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Featured Application: This module can be used independently in any Machine Learning project

or can be used in a model that is engineered by boosting and blending of algorithms for better

accuracy and fitness.

Abstract: Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the

model. One of the main challenges is to determine the right number and the type of such features out of

the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available features

without computing the predictive value of each. Such an approach makes the process vulnerable to

overfit, predictive errors, bias, and poor generalization. Each feature in the dataset has either a unique

predictive value, redundant, or irrelevant value. However, the key to better accuracy and fitting for ML

is to identify the optimum set (i.e., grouping) of the right feature set with the finest matching of the

feature’s value. This paper proposes a novel approach to enhance the Feature Engineering and Selection

(eFES) Optimization process in ML. eFES is built using a unique scheme to regulate error bounds and

parallelize the addition and removal of a feature during training. eFES also invents local gain (LG)

and global gain (GG) functions using 3D visualizing techniques to assist the feature grouping function

(FGF). FGF scores and optimizes the participating feature, so the ML process can evolve into deciding

which features to accept or reject for improved generalization of the model. To support the proposed

model, this paper presents mathematical models, illustrations, algorithms, and experimental results.

Miscellaneous datasets are used to validate the model building process in Python, C#, and R languages.

Results show the promising state of eFES as compared to the traditional feature selection process.

Keywords: machine learning; enhanced feature engineering; parallel processing of model; feature

optimization; eMLEE; eFES; overfitting; underfitting; optimum fitting

1. Introduction

One of the most important research directions of Machine Learning (ML) is Feature Optimization

(FO) (collectively grouped as Feature Engineering (FE), Feature Selection (FS), and Filtering) [1]. For FS,

a saying “Less is More” becomes the essence of this research. Dimensionality Reduction [2] has become

a focus in the ML process to avoid unnecessary computing power/cost, overlearning, and predictive

errors. In this regard, redundant features which may have similar predictive value to other feature(s),

may be excluded without negatively affecting the learning process. Similarly, the irrelevant features

should be excluded as well. FS and FE not only focuses on extracting a subset from the optimal feature
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set but also building new feature sets previously overlooked by ML techniques. This also includes

reducing the higher dimensions into lower ones to extract the feature’s value. Latest research has

shown noteworthy progress in FE. In [3], the authors reviewed the latest progress in FS and associated

algorithms. Out of a few, principal component analysis (PCA) [4] and Karhunen Loeve expansion [5]

are widely used with eigen-values and eigen-vectors of the data covariance matrix for FO. The squared

error is calculated as well in the mapping of orthonormal transformation to reduce general errors.

Another approach is Bayes error probability [6] to evaluate a feature set. However, Bayes errors are

generally unknown. Discriminant analysis are also used in FE. Hence, in the line with the latest

progress and related study (See Section 2), the work proposed in this paper uses ML and mathematical

techniques, such as statistical pattern classification [7], Orthonormalization [8], Probability theory [9],

Jacobian [7], Laplacian [3], and Lagrangian distribution [10] to build the mathematical constructs

and underlying algorithms (1 and 2). To advance such developments, a unique engineering of the

features is proposed where the classifier learns to group an optimum set of features without consuming

excessive computing power, regardless of the anatomy of the underlying datasets and predictive

goals. This work also effectively addresses the known challenges of ML process such as overfitting,

underfitting, predictive errors, poor generalization, and low accuracy.

1.1. Background and Motivation

Despite using the best models and algorithms, FO is crucial to the performance of the ML

process and predictions. FS has been a focus in the fields of data mining [11], data discovery, text

classification [12], and image processing [13]. Unfortunately, raw datasets pose no clear advice or

insight into which variables must be focused on. Usually, datasets contain several variables/features

but not all of them contribute towards predictive modeling. Another significance of such research

is to determine the intra- and inter-relationships between the features. Their internal dependence

and correlation/relevance greatly impact the way a model learns from the data. To make the process

computationally inexpensive and keep the accuracy higher, features should be categorized by the

algorithm itself. The existing literature proves that such work is rarely undertaken in ML research.

1.2. Parent Research

The proposed model eFES is a participating module of the enhanced machine learning engine

engineering (eMLEE) model, which is based on parallel processing and learns from its mistakes

(i.e., processing and storing the wrong predictions). Other than eFES, the rest of the four modules

as shown in Figure 1 are beyond the scope of this paper. Specifically, eMLEE modules are:

(i) enhanced algorithm blend and tuning (eABT) to optimize the classifier performance; (ii) enhanced

feature engineering and selection (eFES) to optimize the features handling; (iii) enhanced weighted

performance metric (eWPM) to validate the fitting of the model; and (iv) enhanced cross validation and

split (eCVS) to tune the validation process. Out of these, eCVS is in its infancy in the research work.

Existing research, as discussed in Section 2, has shown the limitations of general purpose algorithms

in Supervised Learning (SL) for predictive analytics, decision making, and data mining. Thus, eFES

(i.e., the part of eMLEE) fills the gaps that Section 2 discusses.

extract the feature’s value

 

Figure 1. This illustration shows the elevated system externals of eMLEE. Logical Table (LT) interacts

primarily with eFES and eABT as compared to the other two modules. It coordinates and regulates the

metrics of the learning process in the parallel mode.
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1.3. Our Contributions

Our contributions are the following.

a. Improved feature search and quantification for unknown or previously unlabeled features in the

datasets for new insights and the relevance of predictive modeling.

b. Outlier identification to minimize the effects on classifier learning.

c. Constructing a feature grouping function (FGF) to add or remove a feature once we have

scored them in their correlation, relevance, and non-redundancy nature of predictive value.

Identifying the true nature of the feature vs attribute so bias can be reduced. Features tend to

gain or lose their significance (predictive value) from one dataset to another. A perfect example

would be an attribute “Gender” (e.g., Gender/Sex may not have any predictive value in a certain

type of the dataset/prediction). However, it may have significant value in the different dataset.

d. Constructing a logical 3D space where each feature is observed for its fitness value. Each feature

can be quantified based on a logical point in 3D space. Its contribution towards overfitting (x),

underfitting (y), and optimum-fitting (z) can be scored, recorded, and then weighted for adding

or removing in FGF.

e. Developing a unique approach of utilizing an important metric in ML (i.e., error). We have

trained our model to be governed by maximum and minimum bounds of the error, so we can

maintain acceptable bias and fitness including overlearning. Our maximum and minimum

bounds for errors are 80% and 20% respectively. These error bounds can be considered one of

our novel ideas in the proposed work. The logic goes thus: models are prone to overfitting, bias,

high errors, and low accuracy. We tried to envision if the proposed model can be governed by

some limits of the errors. Errors above 80% or below 20% are considered red flags. Such may

indicate, bias, overlearning or under-learning of the model. Picking 80% and 20% was our rule of

thumb to validate our theory with experiments on a diverse dataset (discussed in the appendix).

f. Finally, engineering local gain (LG) and global gain (GG) functions to improve the feature tuning

and optimization.

Figure 2 shows the elevated level block diagram of the eFES Unit.

attribute “Gender”

Figure 2. eFES elevated Level.

2. Related Study

To identify the gaps in the latest state of the art in the field of FO, we considered area of ML

where FO was of high relevance. In general, every ML problem is affected by feature selection and

feature processing. Predictive modeling, as our focus for the consumption of the proposed model,

is a great candidate to be looked at, for FO opportunities. One of the challenges in FO is to mine

the hidden features that are previously unknown and may hide a great predictive value. If such

knowledge can be extracted and quantified, ML process can dramatically be improved. On the other

hand, new features can also be created by aggregating existing features. Also, two irrelevant features can

be combined, and their weighted function can become a productive feature with higher predictive value.
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Clearly, in-depth comprehensive review of the FO and related state of the art are outside the scope of this

paper. However, in this section we provide the related study of noteworthy references and then list the

gaps we identified. We also present the comparisons of some of the techniques in Section 5.

Li et al. [3] presented a detailed review of the latest development in the feature selection segment of

machine learning. They provided various frameworks, methods, and comparisons in both Supervised

Learning (SL) and Unsupervised Learning (UL). However, their comparative study did not reveal

any development where each feature can achieve a run-time predictive scoring and can be added

or removed algorithmically as the learning process continues. Vergara and Estevez [14] reviewed

feature selection methods. They presented updates on results in a unifying framework to retrofit

successful heuristic criteria. The goal was to justify the need of the feature selection problem in

depth concepts of relevance and redundancy. However, their work was only focused on unifying

frameworks and placed the generalization on broader scale. Mohsenzadeh et al. [15] utilized a sparse

Bayesian learning approach for feature sample selection. Their proposed relevance sample feature

machine (RSFM) is an extension of RVM algorithm. Their results showed the improvement in removing

irrelevant features and producing better accuracy in classification. Additionally, their results also

demonstrated better generalization, less system complexity, reduced overfitting, and computational

cost. However, their work needs to be extended to more SL algorithms. Ma et al. [16] utilized Particle

Swarm Optimization (PSO) algorithm to develop their proposed approach for detection of falling elderly

people. Their proposed research enhances the selection of variables (such as hidden neurons, input

weights, etc.) The experiments showed higher sensitivity, specificity, and accuracy readings. Their work

though in the domain of healthcare industry does not address the application of approach to a different

industry with an entirely different dataset. Lam et al. [17] proposed a unsupervised feature-learning

process to improve the speed and accuracy, using the Unsupervised Feature Learning (UFL) algorithm,

and fast radial basis function (RBF) for further feature training. However, the UFL may not fit when

applied. SL. Han et al. [18] used circle convolutional restricted Boltzmann machine method for 3D

feature learning in unsupervised process of ML. The goal was to learn from raw 3D shapes and to

overcome the challenges of irregular vertex topology, orientation ambiguity on the surface, and rigid

transformation invariances in shapes. Their work using 3D modeling needs to be extended to SL

domains and feature learning. Zeng et al. [19] used the deep perceptual features for traffic sign

recognition in the kernel extreme learning machines. Their proposed DP-KELM algorithm showed

high efficiency and generalization. However, the proposed algorithm needs to be tested across

different traffic systems in the world for more distinctive features than those they have considered.

Wang et al. [20] discussed the process of purchase decision in subject minds using MRI scanning images

through ML methods. Using the recursive cluster elimination-based SVM method, they obtained

higher accuracy (71%) as compared to previous findings. They utilized Filter (GML) and wrapping

methods (RCE) for feature selection. Their work also needs to be extended to other image techniques in

healthcare. Lara et al. [21] provided a survey on ML application for wearable sensors, based on human

activity recognition. They provided a taxonomy of learning approach and their related response

time on their experiments. Their work also supported feature extraction as an important phase of

ML process. ML has also shown a promising role in engineering, mechanical, and thermo-dynamic

systems. Zhang et al. [22] worked on ML techniques to do the prediction in the thermal systems for

systems components. Besides many different units and technique adoptions, they also utilized FS

methods based on correlation feature selection algorithm. They used Weka data-mining tools and

came up with the reduced feature set of 16 for improved accuracy. However, their study did not reveal

how exactly they came up with this number and whether different number of the features would

have helped any further. Wang et al. [23] used the supervised feature method to remove redundant

features and considered the important ones for their gender classification. However, they used the

neural network method as a feature extraction method, which is mostly common in unsupervised

learning. Their work is yet to be tested for more computer vision tasks including image recognition

tasks in which bimodal vein modeling becomes significant. Liu et al. [24] utilized the concept of
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F-measure optimization for FS. They developed a cost-sensitive feature approach to determine the

best F-measure-based feature for the selection by ML process. They argued F-measure to be better

than accuracy, for purposes of performance measurement. However, accuracy is not sufficient to be

considered a baseline for performance reflection of any model or process. Abbas et al. [25] proposed

solutions for IoT-based feature models using the multi-objective optimum approach. They enhanced

the binary pattern for nested cardinality constraints using three paths. The second path was observed

to increase the time complexity due to the increasing group of features. Though their work was not

directly in ML methodologies, their work showed performance improvement in the 3rd path when the

optional features were removed.

Here are the gaps that we identified based on a comprehensive literature review and comparisons

made, evaluated, and presented in Section 5 later in this paper.

a. Parallel processing of the features, in which features can be evaluated one by one, has not been

done, while the model metrics are being measured and recorded simultaneously to see the

real-time effect.

b. Improved grouping of features is needed across diverse feature types in datasets for improved

performance and generalization.

c. 3D modeling is rarely done. The 3D approach can help for side-by-side metric evaluation.

d. Accuracy is taken as granted to measure the performance of the model. However, we argue on

the relevance of this metric and support other metrics in conjunction with it. We engineer our

model to incline towards the metrics that are found relevant for a given problem based on the

classifier learning.

e. Feature quantification and function building governed by algorithms the way we presented

is not found in the literature, and the dynamic ability of such a design, as our work indicated,

can be a good filler of this gap in the state of the art.

f. Finally, FO has not been directly addressed. FO helps to regulate the error biasing, outlier

detection, and poor generalization.

3. Groundwork of eFES

This section presents background on the underlying theory, mathematical constructs, definitions,

algorithms, and the framework.

The elevated-level framework shown in Figure 3 elaborates on the importance of each definition,

incorporated with the other units of eMLEE and the ability to implement parallel processing by design.

In general computing, parallel processing is done by dividing program instructions to be run by

multiple processors, so the time efficiency can be improved. This also ensures the maximum utilization

of otherwise idle processors. Similar concepts can be implemented on the algorithms and ML models.

ML algorithms depend on the problem and data types and require sequential training of each of

the data models. However, the parallel processing can dramatically improve the learning process,

especially for the blended model, such as eMLEE. In light of the latest work of parallel processing

in ML, such as in [26], the authors introduced the parallel framework on ML algorithms for large

graphs. They experimented with aggregation and sequential steps in their model to allow researchers

to improve the usage of various algorithms. Another study was done in [27], where authors used

induction to improve the parallelism in the decision trees. Python and R libraries have come a long

way to help provide useful libraries and classes to develop various ML techniques. Authors in [28]

introduced a python library Qjan to parallelize the ML algorithms in compliance by MapReduce.

A PhD thesis [29] work done by a student at the University of California at Berkeley used concurrency

control method to parallelize the ML process. Another study done in [30] utilized parallel processing

approaches in ML techniques for detection in big-data networks. Therefore, similar progresses have

motivated us to incorporate parallel processing in the proposed model.
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Our proposed model parallelism is done in two layers:

(i) Outer layer to eFES, where eFES unit communicates with other units of the eMLEE such as eABT,

eWPM, eCVS and LT. Parallelism is done through real-time metric measurement with LT object

and based on classifier learning, eFES reacts to the inner layer (defined next). Other units such

as eABT and eCVS enhance the algorithm blend and test-training split in parallel, while eFES

is being trained. In other words, all four units including eFES regulated by LT unit, are run in

parallel to improve the speed of the learning process and validation for every feature as processed

in the eFES unit and every algorithm processed in the eABT unit. However, eFES can also work

without being related to the other units, if researchers and industrialists may however choose so.

(ii) Inner layer to eFES, where adding and removing of the feature are done in parallel. When the

qualifying feature is added, the metrics are measured by the model to see if fitness improves,

and then features are added and removed one by one to see the effect on the fitness function.

This may be done sequentially, but parallelism improves the insurance that each feature is

evaluated at the same time; the classifier is incorporating metrics reading from LT object and

speed of the process especially when the huge dataset is being processed.

Figure 3 illustrates the inner layer parallel processing of each construct that constitutes the eFES

unit. It shows the high-level block diagram of eFES unit modeling and related functions. Each definition

is explained in plain English next.

 

Figure 3. Theoretical Foundation Illustration on the elevated-level.

Definition 1 covers the theory of LT unit, which works as a main coordinator assisting and regulating

all the sub-units of eMLEE engine such as eFES. It inherently is based on parallel processing at a low level.

While the classifier is in the learning process, LT object (in parallel) performs the measurements, records

it, updates it as needed, and then feeds the learning process back. During classifier learning, LT object

(governed by LT algorithm, outside of scope of this paper, but will be available as an API) creates a logical

table (with rows and columns) where it adds or removes the entry of each feature as a weighted function,

while constantly measuring the outcome of the classifier learning.

Definition 2 covers the creation of the feature set from raw input via random process, as shown

above. As discussed earlier, it uses 3D modeling using x, y, and z coordinates. Each feature is quantized

based on the scoring of these coordinates (x being representative of overfit, y being underfit and z

being an optimum fit).
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Definition 3 covers the core functions of this unit to quantify the scoring of the features, based on

their redundancy and irrelevancy. It does this in a unique manner. It should be noted that not every

irrelevant feature with high score will be removed by the algorithm. That is the beauty of it. To increase

the generalization of such model with a diverse dataset that it has not seen during test (i.e., prediction),

features are quantified, and either kept, removed, or put on the waiting list for re-processing of addition

or removal evaluation. The benefit of this approach is that it will not do injustice to any feature without

giving a second chance later in the learning process. This is because features, once aggregated with

a new feature or previously unknown feature, can dramatically improve scores to participate in the

learning process. However, the deep work of “unknown feature extraction” is kept for future work,

as discussed in the future works section.

Definition 4 utilizes definition 1 to 3 and introduces a global and local gain functions to evaluate

the optimum feature-set. Therefore, the predictor features, accepted features, and rejected features can

be scored and processed.

Definition 5 finally covers the weight function to observe the 3D weighted approach for each

feature that passes through all the layers, before each feature is finally added to the list of the final

participating features.

The rest of the section is dedicated to the theoretical foundation of mathematical constructs and

underlying algorithms.

3.1. Theory

eFES model manifests itself into specialized optimization goals of the features in the datasets.

The most crucial step of all is the Extended Feature Engineering (EFE) that we refer when we build

upon existing EF techniques. These five definitions help build the technical mechanics of the proposed

model of eFES unit.

Definition 1. Let there be a Logical Table (LT) module that regulates the ML process during eFES constructions.

Let LT have 3D coordinates as x, y, and z to track, parallelize, and update the x← overfit(0:1), y← underfit(0:1),

z← optimumfit(−1:+1). Let there be two functions, Feature Adder as +F, and Feature Remover as−F, based on

linearity of the classifier for each feature under test for which the RoOpF (Rule. 1) is valid. Let Lt. RoOpF > 0.5 to

be considered of acceptable predictive value.

eFES LT module builds very important functions at initial layers for adding a good fit feature and

removing a bad fit feature from the set of features available to it, especially when algorithm blend is

being engineered. Clearly, not all features will have an optimum predictive value and thus identifying

them will count towards optimization. The feature adder function is built as:

+ F(x, y, z) = +FFn = (Fn ∪ Fn+1)
Z

∑
i=1

(LT.score (i)) + ∑
x,y

j,k=1
(LT.score (j, k)) (1)

The feature remover function is built as:

− F(x, y, z) = −FFn = (Fn ∩ Fn+1)
x,y

∑
j,k=1

(LT.score (j, k))− ∑
z

i=1
(LT.score(i)) (2)

Very similar to k-means clustering [12] concept, that is highly used in unsupervised learning,

LT implements feature weights mechanism (FWM) so it can report a feature with high relevancy score

and non-redundant in a quantized form. Thus, we define:

FWM(X, Y, Z) =
X

∑
x=1

Y

∑
y=1

Z

∑
z=1

(uxwx. uywy .uzwz) (∆(x, y, z)) (3)
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∆(x, y, z) =





∏
L
l=1 (ulxwlx), if z 6= 0, AND z > (0.5, y)

ui ∈ {0, 1}, −1 ≤ i ≤ L

∏
L
l=1 (ulywly), if z 6= 0, AND z > (0.5, x)

(4)

Illustration in Figure 4 shows the concept of LT modular elements in 3D space as discussed earlier.

Figure 5 shows the variance of the LT. Figure 6 shows that it is based on binary weighted classification

scheme to identify the algorithm for blending and then assign a binary weight accordingly in LT logical

blocks. The diamond shape shows the err distribution that is observed and recorded by LT module

as new algorithm is added or existing is removed. The complete mathematical model for eFES LT is

beyond the scope of this paper. We finally provide the eFES LT functions as:

eFES⊞ = [ReFES =
1

Ne

(√
err

err + Err

)2

] ×
N

∑
n=1

Fn( f (x, y, z)

∣∣∣∣exp

(
+FFn

+FFn + (−FFn)

)∣∣∣∣ (5)

where err = local error (LE), Err = global error (GE). f (x, y, z) is the main feature set in ‘F’ for 3D.

RULE 1

If (LTObject.ScoFunc (A (i) > 0.5)

Assign “1”

Else Assign “0”

PROCEDURE 1

Execute LT.ScoreMetrics (Un.F, Ov.F)

Compute LT.Quantify (*LT)

Execute LT.Bias (Bias.F, *)

*_Shows the pointer to the LT object.

Definition 2. Fn = {F1, F2, F3, . . . . . . , Fn} indicates all the features appears in the dataset, where each feature

Fi ∈ Fn|fw ≥ 0. fw indicates the weighted feature value in the set. Let Fran (x,y,z) indicates the randomized

feature set.

We estimate the cost function based on randomized functions. Las Vegas and Monte Carlo

algorithms are popular randomized algorithms. The key feature of the Las Vegas algorithm is that it will

eventually have to make the right solution. The process involved is stochastic (i.e., not deterministic)

and thus guarantee the outcome. In case of selecting a function, this means the algorithm must

produce the smallest subset of optimized functions based on some criteria, such as the accuracy of the

classification. Las Vegas Filter (LVS) is widely used to achieve this step. Here we set a criterion in which

we expect each feature at random gets a random maximum predictive value in each run. ∅ shows

the maximum inconsistency allowed per experiment. Figure 5 shows the cost function variation in LT

object for each coordinate.

PROCEDURE 2

Scorebest ← Import all attributes as ‘n’

Costbest ← n

For j ← 1~to Iterationmax Do

Cost ← Generate random number between 0~and Costbest

Score ← Randomly select item from Cost feature

If LT.InConsistance (Scorebest, Training Set) ≤ ∅ Then

Scorebest ← Score

Costbest ← C

Return (Scorebest)

Definition 3. Let lt.IrrF and lt.RedF be two functions to store the irrelevancy and redundancy score of each

feature for a given dataset.
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Let us define a Continuous Random Vector CRV ∈ QN, and Discrete Random Variable DRV ∈ H =

{h1,h2,h3, . . . . . . ..,hn}. The density function of the random vector based on cumulative probability is

P(CRV) = ∑
N
i=1 PH(hi)p CRV|DRV, PH(hi) being a priori probability of class.

Figure 4. Illustration of the conceptual view of LT Modules in 3D space.

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) This test shows the variance of the LT module for the cost function for all three co-ordinates

and then z (optimum-fitness). This is the ideal behavior; (b) This test shows the real (experimental)

behavior; (c) This shows the ideal shift of all 3 coordinates in space while they are tested by the model

in parallel. Each coordinate (x, y, z) lies on the black lines in each direction. Then, based on the scoring

reported by LT object (and cost function), they either sit on positive point or negative as shown; (d) This

shows the ideal spread of each point, when z is optimized with the lowest cost function.

 

Figure 6. Illustration of probability-based feature binary classification. Overlapped matrices for Red.F

and Irr.F, for which the probability scope resulted in acceptable errors by stepping into vector space,

for which 0.8 > err > 0.2.
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As we observe that the higher error limit (e) (err, green line, round symbol) and lower error limit

(E), (Err, blue line, square symbol) bound the feature correlation in this process. Our aim is to spread the

distribution in z-dimension for optimum fitting as features are added. The red line (diamond symbol) that

separates the binary distribution of Redundant Feature (Red.F) and Irrelevant Features (Irr.F) based on

error bounds. The green and red lines define the upper and lower limit of the error, in which all features

correlate. Here, we build a mutual information (MI) function [14] so we can quantify the relevance of a

feature upon other in the random set and this information is used to build the construct for Irr.F, since once

our classifier learns, it will mature the Irr.F learning module as defined in the Algorithm 1.

MI(Irr.F (x, y, z)| fi, fi+1 =
N

∑
a=1

N

∑
b=1

p ( fi(a), fi+1(b). log
(

fi(a), fi+1(b)
p ( fi(a) . fi+1(b)

)
(6)

We expect MI← 0, for features to be statistically independent, so we build the construct in which

the MI will be linearly related to the entropies of the features under test for Irr.F and Red.F, thus:

M.I( fi, fi+1) =





H( fi)− H ( fi| fi+1)

H ( fi+1 − H ( fi+1| fi)

H( fi) + H( fi+1)− H ( fi, fi+1)

(7)

We use the following construct to develop the relation of ‘Irr.F’ and ‘Red.F’ to show the irrelevancy

factor and Redundant factor based on binary correlation and conflict mechanism as illustrated in

above table.

Irr.F =
K

∑
i,j

{
fii fij

fji fji

}
Red.F =





MI( fi; Irr.F) > 0.5 Strong Relevant Feature

MI( fi; Irr.F) < 0.5 Weak Relevant Feature

MI( fi; Irr.F) = 0.5 Neutral Relevant Feature

(8)

Definition 4. Globally in 3-D space, there exist three types of features types (variables), as predictor features:

PF = {p f1, p f2, p f3, . . . . . . ..p fn} , and accepted features to be AF = {a f1, a f2, a f3, . . . . . . .., a fn} and

rejected features to be RF = {r f1, r f2, r f3, . . . ..r fn} , in which G ≥ (g + 1) , global gain for all experimental

occurrence of data samples. ‘ G ’ being the global gain (GG). ‘ g ’ being the local gain (LG). Let PV be the

predictive value. Accepted features are a fn ∈ PV , strongly relevant to the sample data set ∆S , if there

exist at-least one x and z or y and z plane with score ≥ 0.8 , AND a single feature f ∈ F is strongly

relevant to the objective Function ‘ObF’ in distribution ‘d’ if there exist at-least a pair of example in data set

{ ∆S1, ∆S2, ∆S3, . . . . . ., ∆Sn ∈ I} , such that d ( ∆Si) 6= 0 and d ( ∆Si+1) 6= 0 . Let∇ (ϕ, ρ, ω) correspond

to the acceptable maximum 3-axis function for possible optimum values of x, y, and z respectively.

We need to build an ideal classifier that learns from data during training and estimate the predictive

accuracy, so it generalizes well on the testing data. We can use probabilistic theory of Bayesian [31] to

develop a construct similar to direct table lookup. We assume a random variable to be ‘rV’ that will appear

with many values in set of {rV1, rV2, rV3, . . . , rVn} that appear as a class. We will use prior probability

P (rVi) . Thus, we represent a class or set of classes as rVi, and the greatest P (rVi) , for given pattern of

evidence (pE) that classifier learns on P (rVi

∣∣ pE) > P (rVj

∣∣ pE) valid for all i 6= j.

Because we know that

P (rVi | pE) =
P (pE | rVi) P (rVi)

(P(pE))
(9)

Therefore, we can write the conditional equation where P (pE) is considered with regard to

probability of (pE) is P (pE
∣∣ rVi)P (rVi) > P (pE

∣∣ rVj)P
(
rVj

)
valid for all i 6= j. Finally, we can

write the probability of the error for the above given pattern, as P (pE)|error, assuming the

cost function for all correct classification is 0, and for all incorrect is 1, then as stated earlier,

the Bayesian classification will put the instance in the class labelling the highest posterior probability

as P (pE) =
k

∑
i=1

P (rVi) P (pE|rVi). Therefore, the construct can thus be determined as
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P (pE)|error = Error [1−max{P (rV1) | pE, . . . . . . , P (rVk|pE)}] . Let us construct the matrix function

of all features, accepted and rejected features, based on GG and LG, as

G (x, y, z) = 1
N

n

∑
i=1
{(gi)× MH} (10)

MH =





p fx1y1 . . . p fx1yn
...

. . .
...

p fxny1 . . . p fxnyn





=

{
a f11 a f12 . . . a f1n

a fn1 a fn2 . . . a fnm

}
×





r f11 r f1n

r f21 r f2n

r f2n r fmn




± ∇ (ϕ, ρ, ω) (11)

Table 1 shows the various ranges for Minimum, Maximum and Middle points of the all three

functions as discussed earlier.

Table 1. Typical observations of the functions.

Function Min Mid Max

∇ (ϕ, ρ, ω) (0.21, 0.71, 0.44) (0.43, 55, 49) (0.81, 0.76, 58)
g (x, y, z) (0.34, 0.51, −0.11) (0.55, 0.51, 0.68) (0.67, 71, 89)
G (x, y, z) (0.44, 0.55, 0.45) (0.49, 0.59, 0.58) (0.52, 0.63, 0.94)

Using Naïve Bayes multicategory equality as:

P1,2,3,...,N

[
∑
j

xj

]
+

[
∑
j

yj

]
+

[
∑
j

zj

]
= ∑

k
Var(x, y, z)

[
z∗ i

]
(12)

where z∗(n) argmax
z

P(z)
n

∏
k=1

p([z]).zk , and Fisher score algorithm [3] can be used in FS to measure

the relevance of each feature based on Laplacian score, such that B(i, j) =

{
1

Nl
i f ui = ui = 1

0 otherwise,
.

Nl shows the no. of data samples in test class shown subscript ‘l’. Generally, we know that based

on specific affinity matrix, FISHERscore( fi) = 1− 1
LAPCLACIANscore( fi)

.

To group the features based on relevancy score, we must ensure that each group member of the

features exhibit low variance, medium stability and their score is based on optimum-fitness, thus

each member follows k (k ∈ K, where K ≤ f (0 : 1) . This also ensure that we address the high

dimensionality issue, as when feature appears in high dimension, they tend to change their value for

training mode, thus, we determine the information gain using entropy function as:

Entropy (Fn) =
V1

∑
t=1
−pt log pt (13)

V1 indicates the number of various value of the target features in set of F. and pt is the probability

of the type of value of t in a complete subset of the feature tested. Similarly, we can calculate the

entropy for each feature in x, y, z dimension as:

Entropy
(

Fn∈ x,y,z

)
= ∑

t∈T (x,y,z)

| F (t:x,y,z)|
|Ft |

Entropy (Fn) (14)

Consequently, gain function in probability of entropy in 3D is determined as:

Gain
(

I, F (t:x,y,z)

)
= Entropy (Fn) − Entropy

(
Fn∈ x,y,z

)
(15)

We develop a ratio of gain for each feature in z-dimension as this ensure the maximum fitness of

the feature set for the given predictive modeling in the given dataset for which ML algorithm needs to

be trained. Thus, gR indicates the ratio between:

gR (z) =
Gain (I, F (t:x,y,z))

G (x,y,z) |P (pE) > P (pE)|error (16)
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Figure 7 shows the displacement of the local gain and global gain functions based on probability

distributions. As discussed earlier, LG and GG functions are developed to regulate the accuracy and

thus validity of the classifier is measured initially based on accuracy metric.

Flag ‘O.F’
Flag ‘U.F’{∆𝑆1, ∆𝑆2, ∆𝑆3, . . . . . . , ∆𝑆𝑛  ∈  𝐼} ∆𝑆𝑖)  ≠  0 ∆𝑆𝑖+1)  ≠  0

‘ ’
unction construct in distribution ‘ ’, thus:𝑂𝑏𝐹 (𝑑, 𝐼)  = 𝑙𝑜𝑔 (𝐺𝑎𝑖𝑛 (𝐼, 𝐹 (𝑡:𝑥,𝑦,𝑧))) (𝑒𝑟𝑟[𝑚𝑎𝑥: 1], 𝑒𝑟𝑟[𝑚𝑖𝑛: 0])   | 𝑑 (∆𝑆𝑖)  ≠  0 |  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐹𝑖  𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 

–

𝐹. 𝐸𝑛𝑔(𝑥, 𝑦, 𝑧) =  1 (𝑘 × 𝑀) ∑ ∏ 𝑂𝑏𝐹 (𝑑, 𝐼)  ×𝑀
𝑡=𝑘

𝐾
𝑡=1 𝑀𝐻𝑡)

𝐹. 𝐺𝑟𝑝(𝑥, 𝑦, 𝑧) =  𝐹. 𝐸𝑛𝑔(𝑥, 0,0) +  𝐹. 𝐸𝑛𝑔(0, 𝑦, 0) −  𝐹. 𝐸𝑛𝑔(0,0, 𝑧) 

Figure 7. Illustration on probability of LG and GG function.

Table 2 shows the probability of local and global error limits based on probability function

(Figure 7) in terms of local (g) and global gain function (G).

Table 2. Typical observations.

g (max) G (min) G (max) g (min)

P (err) 0.25 0.45 0.31 0.56
P (Err) 0.32 0.41 0.49 0.59

RULE 2

If (g (err) < 0.2) Then

Flag ‘O.F’

Elseif (g (err) > 0.8) Flag ‘U.F’

If we assume the fact of {∆S1, ∆S2, ∆S3, . . . . . ., ∆Sn ∈ I} , such that d (∆Si) 6= 0 and d

(∆Si+1) 6= 0 , where ‘I’ is the global input of testing data. We also confirm the relevance of the

feature in the set using objective Function construct in distribution ‘d’, thus:

ObF (d, I) =
log (Gain (I, F (t:x,y,z)))
(err[max:1], err[min:0])

| d (∆Si) 6= 0 | f or every Fi in group (17)

Then, Using Equations (14)–(17), we can finally get

F.Eng(x, y, z) = 1
(k×M)

K

∑
t=1

M

∏
t=k

ObF (d, I) ×MHt) (18)

F.Grp(x, y, z) = F.Eng(x, 0, 0) + F.Eng(0, y, 0)− F.Eng(0, 0, z) (19)

Figure 8 Illustration of Feature Engineering and Feature Group as constructed in the mathematical

model and governed by the Algorithms 1 and 2, defined later. Metrics API is available from eMLEE

package. The white, yellow, and red orbital shapes indicate the local gain progression through 3D

space. The little 3D shapes (x, y, and z) in the accepted feature space in grouping indicates several

(theoretically unlimited) instances of the optimized values as the quantization progresses.

Flag ‘O.F’
Flag ‘U.F’{∆𝑆1, ∆𝑆2, ∆𝑆3, . . . . . . , ∆𝑆𝑛  ∈  𝐼} ∆𝑆𝑖)  ≠  0 ∆𝑆𝑖+1)  ≠  0

‘ ’
unction construct in distribution ‘ ’, thus:𝑂𝑏𝐹 (𝑑, 𝐼)  = 𝑙𝑜𝑔 (𝐺𝑎𝑖𝑛 (𝐼, 𝐹 (𝑡:𝑥,𝑦,𝑧))) (𝑒𝑟𝑟[𝑚𝑎𝑥: 1], 𝑒𝑟𝑟[𝑚𝑖𝑛: 0])   | 𝑑 (∆𝑆𝑖)  ≠  0 |  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐹𝑖  𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 

–

𝐹. 𝐸𝑛𝑔(𝑥, 𝑦, 𝑧) =  1 (𝑘 × 𝑀) ∑ ∏ 𝑂𝑏𝐹 (𝑑, 𝐼)  ×𝑀
𝑡=𝑘

𝐾
𝑡=1 𝑀𝐻𝑡)

𝐹. 𝐺𝑟𝑝(𝑥, 𝑦, 𝑧) =  𝐹. 𝐸𝑛𝑔(𝑥, 0,0) +  𝐹. 𝐸𝑛𝑔(0, 𝑦, 0) −  𝐹. 𝐸𝑛𝑔(0,0, 𝑧) 

Figure 8. Illustration of Feature Engineering and Feature Group as constructed in the mathematical model.
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Definition 5. Feature selection is governed by satisfying the scoring function (score) in 3D space

(x: Over-Fitness, y: Under-Fitness, z: Optimum-Fitness) for which evaluation criterion needs to be maximized,

such that Evaluation Criterion : f ′. There exist a weighted, W(∅){∇(ϕ, ρ, ω), 1} function that quantifies

the score for each feature, based on response from eMLEE engine with function eMLEEreturn, such that each

feature in { f1, f2, f3, . . . . . . .., fn,} , has associated score for (ϕ : x, y, z, ρ : x, y, z, ω : x, y, z).

Two or more features may have the same predictive value and will be considered redundant.

The non-linear relationship exists between two or more features (variables) that affects the stability

and linearity of the learning process. If the incremental accuracy is improved, then non-linearity of a

variable is ignored. As the number of the features are added or removed in the given set, the OF, UF,

and B changes. Thus, we need to quantify their convergence, relevance, and covariance distribution

across the space in 3D. We implement weighted function for each metric using LVQ technique [1],

in which, we measure each metric over several experimental runs for enhanced feature set, as reported

back from the function explained in Theorems 1 and 2, such that we optimize the z-dimension for

optimum fitness and reduce x and y dimension for over-fitness and under-fitness. Let us define:

W(∅) = 1∫
St

p(x)dx

σ

∑
γ=1

NT
γ . Nγ

∫
Sγ

p(x)dx (20)

where the piecewise effective decision border is St =
σ

∑
γ=1

Sγ , In addition, the unit normal vector,

(Nγ) for border Sγ, γ = 1, 2, 3, 4, . . . . . . .σ is valid for all cases in space. Let us define the probability

distribution of data on Sγ : Qγ =
∫
Sγ

p(x)dx. Here, we can use the Parzen method [32], to restore the

nonparametric density estimation method, to estimate the Qγ .

Q̂γ (∆) =
K

∑
j=1

δ (d (xi, Sγ) ≤
∆
2 (21)

where d (xi, Sγ) shows the Euclidean distance function. Figure 9 shows the Euclidean distance

function based on binary weights for W(∅) function.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: 𝑓′ 𝑊(∅){𝛻(𝜑, 𝜌, 𝜔), 1}𝑒𝑀𝐿𝐸𝐸𝑟𝑒𝑡𝑢𝑟𝑛{𝑓1, 𝑓2, 𝑓3, … … . . , 𝑓𝑛, } (𝜑: 𝑥, 𝑦, 𝑧, 𝜌: 𝑥, 𝑦, 𝑧, 𝜔: 𝑥, 𝑦, 𝑧)

𝑊(∅) =  1∫ 𝑝(𝑥)𝑑𝑥𝑆𝑡  ∑ 𝑁𝛾𝑇 . 𝑁𝛾  ∫ 𝑝(𝑥)𝑑𝑥𝑆𝛾
𝜎

𝛾=1𝑆𝑡 =  ∑ 𝑆𝛾  𝜎𝛾=1𝑁𝛾 𝑆𝛾 , 𝛾 = 1, 2, 3, 4, … … . 𝜎𝑆𝛾 ∶  ℚ𝛾 =  ∫ 𝑝(𝑥)𝑑𝑥.𝑆𝛾  ℚ𝛾
ℚ𝛾  ̂ (∆) =  ∑ 𝛿 (𝑑 (𝑥𝑖𝐾

𝑗=1 ,  𝑆𝛾)  ≤  ∆2𝑑 (𝑥𝑖 ,  𝑆𝛾) 𝑊(∅)

𝑊(∅)ℚ𝜸 −0

Figure 9. Illustration of function based on Euclidean Distance function.

Table 3 lists the quick comparison of the values of two functions as developed to observe the

minimum and maximum bounds.

Table 3. Average Observations.

Function Min Max

W(∅) 28.31% 78.34%
Qγ +0.2834 −0.1893

We used the Las Vegas Algorithm approach that helps to get correct solution at the end. We used

it to validate the correctness of our gain function. This algorithm guarantees correct outcome if

the solution is returned or created. It uses the probability approximate functions to implement

runnable time-based instances. For our feature selection problem, we will have a set of features that
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will guarantee the optimum minimum set of features for acceptable classification accuracy. We use

linear regression to compute the value of features to detect the non-linearity relationship between

features, we thus implement a function, Func(U(t)) = a + b ∗ t . Where a, and b are two test features

and values can be determined by using linear regression techniques, so b =
∑

T
t=1(t − t) (U(t) − u)

∑
T
t=1 (t − t)

2 .

Where, a = u− b ∗ t, u = 1
T

T

∑
t=1

U (t), t = 1
T

T

∑
t=1

t. These equations also minimize the squared error.

To compute weighted function, we use feature ranking technique [12]. In this method, we will score

each feature, based on quality measure such as information gain. Eventually, the large feature set will

be reduced to a small feature set that is usable. The Feature Selection can be enhanced in several ways

such as pre-processing, calculating information gain, error estimation, redundant feature or terms

removal, and determining outlier’s quantification, etc. The information gain can be determined as:

GainI(w) = −
M

∑
j=1

P(Mj ). log P(Mj) + P(w)
M

∑
j=1

P (Mj | w). log P(Mj |w) + P (w)
M

∑
j=1

P(Mj |w) . log P (Mj|w) (22)

‘M’ shows the number of classes and ‘P’ is the probability. ‘W’ is the term that it contains as

a feature. P
(

Mj

∣∣w) is the conditional probability. In practice, the gain is normalized using Entropy,

such as

Norm.GainI(w) = {GainI(w)}{
−

n(w)
n log

n (w)
n

} (23)

Here we apply conventional variance-mean techniques. We can assume, max∇ ∑
n
i=1 ϕiρiωi −

∑
n
i=1 logϕiρiωi. The algorithm will ensure that ‘EC {F.Sco (x, y, z), F.Opt (x, y, z) ≥ 0.5} ’ stays in

optimum bounds. Linear combination of Shannon information terms [7] and conditional mutual

information maximization (CMIM) [3] for UMAX(Zk) = max
Zk∈ ∆s

[Inf(Z k : X, Y|(XY)k)] builds the

functions as

Score(X|Y) = ∑
yk∈Y

G(yk). ∑
xk′∈X

G (xk′) × log (g(z)) (24)

JMIN(Z)d = − β (
K (0)

∏
k,k′

S(X : Y)k + γ (
K (0)

∏
k,k′

S(Y : X)k′ (25)

By using Equations (23)–(27), we get

F.Sco(x, y, z) = Score(X|Y) +
n

∑
i=1

W(∅)i −∑
n
j=1 Gainj(w) (26)

F.Opt(x, y, z) = JMIN(Z)d.
N

∏
F.Soc(x,y,z)

{
F.Soc(x,y,z)

1+TNorm.GainI(w)

}
−

n

∑
j=1

∆Err (j) (27)

3.2. eFES Algorithms

The following algorithms aim: (i) to compute functions as raw feature extraction, related features

identification, redundancy, and irrelevancy to prepare the layer for feature pre-processing; (ii) to

compute and quantify the selection and grouping factor for the acceptance as model incorporates them;

and (iii) to compute the optimization function of the model, based on weights and scoring functions.

objeMLEE is the API call for accessing public functions

Following are the pre-requisites for the algorithms.

Initialization: Set the algorithm libraries, create subset of the dataset for random testing and then

correlating (overlapping) tests.

Create: LTObject for eFES⊞

Create: ObjeMLEE (h)/*create an object reference of eMLEE API */

Set: ObjeMLEE.PublicFunctions (h.eABT,h.eFES,h.eWPM,h.eCVS)/* Handles for all four constructs*/

Global Input: An = {A1, A2, A3, . . . . . . .., An}, Fn = {F1, F2, F3, . . . . . . .., Fn,}, DataSet (signal, noise)
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Dataset Selection: These algorithms require the dataset to be formatted and labelled with

supervised learning in mind. These algorithms have been tested for miscellaneous datasets selected

from different domains as listed in the appendix. Some preliminary clean-up may be needed depending

upon the sources and raw format of the data. For our model building, we developed a Microsoft SQL

Server-based data warehouse. However raw data files such as TXT and CSV are valid input files.

Overall Goal (Big Picture): The foremost goal of these two algorithms is to govern the

mathematical model built-in eFES unit. These algorithms are essential to work in a chronological

mode, as the output of Algorithm 1 is required for Algorithm 2. The core idea that algorithms utilize

is to quantify each feature either in original, revealed or an aggregated state. Based on such scoring,

which is very dynamic and parallelized while classifier learning is being governed by these algorithms,

the feature is removed, added, or put on the waiting list, for the second round of screening. This is the

beauty of it. For example, Feature-X may be scored low in the first round and because Feature-Y is now

added, that impacts the scoring of the Feature-X, and thus Feature-X is upgraded by scoring function

and included accordingly. Finally, algorithms accomplish the optimum grouping of the features from

the dataset. This scheme maximizes the relevance, reduces the redundancy, improves the fitness,

accuracy, and generalization of the model for improved predictive modeling in any datasets.

Algorithm 1 aims to compute the low-level function as F.Prep (x, y, z), based on final Equations (26)

and (27) as developed in the model earlier. It uses the conditions of Irrelevant feature and Redundant

feature functions and run the logic if the values are below 50% as a check criterion. This algorithm

splits the training data based on popular approach as cross validation. However, it must be noted in

line 6, that we use our model API for improving the value of k in the process, that we call enhanced

cross validation. LT object regulates it and optimizes the value of k based on the classifier performance

in the real time. It then follows the error rule (80%, 20%) and keeps track of each corresponding feature,

as they are added or removed. Finally, it gets to the start using the gain function in 3D space for each

fitting factor since our model is based on 3D scoring of each feature in the space where point is moved

in x, y, and z values in space (logical tracking during classifier learning).

Algorithm 2 aims to use the output of algorithm 1 in conjunction with computing many other

crucial functions to compute a final function of feature grouping function (FGF). It uses the weighted

function to analyze each participating feature including the ones that were rejected. It also utilizes

the LT object and its internal functions using the API. This algorithm slices the data into various

non-overlapping segments. It uses one segment at a time, then randomly mixed them for more slices

to improve the classifier generalization ability during the training phase. It uses eFES⊞ as a LT object

from the library of eMLEE and records the coordinates for each feature. This way, entry is made in

LT class, corresponding to the gain function as shown in lines 6 to 19. From line 29 to 35, it also uses

probability distribution function, as explained earlier. It computes two crucial functions of ∇ (ϕ, ρ, ω)

and G (x, y, z). For this global gain (GG) function, each distribution of local gain g (x, y, z) must be

considered as features come in for each test. All the low probability-based readings are discarded for

active computation but kept in waiting list in the LT object for the second run. This way, algorithm

does justice to each feature and give it a second chance before finally discarding it. The rest of the

features that qualify in first or second run, are then added to the FGF.

Example 1. In one of the experiments (such as Figure 13) on dataset with features including ‘RELIGION’,

we discovered something very interesting and intuitive. The data was based on survey from students, as listed in

the appendix. We then formatted some of the sets from different regions and ran our Good Fit Student (GFS) and

Good Fit job Candidate (GFjC) algorithms (as we briefly discuss in future works). GFS and GFjC are based on

eMLEE model and utilize eFES. We noticed as a pleasant surprise that in some cases, it rejected the RELIGION

feature for GFS prediction and this made sense as normally religion will not influence success in the studies of the

student, but then we discovered that it gave some acceptable scoring to the same feature, because it was coming

from a different GEOGRAPHICAL region of the world. It made sense as well, because religion’s influence on the

individual may be diverse depending on his or her background. We noticed that it successfully correlated with

Correlation Factor (CF) > 0.83 on other features in the set and considered the associated feature to be given high
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score due to being appeared with the other features of the collateral importance (i.e., Geographical information).

CF is one of the crucial factors in GFS and GFjC algorithms. GFS and GFjC are out of the scope of this paper.

Algorithm 1. Feature Preparation Function—F.Prep (x, y, z)

religion’s influence on the individual may be diverse depending on his or her background. We noticed that it 

—
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Input: Sample Dataset (∆𝑺𝒏) 

Output: F.Prep (x, y, z) 

 

While (GG (x,y,z) < 0.5) Do 
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   Compute: err and Err (x,y,z) using () 

   For (𝑭 =  {𝑭𝟏, 𝑭𝟐, 𝑭𝟑, … … . ., 𝑭𝒏, } Do 

     Apply: Cross Validation on 𝑫𝑺(𝒔𝒊𝒈, 𝒏𝒐𝒊)      

     Update: The Split Function using h.eCVS (k, F) 

     Set: 𝑸𝑵  →  𝑫𝑹𝑽/* Based on Mapping function */ 

     Compute: 𝒉. 𝑴𝑰(𝑰𝒓𝒓. 𝑭(𝒙, 𝒚, 𝒛)|𝒇𝒊, 𝒇𝒊+𝟏), 𝑳. 𝑭𝒖𝒏𝒄(𝒛), 𝑳. 𝑪𝒐𝒔𝒕 (𝒛)   

     Update: h.MI (𝑭𝒊) 

     If (𝒆𝒓𝒓 𝒊𝒔 𝒊𝒏 𝒃𝒐𝒖𝒏𝒅𝒔 𝒂𝒔 𝒑𝒆𝒓 𝒓𝒖𝒍𝒆) Then 

       Mark: the feature 𝑭𝒊) and Flag. 

Update: each 𝐟 ∈  𝐅 (𝐧), for which 𝐟𝐧 ≥ 𝐅{𝟎. 𝟖𝟓, 𝟎: 𝟏} is valid 

   Select: F (n) based on random function, and distribution in space: ⅅ[𝒇 (𝑻)|𝑭(𝒏)  ∈  𝝏𝑭 (𝑭(𝒏))] 
       While (Irr.F ≥  𝟎. 𝟓 𝑨𝑵𝑫 𝑹𝒆𝒅. 𝑭 ≥ 𝟎. 𝟓)  Do 

            Compute:LTObject.Weighted (𝐞𝐅𝐄𝐒⊞, 𝐡. 𝐌𝐈 (𝑭𝒊)) 

            Extract: 𝐌𝐈 − 𝐢 ← 𝐈 𝐌𝐈 𝐈𝐧𝐝𝐞𝐱 

            Set: 𝑰𝒓𝒓. 𝑭 ←  ∑ {𝒇𝒊𝒊 𝒇𝒊𝒋𝒇𝒋𝒊 𝒇𝒋𝒊}𝑲𝒊,𝒋  

            Compute: MI for Entropy, CF as correlating factor  

            Re-compute: MI and Red.F (MI) 

       End While 

     End if 

  Define: the categorical or numerical values, and set  𝑭 (𝒏)  =  𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒗𝒂𝒍𝒖𝒆 

     Compute: F.Prep (x, y, z) ← h.blend (MI,z)  

   End for 

   Slice: Data Samples {∆𝑺𝒏  ∈  𝑺} 
   Compute: and Create Matrices 

   Set:  𝔾 (𝒙, 𝒚, 𝒛)  ←  𝟏𝑵  ∑ {(𝒈𝒊) × 𝒏𝒊=𝟏 𝑴𝑯 

    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 (𝑭𝒏∈ 𝒙,𝒚,𝒛)  ←  ∑ | 𝑭 (𝒕:𝒙,𝒚,𝒛)||𝑭𝒕|𝒕∈𝑻 (𝒙,𝒚,𝒛) 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 (𝑭𝒏) 

   Compute: 𝑮𝒂𝒊𝒏 (𝑰, 𝑭 (𝒕:𝒙,𝒚,𝒛))/* Using Equation (15) */ 

   Compute: 𝐠𝐑 (𝐳) /* Using Equation (16) */ 

End While 

Reset: x,y,z 

Update: h.Update (gR (z), h.Prep (x,y,z), CF) 

Compute: F.Prep (x, y, z) ← h.Model (h*) 

Return: F.Prep (x, y, z)            

where a candidate’s progress can 
Another example was encountered where this feature played significant role in the job industry

where a candidate’s progress can be impacted based on their religious background. Another example

is of GENDER feature/attribute that we discuss in Section 6.1. This also explains our motivation

towards creating FGF (Algorithm 2).

FGF function determines the right number and type of the features from a given data set during

classifier learning and reports accordingly if satisfactory accuracy and generalization have not been

reached. eFES unit, as explained in the model earlier, uses 3D array to store the scoring via LT object in
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the inner layer of the model. Therefore, eFES algorithms can tell the model if more features are needed

to finally train the classifier for acceptable prediction in the real-world test.

Some other examples are data from healthcare, where a health condition (a feature) may become

of high relevance if a certain disease is being predicted. For example, to predict the likelihood of

cancer in a patient, DIABETES can have higher predictive score, because an imbalanced sugar can feed

the cancerous cells. During learning, the classifier function starts identification of the features and

then start adding or removing them based on effectiveness of the cost and time. Compared to other

approaches where such proactive quantification is not done the eFES scheme dominates.

Algorithm 2. Feature Grouping Function (FGF)(𝐅𝐆𝐅)
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39: 

 

Input: Sample Dataset (∆𝑺𝒏), F.Prep (x, y, z) 

Output: 𝐡. 𝐅𝐆𝐅 

While ((𝑾(∅){ 𝜵(𝝋, 𝝆, 𝝎), 𝟏}))≠ 𝟎, {∈ 𝟎, 𝟏 })) Do 

   Slice: Data Samples {∆𝑺𝒏  ∈  𝑺} 
   Compute: 𝑾(∅)/* As per equation (20) */        𝒀 ←  (𝒙, 𝟎, 𝒛), 𝑿 ←  (𝟎, 𝒚, 𝒛), 𝒀 ←  (𝒙, 𝟎, 𝒛)  

   Execute: h.Train ({∆𝑺𝒏})/* Sample training begins on data set */ 

   If (h.Train ≤  𝑨𝑩𝑺 (𝜵(𝝋, 𝝆, 𝝎))) Then 

       Compute: h.Biasness (𝑾(∅), 𝑷𝒓𝒆𝒑 (𝑿, 𝒀, 𝒁)) 

       Compute: ℚ𝜸 ̂ (∆)/* Using Equation (21) */ 

       Update: h.Record (LTObject (𝐞𝐅𝐄𝐒⊞,  ℚ𝜸 ̂ (∆)) 

   Else 

       Update: h.Record (h.Train) 

       Set: 𝒀 ←  (𝒙, 𝟎, 𝒛), 𝑿 ←  (𝟎, 𝒚, 𝒛), 𝒀 ←  (𝒙, 𝟎, 𝒛) 

   End If 

   Compute: h.localgain and h.globalgain 

   For (g ∈  (𝒈 + 𝟏, ∆𝑮𝒂𝒊𝒏𝑰(𝒘)) Do 

       Compute: 𝑮𝒂𝒊𝒏𝑰(𝒘)/* Using Equation (22) */ 

       Set: 𝑵𝒐𝒓𝒎. 𝑮𝒂𝒊𝒏𝑰(𝒘) to local minima  

   End For 

 Compute: (𝐅. 𝐒𝐜𝐨 (𝐱, 𝐲, 𝐳)) as h.execute (FF as fitness factor), 

(𝑮𝒂𝒊𝒏𝑰(𝒘), 𝒆𝒓𝒓, 𝑬𝒓𝒓, 𝑭. 𝑬𝒏𝒈 (𝒙, 𝒚, 𝒛)) 

   Compute: (𝐅. 𝐎𝐩𝐭 (𝐱, 𝐲, 𝐳)) as h.concatenate (𝑭. 𝑬𝒏𝒈 (𝒙, 𝒚, 𝒛), Y,X,Z,        𝑭 (𝒏)) 

   If (𝒈𝑹 (𝒛)  <  𝟎. 𝟓) Then 

      Compute: err (z) and Err (x,y,z) 

      Update: H.RecordErrors (err,Err, gR (z)) 

   End If 

   Execute: h.Update (gR (z), 𝔾 (𝒙, 𝒚, 𝒛))   

   Update: LT function, LT.Gain (h*) 

   For (all tests in 𝑷 (𝒓𝑽𝒊 | 𝒑𝑬)  >  𝑷 (𝒓𝑽𝒋| 𝒑𝑬)) Do 

     Re-compute: the LG and GG 

     Update: the h.LT (P) 

     If (𝐏 ( 𝐩𝐄 | 𝐫𝐕𝐢)𝐏 (𝐫𝐕𝐢)   >  𝟎. 𝟓 ) Then 

        Compute: 𝜵 (𝝋, 𝝆, 𝝎) 

        Compute: 𝔾 (𝒙, 𝒚, 𝒛) for all distributions of g (x, y, z) 

     End If 

     Compute: (𝐅. 𝐒𝐜𝐨 (𝐱, 𝐲, 𝐳))/* Using Equation (26) */ 

     Compute: (𝐅. 𝐎𝐩𝐭 (𝐱, 𝐲, 𝐳))/* Using Equation (27) */ 

     Compute: h.FGF (F.Sco,F.opt) 

   End For 

End While 

Return (h. FGF)) 
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Figure 10 simulations demonstrate the global gain and local gain functions coherences with respect

to Loss and Cost functions. Figure 10a shows that gain function is unstable when eFES randomly

created the feature set. Figure 10b shows that gain functions stabilize when eFES uses weighted

function, as derived in the model.

Figure 10. Gain Function correlation with Loss and Cost Function.

3.3. eFES Framework

Figure 11 illustrates the internal functions of the proposed module on a granular level. eMLEE API

refers to the available functions that eMLEE model provides to each module such as eFES. Each grey

box is a function. The diamond shapes represent a decision-making point in the flow.

Figure 11. Framework to illustrate the internal processes of eFES module.

4. Results and Discussions

This section provides simulated results in 3D and 2D view to provide in-depth analysis of

the outcome of the proposed model for various functions and metrics. Significant samples of the

entire experimental results are provided at the latest state of this eFES model development stage.

These simulations elaborate on processing features to observe the optimum fitness (i.e., z dimension).

3D visuals are selected for better analysis of how the curve moves in space when the learner is

optimized in the dimensions. The equation below drives the experimental run for monitoring the

z-dimension in correspondence to each of x, y, and z. It should be noted that the results shown

are a snapshot of 100+ experimental runs for several data samples of the datasets. The equation

shown for each indicates the sampling construct for the analysis being envisioned. Features were

included in the experiments from the raw datasets. To improve the generalization of the model, various

experiments were performed on standard numbers such as 5, 10, 15, 20 and 40. Clearly, less is more,

as we stated earlier, but we leave it up to the model to finally group (FGF) the features that have the
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highest predictive value for learning and ensuring the maximum fitness and generalization. For each

experiment, a miscellaneous dataset was used to improve the generalization ability of the model and

underlying algorithms.

Figure 12 shows the 3D variance simulations of the functions. Figure 13 shows the comparison

between features that were engineered (Enhanced Feature Engineering (EFE)) and that were not

engineered (in blue). It is observed that EFE outperformed the FE. No FE indicates that the experiment

took features set as per standard pick and ran the process. EFE indicates the enhanced feature

engineering while incorporating mathematical constructs and algorithms, where features were added

and removed based on metrics reading and eventually creating an optimum feature set, as engineered

by eMLEE.

Figure 14a–d shows the tests on 20-experimental run. It should be noted that as the number of

experiments were increased, the classifier learning was improved as per proposed model. The selection

of 20 features were based on optimum number of the grouping function (FGF). Clearly, each dataset

brings in different number of features. Out of these features, some features are irrelevant, redundant,

and outliers. Some features are not known at the beginning of classifier learning. However,

we standardized around number 20 for experimental purposes. However, it is up to the algorithm to

tell the model how many features need to be qualified and then included in the learning process.
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   𝟏𝒍 ∑ 𝒅 (𝒁 (𝒙, 𝒚, 𝒛)𝟏𝟎
𝒊=𝟏  |  𝐥𝐢𝐦𝒆𝒓𝒓>𝟎.𝟐 𝒛𝒍 ∈ 𝒁 

𝟏𝒍 ∑ 𝒅 (𝑿 (𝒙, 𝒚, 𝒛)𝟏𝟎
𝒊=𝟏 + 𝒅 (𝒀 (𝒙, 𝒚, 𝒛)𝒅 (𝒁 (𝒙, 𝒚, 𝒛)|𝟎. 𝟐 < 𝒆𝒓𝒓 < 𝟎. 𝟖 

𝟏𝒍 ∑ 𝒅 (𝑿 (𝒙, 𝒚, 𝒛)𝟏𝟎
𝒊=𝟏 + 𝒅 (𝒀(𝒙, 𝒚, 𝒛)𝒅(𝒁(𝒙, 𝒚, 𝒛)|𝟎 

x 0.7 0.8 0.2 0.6 0.4 

y 0.3 0.5 0.6 0.2 0.9 

z 0.2 0.1 0.4 0.5 0.3 
 

x 0.07 0.06 0.05 0.03 0.05 

y 0.01 0.04 0.02 0.01 0.03 

z 0.04 0.03 0.04 0.05 0.01 
 

x 0.07 0.03 0.04 0.02 0.03 

y 0.3 0.5 0.2 0.3 0.04 

z 0.03 0.02 0.04 0.01 0.03 
 

(a) (b) (c) 

Figure 12. (a) It shows that variance in z is minimum on random datasets; (b) It shows the variance in all of axis as ideal, as what we wanted to observe; (c) It shows

the variance in all axis to be real (practical), as what we observed.
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Figure 13. A random experiment on 15 features for FE vs. EFE Correlation study for the observed

Fitness Factor.
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model’s fitness factor. As it is observed that EFE keeps the linearity
as special test of various metrics. “Engineered” refers to all the metrics of eFES model incorporated.

Figure 14. (a) We observe that LG and GG were very random throughout the tests; (b) We observe that

LG showed linear correlation (regression) when x (overfitting) was found to be low, and z was kept

random in 3D space. GG, as observed was random; (c) Observations on low y, where we found GG to

be close to the linear response; (d) Finally, as the model is optimized (high z), we saw expected and

desired linear regression. We observed some unexpected as shown by the peaks, which were suspected

to be riding outliers.

Figure 15a–e shows the test on (5, 10, 15, 20 and 50) features set. It compares the EFE and FE

correlation for Fitness Factor (FF). FF is computed by the eFES algorithms explained earlier.

Figure 15 shows the set of experiments for observation of diverse set of features to study the

model’s fitness factor. As it is observed that EFE keeps the linearity (stability) of the model. (e) was as

special test of various metrics. “Engineered” refers to all the metrics of eFES model incorporated.
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Set of experiments for observation of diverse set of features to study the model’s fitness 
Figure 15. Set of experiments for observation of diverse set of features to study the model’s fitness factor:

(a) With features in higher range of 15, we observe the consistent stability; (b) This considers 10 features

to evaluate the fitness function for both EFE and FE. Clearly, we observe the improvement in Fitness

Function; (c) With features in higher range of 15, we observe the consistent stability; (d) However,

as expected, we noticed that features up to 20, the maximum range of fitness function is around 80%;

(e) This shows the comparison of the various metrics and read the relevant value of the fitness factor

for each study of the metrics as shown by distinct colors.

Figure 16 shows the three sets of 20-grouped feature sets. The goal of these experiments was to

study the model ability to improve the accuracy for the features (Accepted, Rejected and Mixed) from

the given data set.

Figure 17 shows the candlestick (commonly used for stock analysis) analysis for LE and GE

bounds. It is observed that the model learned to stay in the bounds of 20% and 80% for LE and GE.

Negative 50 range is shown to elaborate on potential of error swings (i.e., for invalid values). The green

and purple sticks are for reference only.
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Figure 16. Accuracy Validation for Feature Optimization.
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Figure 17. Observation of the candle-stick analysis for Global (Err) error bounds.

Figures 18 and 19 shows the observation of the bias of the model for 20-experimental analysis.

Correlation Factor (CF) is computed by the eFES algorithms. Figure 18 shows the error and accuracy

increases during higher end of quantification range as shown. Figure 19 on the other hand shows that

the model has achieved the desired correlation of Err and Accuracy function.
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Figure 18. Poor Correlation of Err and Accuracy during high bias.
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Figure 19. Expected and desired correlation of Err and Accuracy function.

Table 4 shows the outcome of our 10-experimental analysis test, where we tuned the model to

discover the maximum possible practical measures as shown. We used 500+ iterations on several

different datasets to validate the model stability with real world data with the functions we built in

our proposed model. Red values are found to be in error. Further work is needed to investigate it.
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Table 4. 10th experimental values for functions shown.

Internal Functions 1 2 3 4 5 6 7 8 9 10

MI 0.009 0.012 0.023 0.034 −0.931 0.563 0.611 0.678 0.712 0.731
Irr.F(x, y, z) 0.119 0.217 0.241 0.298 0.381 0.383 0.512 0.629 0.672 0.681

Red.F 0.191 0.200 −0.001 0.289 0.321 0.341 0.440 0.512 0.525 0.591
err 0.821 0.781 0.732 0.612 0.529 0.489 0.410 0.371 0.330 0.319
Err 0.901 0.900 0.871 0.844 0.731 −0.321 0.620 0.521 0.420 0.381

F.Sco(x, y, z) 0.390 0.421 0.498 0.534 0.634 0.721 0.770 0.812 0.856 0.891
F.Opt(x, y, z) 0.110 0.230 0.398 0.491 0.540 0.559 −0.210 0.639 0.776 0.791

5. Comparative Analysis

This section provides a brief comparison of the latest techniques with the proposed model of eFES.

The data sources are detailed in the Appendix A. Table 5 shows the listing of the dataset used. Table 6 lists

the methods considered for the comparisons. Table 7 lists the table structure of the division for results in

Tables 8–19. The Python and R packages used are detailed in the tools sub-section of the Appendix A.

All the values are normalized to range between 0 and 1 for our functions’ standard outcome measures.

It should be noted that the data shown in Tables 8–19 are a subset of our total experimental analysis. The rest

of the results are left out for our literature review and model comparison paper for future work/writings.

Table 5. Data Sources (DS).

1 Breast Cancer Wisconsin Data Set
2 Car Evaluation
3 Iris species
4 Twitter User Gender Classification
5 College Scoreboard
6 Pima Indians Diabetes Database
7 Student Alcohol Consumption
8 Education Statistics
9 Storm Prediction center
10 Fatal Police Shootings
11 2015 Flight Delays and Cancellations
12 Credit Card Fraud Detection
13 Heart disease data set
14 Japan Census data
15 US Mass Shootings
16 Adult Census income
17 1.88 Million US Wildfires
18 S & P 500 stock Data
19 Zika Virus epidemic
20 Retail Data Analytics

Table 6. Methods.

1 Information Gain IG
2 Chi-squared CS
3 Pearson Correlation PC
4 Analysis of Variance ANOVA
5 Weight of Evidence WOE
6 Recursive Feature Elimination RFE
7 Sequential Feature Selector SFS
8 Univariant Selection US
9 Principal Component Analysis PCA
10 Random Forest RF
11 Least Absolute Shrinkage and Selection Operator LASSO
12 RIDGE Regression RR
13 Elastic Net EN
14 Gradient Boosted Machines GBM
15 Linear discriminant analysis LDA

Multiple Discriminant Analysis MDA
16 Joint Mutual Information JMI
17 Non-negative matrix factorization NNMF
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Table 7. Tables structures for 8 to 19.

Table Number Measure Number of the Datasets Number of the Methods

8 Accuracy 1–10 1–10
9 Accuracy 11–20 11–17

10 Error 1–10 1–10
11 Error 11–20 11–17
12 Precision Score 1–10 1–10
13 Precision Score 11–20 11–17
14 C-Index 1–10 1–10
15 C-Index 11–20 11–17
16 AUC 1–10 1–10
17 AUC 11–20 11–17
18 Cohen’s Kappa 1–10 1–10
19 Cohen’s Kappa 11–20 11–17

Table 8. Performance Evaluation (PE) = Accuracy, ideally higher values are desired.

DS IG CS PC ANOVAWOE RFE SFS US PCA RF eFES Winner

1 0.489 0.581 0.493 0.821 0.432 0.718 0.562 0.321 0.612 0.937 0.827 RF
2 0.391 0.501 0.452 0.732 0.479 0.700 0.590 0.476 0.842 0.842 0.863 eFES
3 0.429 0.543 0.572 0.683 0.481 0.681 0.623 0.419 0.693 0.534 0.633 PCA
4 0.444 0.492 0.365 0.601 0.538 0.710 0.512 0.478 0.793 0.792 0.825 eFES
5 0.492 0.572 0.392 0.621 0.593 0.661 0.652 0.563 0.824 0.312 0.881 eFES
6 0.482 0.563 0.592 0.910 0.582 0.633 0.692 0.673 0.847 0.118 0.792 ANOVA
7 0.523 0.557 0.673 0.666 0.523 0.502 0.619 0.693 0.734 0.492 0.700 PCA
8 0.542 0.599 0.962 0.732 0.710 0.682 0.638 0.478 0.892 0.692 0.983 eFES
9 0.423 0.630 0.921 0.802 0.504 0.623 0.742 0.732 0.872 0.631 0.902 PC

10 0.491 0.612 0.683 0.678 0.864 0.644 0.699 0.535 0.418 0.683 0.789 WOE

Table 9. Performance Evaluation (PE) = Accuracy.

DS LASSO RR EN GBM LDA MDA JMI NNMF eFES Winner

11 0.662 0.572 0.723 0.882 0.704 0.772 0.663 0.823 0.801 GBM
12 0.606 0.623 0.221 0.803 0.772 0.828 0.920 0.613 0.934 eFES
13 0.512 0.691 0.378 0.723 0.834 0.583 0.612 0.593 0.860 eFES
14 0.731 0.612 0.143 0.703 0.234 0.524 0.683 0.444 0.792 eFES
15 0.771 0.745 0.123 0.856 0.803 0.890 0.583 0.798 0.812 MDA
16 0.924 0.703 0.426 0.323 0.866 0.597 0.421 0.231 0.690 LASSO
17 0.832 0.791 0.484 0.428 0.792 0.890 0.792 0.166 0.942 eFES
18 0.883 0.723 0.923 0.573 0.723 0.748 0.842 0.772 0.793 EN
19 0.811 0.596 0.573 0.803 0.436 0.800 0.723 0.724 0.942 eFES
20 0.698 0.582 0.590 0.777 0.494 0.784 0.683 0.682 0.825 eFES

Table 10. Performance Evaluation (PE) = Error, ideally lower values are desired.

DS IG CS PC ANOVAWOE RFE SFS US PCA RF eFES Winner

1 0.254 0.443 0.623 0.234 0.112 0.213 0.487 0.126 0.111 0.173 0.223 PCA
2 0.231 0.193 0.423 0.278 0.321 0.183 0.215 0.193 0.213 0.213 0.201 RFE
3 0.593 0.318 0.283 0.318 0.294 0.143 0.368 0.216 0.172 0.229 0.045 eFES
4 0.443 0.244 0.342 0.087 0.221 0.193 0.125 0.259 0.193 0.281 0.112 ANOVA
5 0.183 0.289 0.124 0.213 0.084 0.426 0.258 0.442 0.145 0.342 0.014 eFES
6 0.392 0.173 0.192 0.282 0.103 0.083 0.159 0.044 0.039 0.293 0.023 eFES
7 0.361 0.111 0.009 0.045 0.115 0.063 0.193 0.310 0.135 0.183 0.216 PC
8 0.183 0.325 0.289 0.183 0.183 0.222 0.329 0.331 0.173 0.312 0.128 eFES
9 0.498 0.310 0.423 0.192 0.435 0.215 0.229 0.283 0.132 0.073 0.024 eFES

10 0.389 0.300 0.528 0.216 0.392 0.376 0.402 0.194 0.081 0.082 0.006 eFES
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Table 11. Performance Evaluation (PE) = Error.

∆∑∑∑ ΛAΣΣO PP EN ΓBM Λ∆A M∆A ϑMI NNMΦ εΦEΣ Ωιννε̺

11 0.092 0.175 0.134 0.097 0.281 0.145 0.113 0.130 0.073 εΦEΣ

12 0.125 0.179 0.111 0.173 0.173 0.100 0.193 0.193 0.034 εΦEΣ

13 0.214 0.231 0.190 0.239 0.151 0.182 0.231 0.210 0.111 εΦEΣ

14 0.163 0.200 0.138 0.166 0.088 0.163 0.009 0.003 0.183 NNMΦ

15 0.193 0.193 0.083 0.129 0.210 0.219 0.122 0.122 0.178 EN
16 0.236 0.437 0.238 0.321 0.134 0.110 0.177 0.191 0.088 εΦEΣ

17 0.173 0.432 0.110 0.146 0.443 0.325 0.212 0.253 0.134 EN
18 0.113 0.267 0.193 0.191 0.392 0.283 0.154 0.099 0.004 εΦEΣ

19 0.172 0.167 0.183 0.219 0.108 0.200 0.121 0.111 0.312 Λ∆A
20 0.283 0.045 0.128 0.183 0.214 0.204 0.231 0.131 0.021 εΦEΣ

Table 12. Performance Evaluation (PE) = Precision Score, ideally higher values are desired.

DS IG CS PC ANOVA WOE RFE SFS US PCA eFES Winner

1 0.677 0.899 0.961 0.520 0.755 0.816 0.820 0.639 0.792 0.723 CS
2 0.936 0.755 0.553 0.600 0.522 0.690 0.776 0.764 0.841 0.802 IG
3 0.861 0.874 0.779 0.834 0.647 0.844 0.677 0.907 0.744 0.689 CS
4 0.545 0.603 0.882 0.850 0.725 0.637 0.887 0.554 0.754 0.956 eFES
5 0.767 0.584 0.894 0.861 0.761 0.915 0.753 0.513 0.909 0.932 eFES
6 0.753 0.557 0.664 0.707 0.706 0.732 0.622 0.714 0.804 0.762 PCA
7 0.814 0.585 0.865 0.667 0.790 0.620 0.781 0.773 0.933 0.903 PCA
8 0.546 0.706 0.852 0.902 0.619 0.710 0.732 0.738 0.638 0.967 eFES
9 0.859 0.760 0.610 0.627 0.617 0.673 0.591 0.803 0.575 0.992 eFES
10 0.698 0.710 0.702 0.674 0.821 0.691 0.503 0.781 0.746 0.710 US

Table 13. Performance Evaluation (PE) = Precision Score.

DS RF LASSO RR EN GBM LDA MDA JMI NNMF eFES Winner

11 0.733 0.763 0.824 0.473 0.610 0.786 0.522 0.731 0.862 0.893 eFES
12 0.838 0.864 0.549 0.772 0.584 0.910 0.760 0.706 0.631 0.845 LDA
13 0.611 0.964 0.928 0.781 0.565 0.703 0.550 0.827 0.908 0.923 LASSO
14 0.905 0.923 0.754 0.807 0.643 0.670 0.605 0.531 0.650 0.982 eFES
15 0.640 0.601 0.820 0.950 0.512 0.948 0.827 0.786 0.662 0.734 EN
16 0.530 0.690 0.621 0.622 0.808 0.934 0.630 0.537 0.931 0.956 eFES
17 0.547 0.825 0.512 0.711 0.740 0.877 0.766 0.697 0.561 0.893 eFES
18 0.632 0.642 0.891 0.670 0.864 0.665 0.774 0.902 0.702 0.962 eFES
19 0.728 0.671 0.720 0.726 0.743 0.582 0.550 0.781 0.631 0.704 JMI
20 0.836 0.746 0.574 0.585 0.979 0.872 0.758 0.941 0.952 0.942 GBM

Table 14. Performance Evaluation (PE) = C-Index, ideally lower values are desired.

DS IG CS PC ANOVA WOE RFE SFS US PCA eFES Winner

1 0.412 0.333 0.236 0.294 0.226 0.062 0.421 0.427 0.215 0.118 eFES
2 0.319 0.256 0.393 0.106 0.433 0.078 0.361 0.128 0.235 0.056 eFES
3 0.207 0.251 0.271 0.118 0.134 0.307 0.222 0.338 0.211 0.312 ANOVA
4 0.523 0.220 0.058 0.052 0.203 0.325 0.061 0.439 0.040 0.189 PCA
5 0.134 0.534 0.476 0.137 0.144 0.387 0.199 0.114 0.105 0.210 PCA
6 0.627 0.425 0.285 0.243 0.448 0.274 0.488 0.186 0.181 0.034 eFES
7 0.113 0.193 0.152 0.498 0.200 0.036 0.025 0.149 0.071 0.092 SFS
8 0.167 0.273 0.410 0.128 0.105 0.435 0.139 0.193 0.148 0.192 WOE
9 0.291 0.221 0.096 0.291 0.326 0.448 0.161 0.235 0.211 0.073 eFES
10 0.093 0.293 0.407 0.488 0.200 0.179 0.341 0.472 0.040 0.002 eFES

Table 15. Performance Evaluation (PE) = C-Index.

DS RF LASSO RR EN GBM LDA MDA JMI NNMF eFES Winner

11 0.054 0.314 0.314 0.036 0.150 0.219 0.201 0.190 0.019 0.112 NNMF
12 0.268 0.217 0.293 0.252 0.552 0.209 0.318 0.394 0.219 0.243 LDA
13 0.542 0.325 0.320 0.327 0.346 0.245 0.249 0.322 0.403 0.296 LDA
14 0.282 0.141 0.251 0.132 0.136 0.360 0.217 0.224 0.232 0.106 eFES
15 0.043 0.060 0.210 0.021 0.093 0.264 0.091 0.247 0.136 0.129 RF
16 0.060 0.053 0.200 0.100 0.055 0.252 0.155 0.056 0.078 0.031 eFES
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Table 15. Cont.

DS RF LASSO RR EN GBM LDA MDA JMI NNMF eFES Winner

17 0.200 0.053 0.331 0.140 0.040 0.107 0.216 0.335 0.247 0.013 eFES
18 0.327 0.233 0.258 0.295 0.290 0.346 0.334 0.378 0.329 0.297 LASSO
19 0.094 0.196 0.312 0.309 0.066 0.216 0.128 0.164 0.258 0.032 eFES
20 0.073 0.263 0.204 0.064 0.053 0.206 0.010 0.239 0.047 0.024 MDA

Table 16. Performance Evaluation (PE) = AUC, ideally higher values are desired.

DS IG CS PC ANOVA WOE RFE SFS US PCA eFES Winner

1 0.569 0.808 0.739 0.633 0.848 0.563 0.518 0.540 0.874 0.810 PCA
2 0.513 0.796 0.800 0.643 0.610 0.659 0.618 0.664 0.589 0.762 CS
3 0.784 0.636 0.781 0.589 0.499 0.585 0.539 0.858 0.717 0.96 eFES
4 0.592 0.834 0.498 0.788 0.789 0.713 0.911 0.830 0.645 0.976 eFES
5 0.655 0.698 0.805 0.504 0.880 0.574 0.638 0.885 0.742 0.699 WOE
6 0.590 0.741 0.791 0.825 0.654 0.826 0.698 0.679 0.962 0.892 PCA
7 0.802 0.626 0.680 0.510 0.896 0.745 0.646 0.735 0.974 0.740 PCA
8 0.805 0.560 0.550 0.826 0.609 0.812 0.659 0.704 0.814 0.894 eFES
9 0.642 0.802 0.769 0.891 0.504 0.482 0.629 0.830 0.734 0.836 ANOVA
10 0.872 0.898 0.858 0.785 0.921 0.573 0.831 0.754 0.868 0.971 eFES

Table 17. Performance Evaluation (PE) = AUC.

DS RF LASSO RR EN GBM LDA MDA JMI NNMF eFES Winner

11 0.725 0.835 0.889 0.751 0.545 0.706 0.676 0.562 0.518 0.774 RR
12 0.889 0.819 0.532 0.555 0.890 0.751 0.946 0.688 0.778 0.903 MDA
13 0.568 0.835 0.520 0.525 0.502 0.764 0.605 0.651 0.487 0.952 eFES
14 0.780 0.728 0.606 0.870 0.792 0.545 0.553 0.855 0.990 0.962 NNMF
15 0.602 0.615 0.833 0.700 0.804 0.493 0.645 0.616 0.899 0.867 NNMF
16 0.736 0.649 0.589 0.665 0.848 0.847 0.905 0.621 0.897 0.952 eFES
17 0.541 0.711 0.777 0.511 0.868 0.884 0.691 0.904 0.665 0.962 eFES
18 0.796 0.525 0.768 0.762 0.755 0.513 0.759 0.910 0.599 0.852 eFES
19 0.873 0.481 0.606 0.639 0.558 0.575 0.783 0.842 0.675 0.820 RF
20 0.860 0.365 0.893 0.603 0.893 0.840 0.829 0.646 0.496 0.824 GBM

Table 18. Performance Evaluation (PE) = Cohen’s Kappa, ideally higher values are desired.

DS IG CS PC ANOVA WOE RFE SFS US PCA eFES Winner

1 0.666 0.816 0.913 0.621 0.206 0.656 0.930 0.978 0.586 0.912 US
2 0.762 0.754 0.502 0.926 0.959 0.774 0.915 0.566 0.875 0.925 WOE
3 0.921 0.207 0.691 0.757 0.920 0.520 0.846 0.932 0.758 0.623 US
4 0.693 0.542 0.673 0.500 0.765 0.924 0.647 0.501 0.824 0.957 eFES
5 0.773 0.533 0.775 0.615 0.814 0.535 0.682 0.536 0.878 0.856 PCA
6 0.685 0.910 0.568 0.606 0.698 0.831 0.646 0.902 0.851 0.945 eFES
7 0.635 0.716 0.676 0.793 0.593 0.802 0.843 0.671 0.930 0.991 eFES
8 0.667 0.877 0.918 0.751 0.854 0.930 0.794 0.527 0.936 0.875 PCA
9 0.897 0.644 0.454 0.517 0.762 0.802 0.685 0.865 0.650 0.834 IG

10 0.599 0.824 0.803 0.802 0.827 0.875 0.933 0.851 0.724 0.925 eFES

Table 19. Performance Evaluation (PE) = Cohen’s Kappa.

DS RF LASSO RR EN GBM LDA MDA JMI NNMF eFES Winner

11 0.892 0.929 0.819 0.874 0.537 0.662 0.833 0.581 0.857 0.983 eFES
12 0.954 0.660 0.944 0.489 0.582 0.869 0.753 0.786 0.771 0.973 eFES
13 0.576 0.952 0.686 0.588 0.744 0.712 0.658 0.927 0.671 0.910 LASSO
14 0.519 0.780 0.505 0.850 0.603 0.731 0.942 0.975 0.958 0.846 JMI
15 0.985 0.846 0.903 0.591 0.584 0.750 0.617 0.945 0.892 0.904 RF
16 0.786 0.804 0.605 0.673 0.814 0.635 0.909 0.573 0.732 0.973 eFES
17 0.827 0.567 0.814 0.772 0.867 0.890 0.670 0.771 0.763 0.734 LDA
18 0.751 0.733 0.820 0.813 0.760 0.637 0.871 0.739 0.867 0.923 eFES
19 0.698 0.645 0.636 0.801 0.727 0.886 0.969 0.954 0.781 0.845 MDA
20 0.583 0.646 0.795 0.930 0.953 0.523 0.681 0.565 0.524 0.578 EN
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6. Final Remarks

6.1. Conclusions

This paper reports the latest progress of the proposed model for enhanced Feature Engineering

and Selection (eFES) including mathematical constructs, framework, and the algorithms. eFES is a

module of enhanced Machine Learning Engine Engineering (eMLEE) parent model. eFES is based on

the following building blocks: (a) a features set is processed through standard methods and records

the measured metrics; (b) features are weighted based on learning process where accepted features

and rejected features are separated using 3D-based training through building Local Gain (LG) and

Global Gain (GG) functions; (c) features are then scored and optimized so the ML process can evolve

into deciding which features need to be accepted or rejected for improved generalization of the model;

(d) finally features are evaluated, tested, and the model is completed with feature grouping function

(FGF). This paper reports observation on several hundreds of experiments and then implements

10 experimental approaches to tune the model. The 10th experimental rule was adopted to narrow

down (i.e., slice) the result extraction from several hundred runs. The LG and GG functions were built

and optimized in 3D space. The included results show promising outcomes of the proposed scheme of

the eFES model. It supports the use of feature sets to further optimize the learning process of ML models

for supervised learning. Using the novel approach of Local Error and Global Error bounds of 20% to

80%, we could tune our model more realistically. If the errors were above 80% or below 20%, we flag it

to be an invalid fit. This unique approach of engineering a model turns out to be very effective in our

experiments and observations, as reported and discussed in this paper. This model though is based on

parallel processing but using high-speed hardware or a Hadoop-based system will help further.

Features (i.e., attributes) in the datasets are often irrelevant and redundant and may have less

predictive value. Therefore, we constructed these two functions. A) Irrelevant Irr.F (Equation (8)) and

B) Red.F (Algorithm 1). The real-world data may have more features and based on this exact fact, we

realized the gap to fill with our work. For ML model classifier learning, features play a crucial role

when it comes to speed, performance, predictive accuracy, and reliability of the model. Too many

features or too few features may overfit or underfit the model. Then the question becomes, what is

the optimum (i.e., the right number) feature set that should be filtered for a ML process, that is where

our work comes in. We wanted to have the model decides for itself as it continues to learn with more

data. Certain features such as” Gender” or ”Sex” may have extreme predictive value (i.e., weight)

for building predictive modeling for an academic data from a part of the world where gender bias

is high. However, the same feature may not play a significant role when it is included in a set from

a domain, where gender bias may not exist. Moreover, we also do not anticipate that based on our

thoughts, but we let our model tell us which feature should be included or removed, thus we have two

functions, Adder (+F(x, y, z)) Equation (1) and Remover (−F(x, y, z)) Equation (2). Number ”20” for

features was selected to optimize around this number. Figure 15a–e shows the tests for 5, 10, 15 and 20

to observe the fitness factor. Tables 7–12 in Section 5 show the promising state of eFES as compared to

the existing techniques. It performed very well, generally. Parallel processing and 3D engineering of

the features functions greatly improved the FO as we intended to investigate and improved with our

work. Future work will further enhance the internals of it.

In some of the experimental tests, we came across some invalid outcomes, where we had to re-tune

our model. Clearly, every model build-up process contains such issues where more work/investigation

is always needed. We have found that such issues are not reflective of any huge inaccuracy in the

results or instability of the model. Specially, in our diverse and stress testing, the errors and unexpected

behavior and readings were very little as compared to stable and expected results. It should be watched

closely with future enhancements and results, so it does not grow and become a real bug. This model

is based on supervised learning algorithms.
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6.2. Future Works

To further improve the current state of the eMLEE and its components (such as reported in this

paper), we will be testing more data specifically from http://www.kaggle.com, www.data.gov, and

www.mypersonality.org. We will be developing/testing more algorithms, especially in the domains of

unsupervised learning for new insights into feature engineering and selection. Also, eFES needs further

extensions towards exploring and engineering unknown features that are normally not encountered by

the learning process but may have great predictive value. We are improving/developing a model known

as the “Predicting Educational Relevance for an Efficient Classification of Talent (PERFECT)” Algorithm

Engine (PAE). PAE is based on eMLEE and incorporates three algorithms known as Noise Removal and

Structured Data Detection (NR-SDD), Good Fit Student (GFS), and Good Fit job Candidate (GFjC). We

have published the preliminary results [33] and are working to apply the eFES (i.e., eMLEE) model in its

latest form to study/explore/validate further enhancements.
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Key Notations

x Point of overfitting (OF)

y Point of underfitting (UF)

z Point of optimum-fitting (OpF)

Fn Complete raw feature set

+F Feature Remover Function

−F Feature Adder Function

LT Logical Table Function

A (i) ith ML algorithm such as SVM

ReFES Ratio of normalized error between local and global errors

Fran (x, y, z) Randomized feature set

fw Weighted feature value

∆(x, y, z) Regulating Function in LT object to obey the reference of 50% for training

err (e), LE Local error

Err (e), GE Global error

∅ maximum inconsistency

QN nth random generator

fii Position of a feature in 2D space

g (LG) Local gain

G (GG) Global gain

a fi ith accepted feature

r fi ith rejected feature

p fi ith predictive feature

∆Si ith dataset item

∇ (ϕ, ρ, ω) Acceptable parameter function for x, y, z

ObF Objective function

k ∈ K Predictor ID in the group of K

EC Evaluation Criterion

W(∅) Weighted Function

Nγ, Sγ Border unit normal vectors

Q̂γ (∆) Probability distribution based on nonparametric density estimation

GainI(w) Information gain

JMIN(Z)d Jacobian minimization

http://www.kaggle.com
www.data.gov
www.mypersonality.org
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Appendix A.

Appendix A.1. Dataset Sources

We have utilized the data from the following domains listed below. Some datasets were raw, CSV, and
SQL lite format with parameters and field definitions. We transformed all our input data into the SQL Server
data warehouse. Some of datasets are found to be ideal for doing healthcare preventive medicine, stock market,
epidemic, and crime control prediction.

1. http://www.Kaggle.com—Credit Card Fraud Detection, Iris species, Human Resource Analytics, 2015
Flight Delays and Cancellations, Daily news for Stock Market Prediction, 1.88 Million US Wildfires, SMS
Spam Collection Dataset, Twitter User Gender Classification, Brest Cancer Wisconsin Data Set, Retail Data
Analytics, US Dept. of Education: College Scoreboard, Death in the United States, US Mass Shootings,
Adult Census income, Fatal Police Shootings, Exercise Pattern Prediction, Netflix Prize Data, Pima Indians
Diabetes Database, Job Posts, Student Survey, FiveThirtyEight, S & P 500 stock Data, Zika Virus epidemic,
Student Alcohol Consumption, Education Statistics, Storm Prediction center.

2. http://snap.standford.edu—Facebook, Twitter, Wiki and bitcoin data set, Social networking APIs
3. https://docs.google.com/forms/d/1l57Un32YH6SkltntirUeLVpgfn33BfJuFLcYupg43oE/viewform?edit_

requested=true—online questionnaire from students across 12 campuses in the world
4. http://archive.ics.uci.edu/ml/index.php—Iris, Car Evaluation, Heart disease data set, Bank Marketing

Data set,
5. https://aws.amazon.com/datasets/—Enron Email Data, Japan Census data, 1000 Genomics Project,
6. https://cloud.google.com/bigquery/public-data/—We are experimenting it using BigQuery in our

Sandbox environment and will publish results in future.
7. https://www.reddit.com/r/bigquery/wiki/datasets
8. https://docs.microsoft.com/en-us/azure/sql-database/sql-database-public-data-sets.

Appendix A.2. Tools

Due to the years of background in databases and data architecture, we selected the Microsoft SQL Server [34]
(Business Intelligence, SQL Server Analysis Services, and Data mining) as our data warehouse. Preliminary work
is being conducted in Microsoft Azure machine learning tools. We used Microsoft Excel data mining tools [35,36].
Due to our programing background, we used Microsoft C# (mostly for learning in the beginning) and Python and
R language for main building of this model, and algorithms. There are various popular and useful Python data
analysis and scientific libraries (https://wiki.python.org/moin/NumericAndScientific) such as Pandas, Numpy,
SciPy (https://www.scipy.org/), Matplotlib, scikit-learn, Statsmodels, ScientificPython, Fuel, SKdata, Fuel, MILK,
etc. For R language (https://cran.r-project.org/), there are various libraries such as gbm, KlaR, tree, RWeka,
ipred, CORELearn, MICE Package, rpart, PARTY, CARET, randomForest. We used some of them as they were
relevant to our work and we are in the process of learning, experimenting and using more of them for future work.
We also used GraphPad Prism (https://www.graphpad.com/scientific-software/prism/) to produce simulated
results. Some of the python and R packages used are the following: FSelector-package, sklearn.feature_extraction,
sklearn.decomposition, from sklearn.ensemble, nsprcomp R package, R (RFE), R (varSelRF), R (Boruta package),
calc.relaimpo (Relative important) (r), earth package, Step-wise Regression, Weight of Evidence (WOE).
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