’’ (‘‘relatedness’’ or ‘‘unrelatedness’’) always

refers to fixed-parameter models.

2. Random-parameter approach (diversities are re-

garded as random variables taken from a distribution).—

Focusing on species richness (q ¼ 0), Veech and Crist

(2010a) and Baselga (2010) regarded all possible values

of alpha, beta, and gamma as random variables and

simulated alpha and gamma randomly from a uniform

distribution. We call this model a random-parameter

model. In this approach, the uniform distribution is the

probability structure involved in generating alpha and

gamma values. Two random variables X and Y are

‘‘statistically independent’’ if and only if the joint

distribution of X and Y is equal to the product of the

two marginal distributions. This is equivalent to

showing P(X 2 A, Y 2 B) ¼ P(X 2 A)3 P(Y 2 B) for

any events A and B of the random variables X and Y,

respectively. Veech and Crist (2010a) and Baselga

(2010) used the latter criterion to show the indepen-

dence of two variables in their Forum papers. For

simplicity, in the following, we use ‘‘dependence’’ for

‘‘statistical dependence’’ and ‘‘independence’’ for ‘‘sta-

tistical independence’’; these terms always refer to

random-parameter models under the uniform distribu-

tions, because this is the only distribution discussed in

the debates.

Independence of two random variables implies no

correlation between them, but the reverse is not

necessarily true. Two uncorrelated variables may not

be independent. If the underlying distributions are

uniform distributions, as in the simulations performed

in Baselga (2010) and Veech and Crist (2010a), a nice

property is that, to prove whether two uniform random

variables are independent, we only need to check

whether the set of all possible values that the two

variables can jointly take forms a rectangle in a two-

dimensional plane. If it is not a rectangle (i.e., there are

systematic constraints between the two variables), then

the two variables are dependent. If it is a rectangle, then

the two variables are independent. Therefore, in the

special case of the uniform distribution, the claim that

alpha and beta are independent (dependent) in a

random-parameter model is equivalent to the claim that

alpha and beta are unrelated (related) if they were

treated as fixed parameters. This not only bridges the

two sides of debates, but also helps one to understand all
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simulation findings about ‘‘dependence’’ or ‘‘related-

ness’’ between any two diversity components discussed

in the Forum. In the nonuniform case, this equivalence

is no longer valid.

Theoretical approach

To theoretically determine whether any two diversity

components based on Hill numbers are related in a

fixed-parameter model or dependent in a random-

parameter model, we only need to find whether there

are systematic constraints between the two diversities

due to the fundamental constraint Na � c � a given in

Eq. 9a or c � a � c/N in Eq. 9b. This constraint, which

is referred to as Constraint (A) for easy reference later,

induces relatedness or dependence between c and a. For

the additive approach, Eq. 9a also induces the following

systematic constraint between a and bþ:

ðN � 1Þa � bþ ð10aÞ

implying that (a, bþ) are related or dependent. Similarly,

Eq. 9b also induces the following systematic constraint

between c and bþ:

ð1� 1=NÞc � bþ ð10bÞ

implying that (c, bþ) are related or dependent. In the

multiplicative approach, both Eq. 9a and Eq. 9b are

equivalent to

N � b � 1: ð11Þ

The upper and lower bounds for beta do not involve

either alpha or gamma. Thus no constraints are induced

for (a, b) or (c, b). We now can summarize the

conclusions for a random-parameter model for a � 0

in Table 1, and the same results can be obtained for a �
1 and c � N. The conclusions in Table 1 are valid for all

orders of q � 0 and will be justified by graphical display

and empirical simulation later. Because there are no

other systematic constraints except for Na � c � a or c

� a � c/N, our approach provides a very simple

theoretical justification for the dependence relationships

in Table 1 for all orders of q � 0 when community

weights are set equal. Our conclusions are the same as

those obtained in Baselga (2010:1980).

Conditional relatedness and conditional dependence

One may wonder why there are different conclusions

from those in Table 1 about ‘‘relatedness’’ or ‘‘depen-

dence’’ reported in the Forum papers. For example, Jost

(2010) concluded that multiplicative beta is related to

gamma in a fixed-parameter model, Veech and Crist

(2010a) reported in their simulations that alpha and beta

are dependent in both partitioning schemes, and Baselga

(2010) used simulation plots to show that the depen-

dence relationship depends on the order of simulations.

These seemingly inconsistent findings were mainly

caused by conditional relatedness and conditional depen-

dence induced by different conditions that each author

imposed in their arguments or simulations. In Table 2,

we list three conditions considered by the authors in the

Forum. In addition to the dependences given in Table 1,

the conditional dependence induced by each condition is

given in the same table.

Condition (1): fixed alpha in a range between a lower

bound L and an upper bound U.—If alpha is restricted in

a range of [L, U], then this information induces a

TABLE 1. Dependence induced by the fundamental constraint (A): Na � c � a under a uniform random-parameter model for fixed
N and a � 0 under additive vs. multiplicative partitioning.

Constraint and relationship Additive (bþ ¼ c � a) Multiplicative (b ¼ c/a)

Constraint (A): Na � c � a
for fixed N

Na � c � a (i.e., c � a � c/N ) )
(N – 1)a � bþ and (1 – 1/N )c � bþ

Na � c � a ) N � b � 1

Diversity relationship (a, c) dependent (a, c) dependent
(a, bþ) dependent (a, b) independent
(bþ, c) dependent (b, c) independent

Notes: The condition a � 0 can be replaced by a � 1 and c � N. Diversities (a, c, b, bþ) refer to Eqs. 3–8, and conclusions are
valid for all q � 0. In a fixed-parameter model, replace ‘‘dependent’’ by ‘‘related’’ and replace ‘‘independent’’ by ‘‘unrelated.’’ The
conclusions are the same as those obtained in Baselga (2010:1980).

TABLE 2. Conditional dependence for any two diversity components under a uniform random-parameter model, in addition to the
dependences given in Table 1.

Condition and restriction Additive (bþ ¼ c � a) Multiplicative (b ¼ c/a)

Condition (1) on a U � a � L ) U � c � bþ � L U � a � L ) b 3 U � c � b 3 L

(bþ, c) conditionally dependent (b, c) conditionally dependent

Condition (1a) on a a � L ) c – bþ � L a � L ) c � b 3 L

(bþ, c) conditionally dependent (b, c) conditionally dependent

Condition (2) on c U* � c � L* ) U* � a þ bþ � L* U* � c � L* ) U* � a 3 b � L*

(a, bþ) conditionally dependent (a, b) conditionally dependent

Notes: The conclusions are valid for all q � 0. In a fixed-parameter model, replace ‘‘conditionally dependent’’ by ‘‘conditionally
related.’’ U and U* denote upper bounds, L and L* denote lower bounds, U . L � 1, and U*

. L* � 1.
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systematic/mathematical relationship between beta and

gamma for both multiplicative and additive decompo-

sitions. Thus, beta and gamma are conditionally

dependent in a random-parameter model (or condition-

ally related in a fixed-parameter model). Here ‘‘condi-

tional’’ refers to the condition U � a � L. Alpha and

multiplicative beta remain independent under this

condition on alpha because beta is independent of (or

unrelated to) alpha as shown in Table 1, and no

constraint on alpha affects the possible range of

multiplicative beta.

Condition (1a): fixed lower bound L for alpha.—The

condition a � L induces conditional relatedness or

dependences between beta and gamma for both multi-

plicative and additive decompositions. All authors

except Baselga (2010: his Procedure 1) in the Forum

assumed that at least one species is found in each

community. This is to impose a condition or restriction

a � L ¼ 1.

Condition (2): fixed gamma in a range between a lower

bound L* and an upper bound U*.—This information

induces a systematic/mathematical relationship between

alpha and beta for both multiplicative and additive

betas. Thus, alpha and beta are conditionally dependent

in a random-parameter model (or conditionally related

in a fixed-parameter model) for both types of partition-

ing methods. Here ‘‘conditional’’ refers to the condition

U* � c � L*.

We first explain why these conditions in Table 2 are

needed in simulations and in graphical presentation. For

example, Baselga (2010) in his simulation used two

procedures: Procedure 1 (fixed gamma in an interval)

and Procedure 2 (fixed alpha in an interval). Without

one of the two restrictions, simulation cannot be

efficiently performed and results cannot be graphically

presented. Similarly, these restrictions are also needed to

display the surface of (a, b, c) or (a, bþ, c) in a three-

dimensional space. These displays will help one to

understand dependence or relatedness between any two

diversity components, as we will discuss.

Assume the set C contains all possible positive values

that (a, b, c) can take based on Hill numbers in a

multiplicative partitioning. We have the following

expression for C with a fundamental constraint given

in Eq. 9a:

C ¼ ða; b; cÞ : c ¼ a3 b; Na � c � af g:

Similarly, for additive partitioning, we consider the set

Cþ ¼ ða; bþ; cÞ : c ¼ aþ bþ; Na � c � a
� �

:

When all points in this set are plotted in a three-

dimensional positive space, they represent a surface

without a boundary. To plot the surface C and Cþ, we

need to restrict either alpha or gamma to a finite range;

otherwise the three-dimensional surface cannot be

shown. In Fig. 1, we show the surface C and Cþ when

alpha is restricted to a range U � a � L. The

corresponding plot for the restriction U* � c � L* is

shown in Fig. 2. The surface obtained by considering

constraints in a fixed-parameter model is identical to the

surface portrayed by simulated points from random

uniform distributions, if the number of simulations is

sufficiently large. Therefore, any discussions regarding

Figs. 1 and 2 are valid for both a graphical display

(under a fixed-parameter model) and a simulation-based

plot (under a random-parameter model).

FIG. 1. Three-dimensional plot for three diversity components, where N ¼ 2 (number of communities), q ¼ 0 (order of Hill
numbers), L¼ 1 (lower bound of alpha), and U¼ 15 (upper bound of alpha). Diversities include alpha (a), multiplicative beta (b),
additive beta (bþ), and gamma (c); see Eqs. 3–8. The surface is the same for both fixed-parameter and random-parameter models.
(a) Additive partitioning with U � a � L. The shaded area plots the surface f(a, bþ, c) : c¼ aþ bþ, Na � c � a given U � a � Lg.
None of the three two-dimensional projections is a rectangle. (b) Multiplicative partitioning with U � a � L. The shaded area plots
the surface f(a, b, c) : c¼a3b, Na � c � a givenU � a� Lg. The projection onto the (a, b)-plane is a rectangle, whereas the other
two-dimensional projections are not rectangles.
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Graphical display and simulation-based plots

As explained, when either alpha or gamma is

restricted to a range, conditional relatedness or condi-

tional dependence is induced for the other two diversity

components (Table 2). Relatedness or dependence

between any two diversity components can be shown

not only by theoretically searching for constraints (as we

described in previous sections and in Table 1), but also

by graphs and simulation plots. To demonstrate the

relationship between any two diversity components, we

can simply project the three-dimensional surfaces in

Figs. 1 and 2 onto any two-dimensional surface and

examine whether the projected surface is a rectangle or

not. In both figures, we only plot species richness (q¼ 0)

for illustration, although for other values of q (especially

q¼ 1 and 2), similar figures and discussion can be made.

In Fig. 1, when alpha is restricted to U � a � L

(Baselga, Procedure 2), the three two-dimensional

projections are similar to those in Baselga (2010: Fig.

2). For additive partitioning, none of the three two-

dimensional projections is a rectangle, so all three

diversity components are pairwise dependent (or relat-

ed). For multiplicative partitioning, the projection onto

the (a, b)-plane is a rectangle, showing that alpha and

beta are unrelated, whereas the other two-dimensional

projections are not rectangles. The projection onto the

(b, c)-plane is shown in Fig. 3 in order to see the

meaning of conditional dependence and to see how the

conditional dependence between b and c vanishes in

multiplicative partitioning as the condition is released.

As shown in Fig. 3b, if we release the condition U � a �

L by letting U ! ‘ and L ! 0, then the projected

surface on the (b, c)-plane extends to a rectangle,

whereas the (bþ, c)-plane projection in Fig. 3a does not

extend to a rectangle. Thus, b and c become independent

(unrelated), as indicated in Table 1, whereas the

dependence (or relatedness) between bþ and c remains.

Similarly, in Fig. 2, when gamma is restricted to U* �
c � L* (Baselga, Procedure 1), the three two-dimen-

sional projections are similar to those in Baselga (2010:

Fig. 1). For additive partitioning, none of the three two-

dimensional projections is a rectangle. Thus all three

diversity components are pairwise dependent (or relat-

ed). For multiplicative partitioning, the projection onto

the (b, c)-plane is a rectangle, whereas the other two-

dimensional projections are not rectangles. The project-

ed surface onto the (a, b)-plane is shown in Fig. 4 in

order to see the meaning of conditional dependence and

to see how the conditional dependence between a and b

vanishes in multiplicative partitioning as the condition is

released. As shown in Fig. 4b, if we release the condition

U* � c � L* by letting U* ! ‘ and L* ! 0, then the

(a, b)-plane projection extends to a rectangle whereas

the (a, bþ)-plane projection in Fig. 4a does not extend to

a rectangle. Thus, a and b become independent

(unrelated) as indicated in Table 1, whereas the

dependence (or relatedness) between a and bþ remains.

Proposed resolution

In Table 3, we list all fixed-parameter and random-

parameter approaches by the authors in the Forum. In

each case, we give the constraints and conditions that

the authors considered in their papers. Based on Tables

1 and 2, all relatedness or dependence relationships

between any two diversity components can be directly

FIG. 2. Three-dimensional plot for three diversity components, where N ¼ 2 (number of communities), q ¼ 0 (order of Hill
numbers), L*¼ 2 (lower bound of gamma), and U* ¼ 15 (upper bound of gamma); for other terms, see Fig. 1. The surface is the
same for both fixed-parameter and random-parameter models. (a) Additive partitioning with U* � c � L*. The shaded area plots
the surface f(a, bþ, c) : c¼aþbþ, c � a � c/N givenU* � c � L*g. None of the three two-dimensional projections is a rectangle. (b)
Multiplicative partitioning with U* � c � L*. The shaded area plots the surface f(a, b, c) : c¼ a3 b, c � a � c/N given U* � c �
L*g. The projection onto the (b, c)-plane is a rectangle, whereas the other two-dimensional projections are not rectangles.
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obtained. Our conclusions in Table 3 exactly match with

the findings of those reported in the Forum. Based on

both theoretical and graphical/simulation-based ap-

proaches, now we can have a clear understanding of

all authors’ disagreements in the Forum (Table 3).

Veech and Crist’s approach.—In Veech and Crist’s

(2010a) random-parameter simulations without fixing

N, they concluded that alpha and beta are dependent in

both additive and multiplicative partitioning schemes.

The dependence between alpha and beta was not

FIG. 3. The shaded area is the projection of the surface in Fig. 1 onto the (beta, gamma)-plane given the condition U � a � L.
For both partitioning methods, gamma and beta are conditionally dependent because the shaded area is not a rectangle. (a)
Additive partitioning with U � a � L. Since U � a � L ) U � c� bþ� L, the shaded area in the positive plane is determined by c
� bþ � L (due to setting a lower bound L) and U � c � bþ (due to setting an upper bound U) and bþ � (1 � 1/N )c (due to
constraint A given in Table 1). (b) Multiplicative partitioning with U � a � L. Since U � a � L ) b3U � c � b3L, the shaded
area in the range N � b � 1 is determined by c � b3L (due to setting a lower bound L), b3U � c (due to setting an upper bound
U). If we release the condition U � a � L by letting U ! ‘ and L ! 0, the shaded area extends to a line-shaded rectangle in panel
(b), but in panel (a) the shaded area does not extend to a rectangle due to the constraint (1 � 1/N )c � bþ.

FIG. 4. The shaded area is the projection of the surface in Fig. 2 onto the (a, b)-plane given the conditionU* � c � L*. For both
partitioning methods, alpha and beta are conditionally dependent because the shaded area is not a rectangle. (a) Additive
partitioning with U* � c � L*. Since U* � c � L* ) U* � aþbþ� L*, the shaded area in the positive plane is determined by aþbþ

� L* (due to setting a lower bound L*) and U* � aþbþ (due to setting an upper bound U*) and (N� 1)a � bþ (due to constraint A
given in Table 1). (b) Multiplicative partitioning with U* � c � L*. Since U* � c � L* ) U* � a3 b � L*, the shaded area in the
range N � b � 1 is determined by a3b � L* (due to setting a lower bound L*) and a3b � U* (due to setting an upper bound U*).
If we release the condition U* � c � L* by letting U* ! ‘ and L* ! 0, the shaded area extends to a line-shaded rectangle in panel
(b), but in panel (a) the shaded area does not extend to a rectangle due to the constraint (N � 1)a � bþ.
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induced by varying N, but rather by their restriction on

gamma (1000 � c � 10). They correctly noted that if the

condition is released, alpha and beta are independent

(see Table 3). Also, they found dependence between beta

and gamma. This is because they set up a lower bound

of 1 for alpha (a � 1), i.e., Condition (1a) in Table 2. If

alpha is allowed to be any positive number, then beta

and gamma become independent for both partitioning

methods.

Except for Veech and Crist, all the other authors in

the Forum considered a fixed N and the results in this

case are summarized as follows (see Table 3).

Jost’s approach.—Jost obtained the relatedness of

beta and gamma in the multiplicative fixed-parameter

approach. This is because he imposed a condition a � L

¼ 1, which implies c � b and thus beta and gamma are

conditionally related. See this condition in Fig. 3b and

its effect on the projected plane. It is clear that the

dependence between b and c is due to c , N. If we

further restrict c � N, then beta and gamma become

unrelated in Jost’s fixed-parameter model. Alpha is

always unrelated to multiplicative beta.

Baselga’s approach.—As Baselga (2010) rightly indi-

cated, the conditional dependence between multiplica-

tive alpha and beta in Baselga Procedure 1 is due to a

restriction on gamma, and the conditional dependence

between multiplicative gamma and beta in Baselga

Procedure 2 is due to a restriction on alpha. In Table

2, we have explained how the dependence is induced.

Figs. 3b and 4b graphically show why the conditional

dependence vanishes if the restriction is released.

The debates about dependences between any two

diversity components can thus be resolved: the reason

that authors obtained seemingly contradictory conclu-

sions regarding the dependence between any two

diversity components is because each author imposed

different conditions in the model or simulations. If none

of the conditions are imposed, that is, if all conditional

relatedness or dependences vanish, then the conclusions

for all authors’ models reduce to those in Table 1. For

multiplicative partitioning, if alpha is allowed to be any

positive number (or a � 1, c � N), not only are

multiplicative beta and alpha independent (or unrelated)

but also beta and gamma are independent (or unrelat-

ed). Only alpha and gamma are dependent (related). For

additive partitioning, all three diversity components are

pairwise dependent (or related).

ADDITIVE VS. MULTIPLICATIVE BETA

As discussed, multiplicative beta, which quantifies

community diversity (i.e., the effective number of

completely distinct communities), measures pure relative

differentiation among communities. It ranges from 1 to

N when weights are set equal (Table 1). Thus, it can be

made into measures of relative compositional similarity

or differentiation by transforming it (or its reciprocal)

TABLE 3. All fixed-parameter and random-parameter models in the Forum (Ellison 2010) on diversity partitioning.

Conditions/constraint Additive (bþ ¼ c � a) Multiplicative (b ¼ c/a)

Veech and Crist random-parameter simulation
(N is not fixed). First generate c ; uniform
(10, 1000), then generate a ; uniform (1, c).
Range of (a, c) ¼ f(a, c): c � a given a � 1,
1000 � c � 10g

Condition (1a): a � 1 (bþ, c) conditionally dependent (b, c) conditionally dependent
Condition (2): 1000 � c � 10 (a, bþ) conditionally dependent (a, b) conditionally dependent
Constraint: c � a (a, c) dependent (a, c) dependent

Jost fixed-parameter model (N fixed). Range of
(a, c) ¼ f(a, c): Na � c � a given a � 1g

Condition (1a): a � 1 (bþ, c) conditionally related; (b, c) conditionally related
Constraint (A): Na � c � a all three components pairwise related (a, c) related; (a, b) unrelated

Baselga random-parameter simulation,
Procedure 1 (N fixed). First generate c ;

uniform (10, 1000), then generate a ;

uniform (c/N, c). Range of (a, c) ¼ f(a, c):
c � a � c/N given 1000 � c � 10g

Condition (2): 1000 � c � 10 (a, bþ) conditionally dependent; (a, b) conditionally dependent
Constraint (A): Na � c � a all three components are pairwise dependent (a, c) dependent

(b, c) independent

Baselga random-parameter simulation,
Procedure 2 (N fixed). First generate a ;

uniform (1, 100), then generate c ; uniform
(a, Na). Range of (a, c) ¼ f(a, c): Na � c �
a given 100 � a � 1g

Condition (1): 100 � a � 1 (bþ, c) conditionally dependent; (b, c) conditionally dependent
Constraint (A): Na � c � a all three components are pairwise dependent (a, c) dependent

(a, b) independent

Notes: The conditions (see Table 2) and constraint (see Table 1) for each model are listed in the first column. Diversities (a, c, b,
bþ) refer to Eqs. 3–8, and conclusions are valid for all q � 0.
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onto the unit interval. There are many possible

transformations of beta onto the unit interval, each

addressing a different aspect of compositional similarity

or differentiation (see Legendre and Legendre 1998,

Koleff et al. 2003, Jost 2007, Gregorius 2010, Tuomisto

2010, Anderson et al. 2011, Jost et al. 2011). Three

transformations will be discussed.

The additive beta quantifies the absolute magnitude of

diversity increment or excess between a regional scale

and a local scale. In Table 1, we have seen for fixed N

how additive beta is dependent on alpha (or equivalent-

ly, on gamma); in Eqs. 10a and 10b, we have derived

these dependence relationships. When ecologists aim to

assess relative compositional differentiation among

communities, it is clear now that these dependences

should be removed. We will show that the resulting

normalized measures when these dependences are

removed turn out to be the same as those based on the

multiplicative beta.

Similarity/differentiation measures from

multiplicative beta

In order to compare relative compositional similarity

or differentiation between communities across multiple

regions with different numbers of communities, multi-

plicative beta (or its inverse) must be transformed onto

the unit interval. We consider three such classes of

similarity or differentiation measures:

1. Relative turnover rate per community (Harrison et

al. 1992, Jost 2006, 2007).—This rate measures the

proportion of a typical community that changes as one

goes from one community to another in the region:

ðqDb � 1Þ=ðN � 1Þ: ð12aÞ

This is a differentiation measure that is linear in beta

and it ranges from 0 (no turnover among communities)

to unity (each community is completely distinct from

every other communities). Harrison et al. (1992)

proposed this measure only for species richness (q ¼ 0).

Jost (2007) extended it to any order of Hill numbers.

2. A class of homogeneity measures (MacArthur

1965, Jost 2006, 2007).—This transformation is linear

in the inverse of beta (the proportion of regional

diversity contained in the average community):

qS ¼ ð1=qDb � 1=NÞ=ð1� 1=NÞ: ð12bÞ

When q ¼ 0, this is the multiple-community generaliza-

tion of the Jaccard index (Koch 1957). When q¼ 2, this

is the multiple-community generalization of the Mo-

risita-Horn index (Morisita 1959, Horn 1966). The

Jaccard and Morisita-Horn measures are members of

the same family and are connected by a continuum of

similarity measures, which differ only in their sensitivity

to species’ relative abundances.

3. A class of overlap measures (Jost 2006, 2007, Chao

et al. 2008).—Based on a two-stage probabilistic

approach, Chao et al. (2008) proposed the following

transformation of multiplicative beta diversity and

obtained a measure called CqN:

CqN ¼ ½ð1=qDbÞ
q�1 � ð1=NÞq�1�=½1� ð1=NÞq�1� q 6¼ 1:

ð12cÞ

The special case of N ¼ 2 was derived in Jost (2006,

2007). The measure CqN can be expressed as a function

of relative abundances; see Appendix A. This measure is

unity when all communities are identical and 0 when all

communities are completely distinct. It includes the

multiple-community generalizations of the classical two-

community Sørensen, Horn, and Morisita-Horn mea-

sures above three measures.

Consider the special case of q ¼ 0. Let S denotes the

total number of species in the combined communities,

and S̄ denotes the average number of species per

community. Then multiplicative beta becomes 0Db ¼ S/

S̄ as defined in Eq. 7 for q¼ 0 (also see Whittatker 1972,

Jost 2007). In this case, from Eq. 12c we have the

following:

C0N ¼ ðS=�S� NÞ=ð1� NÞ ¼ 1� ð0Db � 1Þ=ðN � 1Þ

ð13aÞ

which is the multiple-community version of the classical

Sørenson index (Diserud and Ødegaard 2007). The

measure C0N is a decreasing function of Whittaker’s beta

and 1� C0N is the relative turnover rate per community

of Harrison et al. (1992); see Eq. 12a). For q ¼ 1, C1N

reduces to the multiple-community version of the Horn

homogeneity measure (Chao et al. 2008):

C1N ¼ lim
q!1

CqN ¼ 1�
Hc � Ha

log N

¼
1

log N

X

S

i¼1

X

N

j¼1

pij

N
log 1þ

X

k 6¼j

pik

pij

0

B

B

@

1

C

C

A

2

6

6

4

3

7

7

5

ð13bÞ

where Ha is the average entropy in an individual

community, and Hc is the entropy in the combined

communities. For q ¼ 2, C2N reduces to the multiple-

community version of the Morisita-Horn similarity

index:

C2N ¼ 1�
HGS;c � HGS;a

ð1� 1=NÞð1� HGS;aÞ
¼

2
X

S

i¼1

X

j, k

pijpik

ðN � 1Þ
X

S

i¼1

X

N

j¼1

p2ij

ð13cÞ

where HGS,a and HGS,c denote, respectively, the alpha

and gamma Gini-Simpson index.

For q . 0, Eq. 12c shows that the measure CqN is a

nonlinear transformation of the multiplicative beta. Only

a nonlinear transformation gives these measures the

calibrated metric of a true overlap index (Chao et al.

2008). That is, the transformed index CqN gives the true
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overlap A/S for all orders of q if N communities each

have S equally common species, with exactly A species

shared by all of them, and the remaining species in each

community not being shared with any other communi-

ties. No linear transformation of multiplicative beta

diversity can achieve this goal. The measure CqN

quantifies the effective average overlap per community,

i.e., the average percentage of overlapped species

(species that are shared by all communities, as defined

in the previous sense) in a community. Just as diversity

profiles are used to characterize traditional diversity,

Chao et al. (2008) suggest the use of a similarity profile

fCqN; q¼ 0, 1, 2, . . . , Ng to describe similarity across N

communities. We recommend that investigators calcu-

late at least C0N, C1N, and C2N; see Jost et al. (2011:81)

for a numerical example with a plot.

Similarity/differentiation measures from additive beta

There is a simple relationship between additive beta,

multiplicative beta, and alpha, i.e., bþ ¼ a(b � 1),

equivalently b ¼ 1 þ (bþ/a). We can also have a

relationship with gamma, i.e., bþ ¼ c(1 � 1/b),

equivalently b ¼ 1/(1 � bþ/c). Therefore, each of the

three measures based on multiplicative beta (in Eqs. 12a–

c) can be expressed as a function of (bþ, a) or a function

of (bþ, c). However, this approach will not reveal the role

of dependence between bþ and a (or dependence between

bþ and c) in constructing relative similarity or differen-

tiation measures from additive beta. Instead, we consider

the dependence relationships in Table 1 and show how to

remove dependence to obtain similarity or differentiation

measures. From Table 1, additive beta depends not only

on N but also on alpha (equivalently, on gamma); see

also Figs. 3a and 4a. The basic constraint between alpha

and additive beta is (N� 1)a � bþ (Eq. 10a). The basic

constraint between gamma and additive beta is (1 �
1/N )c� bþ (Eq. 10b). Due to these constraints, when the

goal is to assess the relative differentiation or similarity

among communities, we cannot use additive beta to

compare two or multiple regions with different alpha (or

gamma) even if the numbers of communities are the

same. The differences in additive beta values for two sets

of communities may reflect the differences in alpha (or

gamma) rather than the relative degree of compositional

differentiation. Thus, dependences on alpha (or gamma)

must be removed.

To remove the dependence on alpha and N due to the

constraint (N � 1)a � bþ, we can consider the

normalized measure bþ/max(bþ) ¼ bþ/[(N � 1)a]. It

takes the value of 0 when the communities are identical

and unity when communities are completely distinct.

Notice the that normalized measure is

bþ

ðN � 1Þa
¼

b� 1

N � 1

which is the relative diversity turnover rate in Eq. 12a.

When q¼ 0, the above measure is 1 – C0N. In this case,

the constraint (N � 1)a � bþ is equivalent to

ð0DcÞ � ð0DaÞ � ðN � 1Þð0DaÞ: ð14Þ

To remove the dependence on gamma and N due to

the constraint (1 � 1/N )c � bþ, we consider the

following normalized measure:

bþ

ð1� 1=NÞc
¼

1� 1=b

1� 1=N
¼ 1� ðqSÞ

which is the complement of the homogeneity measure in

Eq. 12b. When q ¼ 2, this measure is 1 � C2N. In this

case, the constraint (1 � 1/N )c � bþ is equivalent to

ð2DcÞ � ð2DaÞ � ð1� 1=NÞð2DcÞ

� ð2DaÞ
�1 � ð2DcÞ

�1 � ð1� 1=NÞð2DaÞ
�1: ð15Þ

The dependence relationships in Eqs. 14 and 15 can be

generalized to any order of q. (See Appendix A for proof

details). That is, for 0� q, 1, Eq. 14 can be generalized to

ðqDcÞ
1�q � ðqDaÞ

1�q � ðN1�q � 1ÞðqDaÞ
1�q: ð16aÞ

For q . 1, Eq. 15 can be generalized to

ðqDaÞ
1�q � ðqDcÞ

1�q � ð1� N1�qÞðqDaÞ
1�q: ð16bÞ

In Eqs. 16a and b, we can make a similar normali-

zation by dividing the left-hand side of each equation by

the upper bound on the right-hand side. It turns out that

both equations lead to the same formula, as shown on

the left-hand side of Eq. 17. Moreover, for any q � 0 and

q 6¼ 1, the resulting normalized formula is exactly 1�
CqN (see Appendix A for proof details):

ðqDcÞ
1�q � ðqDaÞ

1�q

ðN1�q � 1ÞðqDaÞ
1�q

¼ 1� CqN : ð17Þ

For q¼ 1, the limit tends to 1 – C1N¼ (Hc� Ha)/log N;

see Eq. 13b.

Therefore, we have shown that both multiplicative

and additive approaches based on Hill numbers lead to

the same similarity and differentiation measures. When

we compare regions with the possibility of different

number of communities, the normalized similarity

(overlap) measures that satisfies the true overlap

property for all orders of q is given by the measure

CqN, whether Hill numbers are decomposed additively

or multiplicatively. It is important to point out that

normalization is not a general cure for problems of

dependence on alpha (or gamma). However, all the

proposed normalizations in this paper turn out to be

functions of multiplicative beta only. This is why we can

conclude that the dependence on alpha (or gamma) can

be removed via normalization.

TWO FORMULAS FOR ALPHA DIVERSITY

When community area or size needs to be taken into

account, as in measuring regional heterogeneity (Horn

1966) instead of compositional differentiation, we can
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consider a community weight wj for the jth community, j

¼ 1, 2, . . . , N. This weight function can usually be taken

to be the relative sizes (either in terms of area or total

population) of the communities. When community

weights are considered, the gamma diversity, which is

a generalization of Eq. 4, has the following form:

qDc ¼
X

S

i¼1

X

N

j¼1

wjpij

 !q( )1=ð1�qÞ

q 6¼ 1 ð18Þ

(see Routledge 1979, Jost 2006, 2007). There are two

proposed formulas for alpha diversity under multiplica-

tive partitioning. Routledge (1979) proposed the follow-

ing alpha diversity of order q based on Hill numbers:

qDa;R ¼ ð
X

S

i¼1

X

N

j¼1

wjp
q
ijÞ

1=ð1�qÞ: ð19Þ

Tuomisto (2010) followed Routledge in advocating the

use of this alpha. Jost (2007) derived (rather than

defined) a different form of alpha diversity as the unique

within-group component of regional diversity:

qDa;J ¼
X

S

i¼1

X

N

j¼1

w
q
j

w
q
1 þ :::þ w

q
N

p
q
ij

 !1=ð1�qÞ

: ð20Þ

These two alpha diversities are identical in the case of

equal community weights and are also identical in the

case of q¼ 1 in the case of unequal community weights.

When weights are considered, the differences between

the two alpha diversities lie not only in the weights but

also in some other critical aspects, to be discussed.

Consider first the special case of q¼0. Routledge’s alpha

from Eq. 19 is a weighted mean of species richnesses, as

follows:

0Da;R ¼ w1S1 þ w2S2 þ :::þ wNSN ð21aÞ

where Sj denotes the number of species in the jth

community. Jost’s alpha from Eq. 20 always reduces to

the equal-weight mean of species richnesses, even when

the actual weights are unequal:

0Da;J ¼ ðS1 þ S2 þ :::þ SNÞ=N ¼ �S: ð21bÞ

This is the same as 0Da in Eq. 3. The multiplicative beta
0Db,R, using Routledge’s alpha, becomes

0Db;R ¼ S=ðw1S1 þ w2S2 þ :::þ wNSNÞ: ð22Þ

Jost’s alpha leads to the following beta diversity:

0Db;J ¼ S=½ðS1 þ S2 þ :::þ SNÞ=N� ¼ S=�S ð23Þ

which is the same as 0Db in Eq. 7. From Eq. 22 and Eq.

23, we make the following observations:

1) The beta based on Routledge’s alpha can take values

larger than the number of communities N, causing an

interpretational problem. For example, consider the

special case of N¼2, S1¼100, S2¼10, w1¼0.05, and

w2 ¼ 0.95. Assuming that the two communities are

completely distinct (no shared species), then 0Db,R ¼
110/(0.05 3 100 þ 0.95 3 10) ¼ 7.6, which is much

greater than 2, the number of communities. In this

case, 0Db,J ¼ 2, correctly implying that there are two

completely distinct communities. Jost’s beta in Eq. 23

is always between 1 and N and can be interpreted as

‘‘the effective number of completely distinct commu-

nities.’’

2) Jost’s beta for q ¼ 0 reduces to Whittaker’s original

beta based on species richness, whereas Routledge’s

beta does not.

3) Routledge’s alpha in Eq. 21a is in terms of

community weights, which generally depend on

relative sizes, or equivalently, species abundances.

This is inconsistent with the equal weights necessarily

used in the gamma diversity (see Eq. 18 for q ¼ 0).

This is also inconsistent with the fact that species

abundances do not count in Hill numbers, Tsallis

(1988) entropy, or Rényi (1961) entropy for q¼ 0 in a

single community. In contrast, Jost’s alpha does not

count species abundances for q ¼ 0, and thus is

consistent. More discussion on this aspect is given

later.

4) In Appendix B, we show that Routledge’s alpha and

beta theoretically satisfy a constraint and thus are

dependent (or related), whereas Jost’s alpha and beta

are independent (or unrelated). A simulation is also

shown in Appendix B to confirm our theoretical

conclusion.

These findings show that Jost’s alpha in Eq. 20 is the

proper choice when the goal is to partition regional

diversity into independent within- and between-group

components.

CONCLUSION AND DISCUSSION

In this paper, we have clarified the meaning of

independence (or unrelatedness) of alpha diversity and

beta diversity. Table 1 gives a summary of the

dependence relations for any pair of diversity compo-

nents, for both additive and multiplicative partitioning

schemes based on Hill numbers for a � 0. The

conclusions in Table 1 can be justified by both theory

and empirical simulations. Thus a consensus may be

reached. When N is fixed, all three components in

additive partitioning are pairwise dependent (or related);

in multiplicative partitioning, alpha and beta are

independent (or unrelated), beta and gamma are also

independent (or unrelated), and only alpha and gamma

are dependent (or related). If alpha diversity is restricted

to be greater than or equal to unity, and gamma is not

less than the number of communities (which is often the

case in applications), then all conclusions remain the

same.

In comparing the relative compositional similarity or

differentiation among multiple sets of communities,

both multiplicative beta and additive beta should be

properly normalized, because multiplicative beta de-
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pends on the number of communities, and additive beta

depends additionally on alpha diversity (equivalently, on

gamma diversity). We have shown that when the two

decomposition methods are properly transformed, both

lead to the same similarity and differentiation measures,

including the multiple-community generalization of the

Sørenson, Jaccard, Horn, and Morisita-Horn measures.

This bridges two decomposition frameworks and

emphasizes the generality of the overlap measure CqN

for quantifying compositional similarity or differentia-

tion among communities.

To select a proper formula for alpha diversity, we

have given some reasons to suggest the use of the alpha

diversity derived by Jost (2007) instead of the one

adopted by Routledge (1979) and Tuomisto (2010). The

most important justification is that only Jost’s alpha is

independent of (or unrelated to) beta diversity. When

only species incidence (presence–absence) information is

available, the commonly used incidence-based (or

equivalently, richness-based) alpha diversity is simply S̄

(Eq. 21b), and beta diversity is S/S̄ (Eq. 23); see

Whittaker (1972). As discussed earlier, if Routledge’s

alpha is applied to form a multiplicative beta, then the

beta diversity of order zero is in terms of abundances

and is different from the incidence-based beta diversity.

In contrast, if Jost’s alpha is applied to form a beta, then

the alpha, beta, and gamma diversities of order 0 do not

count species abundances and are the same as the

incidence-based alpha, beta, and gamma diversities.

Thus, another advantage of using Jost’s alpha is that

incidence-based measures are simply the abundance-

based measures of order zero. Then it is not necessary to

define additional formulas and terminology for inci-

dence- or richness-based alpha, beta, and related

measures. For example, richness-based alpha, beta,

and gamma diversities are simply diversity-based alpha,

beta, and gamma diversities of order zero. This will help

to simplify diversity theory and also may help to avoid

unnecessary proliferation of terminology.

We suggest that multiplicative beta be used to

measure the heterogeneity of a region. The areas of

each community are important for this question and

should be used (either alone or in combination with

density) for the community weights. A decomposition

that takes into account unequal weights is only possible

for q¼ 1 (see formula in Jost 2007). The result is in units

of the effective number of completely distinct commu-

nities in the region; dividing by the area of the region

gives the effective number of distinct communities per

unit of area. We recommend that the overlap measure

CqN be used to measure the relative compositional

similarity between communities; the areas or densities

do not matter for this question, and statistical weights of

the communities should all be set equal in the

calculation of alpha and gamma. As shown here, both

multiplicative and additive beta can be normalized to

yield CqN. This gives the effective proportion of a typical

community’s species that overlaps with all other

communities. It ranges from 0 to 1.00. This will be

most relevant for identifying community relationships or

measuring differences in ecosystem functioning between

assemblages. The complement of this, 1� CqN, gives a

robust measure of relative differentiation between

communities, the effective proportion of a typical

community that is endemic to that community. We

recommend additive beta divided by (N� 1) to quantify

the effective number of endemic species per community.

This quantity might be especially useful in conservation

analyses.

The Forum was focused on traditional Hill numbers,

which do not take species evolutionary history into

account. As Ricotta (2010:1982) pointed out ‘‘. . . the

next step will now consist in extending this partitioning

scheme to diversity measures that incorporate infor-

mation about the degree of ecological similarity

between species . . .’’ Chao et al. (2010) and Leinster

and Cobbold (2012) have recently generalized Hill

numbers to a class of measures that incorporate

phylogenetic distances between species. Also, it is

important to notice that only species relative abun-

dances are involved in obtaining Hill numbers. Species

absolute abundances play no role in traditional

diversities. Therefore, a three-species community with

absolute abundances f2, 5, 6g has the same diversity

profile as another three-species community with abso-

lute abundances f200, 500, 600g. From an ecosystem

functioning viewpoint, Ricotta (2003) argued that,

given two communities having the same relative

abundances, the one with larger absolute abundances

should be more diverse. We are currently working on

extending Hill numbers to include species absolute

abundances. The meaning of ‘‘independence’’ and the

bridge between the two partitioning frameworks

discussed in this paper may be helpful for future work

on the decomposition of phylogenetic diversity and

extended Hill numbers.

All of our discussion is basically at a community or

parameter level. That is, all diversity and similarity/

differentiation measures are in terms of true community

parameters (species richness and species relative abun-

dances). We assume that these parameters are known in

our discussion. At this level, data are not involved.

However, in practice, all measures need to be estimated

from sampling data. In the Forum, Wilsey (2010)

applied diversity decomposition to some real field data.

The estimation issue from sampling data is important in

practice, and statistical estimation methods should be

considered. For example, at the community level, the

diversity profile of Hill numbers can be compared for

any two communities. However, two diversity profiles

obtained from sample data randomly selected from each

community cannot be directly compared. Statistical

estimation (Gotelli and Chao 2012) or standardization

methods such as rarefaction and extrapolation (Colwell

et al. 2012) should be applied. These considerations also

apply to the estimation or standardization of alpha,
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beta, and gamma diversities, as well as similarity/

differentiation measures. We briefly summarize some

key points in Appendix C; see Gotelli and Chao (2012)

for more estimation details.
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SUPPLEMENTAL MATERIAL

Appendix A

Derivational details for Eqs. 16a, 16b, and 17 (Ecological Archives E093-195-A1).

Appendix B

More comparisons of the two formulas for alpha diversity (Ecological Archives E093-195-A2).

Appendix C

Statistical estimation issues (Ecological Archives E093-195-A3).
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