
Proposition of classification models for the direct
evaluation of the quality of cattle and sheep
leathers using laser-induced breakdown
spectroscopy (LIBS) analysis†

Ariane Maciel Neiva,ab Manuel Antonio Chagas Jacinto,b Mauŕıcio Mello de Alencar,b
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This study proposes classification models for the prediction of the quality parameters of cattle and sheep

leathers. In total, 375 leather samples were directly analyzed by laser-induced breakdown spectroscopy

(LIBS). Exploratory analysis using principal component analysis (PCA) and classification models employing

K-nearest neighbor (KNN), soft independent modeling of class analogy (SIMCA), and partial least squares

– discriminant analysis (PLS-DA) were the chemometric tools used in the multivariate analysis. The goal

was to classify the leather samples according to their quality. The calculated models have satisfactory

results with correct prediction percentages ranging from 75.2 (for SIMCA) to 80.5 (for PLS-DA) for the

calibration dataset and from 71.6 (for SIMCA) to 80.9 (for KNN) for the validation samples. The proposed

method can be used for preliminary leather quality inspection without chemical residues generation.

Introduction

Leather is an important commodity that generates economic

gain for several countries.1 The conversion of animal skins into

leather by tanning processes creates value in these products,

which can be used in different segments, for example, leather

clothes, bags, shoes, artifacts, furniture and car seats.2

In the leather industry, several steps are necessary to convert

the raw material into nished leather, such as pre-tanning,

tanning, post tanning and nishing operations.3 The tanning

of most skins is performed with chromium sulfate, but other

metal sulfates, and vegetable tannins, can be also used. In these

processes, toxic elements that can be incorporated into the

leather are added.4

The quality evaluation of leathers is fundamental to

ensuring their properties. Several physical mechanical tests are

performed according to the official methods.5,6 However, these

tests are laborious, time consuming and destructive; thus, its

application is compromised in cases where there is less sample

or when the sample cannot be destroyed.7 Therefore, alternative

methods to these traditional tests are needed. These methods

need to present also adequate accuracy and precision and high

analytical frequency.

Leather analysis has been performed using inductively

coupled plasma optical emission spectrometry (ICP OES),8–10

instrumental neutron activation analysis (INAA),11 and thermal

analysis (TA) techniques.12 In addition, direct analysis tech-

niques, such as near-infrared (NIR) spectroscopy,7,13 Fourier

transform infrared (FTIR) spectroscopy,13 and laser-induced

breakdown spectroscopy (LIBS),14 have been used. However,

the use of chemometric tools in leather analysis has still been

little explored. An example is the use of NIR to determine the

date of production of 130 samples of old leather articles. In this

study, the authors employed principal component analysis

(PCA) and partial least squares (PLS) for multivariate data

evaluation. As a result, it was possible to identify the year of

origin of these artifacts.7 In a second study,13 NIR and FTIR were

used to characterize 63 leather samples. The aim of the

mentioned study was to identify the nishing treatment (resin,

wax, or oil) of the samples using PCA, K-nearest neighbor (KNN)

and canonical variate analyses (CVA) as the classication tech-

niques. In a third study,15 12 sheep skin samples were analyzed

by NIR spectroscopy (NIRS) from direct determination of the fat

in leather, and a Soxhlet was used to obtain reference values.

Calibration models employing PLS were prepared using the

obtained spectra and the samples were evaluated before and

aer degreasing.
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The emission spectra obtained by LIBS generate large

amount of data, and the association with chemometric tools is

mandatory in several cases. This combination has been widely

used for classication or discrimination of different types of

samples, such as toys (PCA, KNN, So Independent Modeling of

Class Analogy, SIMCA and PLS for discriminant analysis, PLS-

DA),16 soils (SIMCA and linear discriminant analysis, LDA),17

pharmaceutical tablets (SIMCA and PCA),18 wheat grains (PLS-

DA),19 inks and pigments (PCA, SIMCA and PLS-DA),20 bioma-

terials and chemical warfare simulants (PCA and SIMCA),21

plants (PCA and SIMCA),22 soils and rocks (SIMCA and PCA),23

polymeric fractions of scrap from mobile phones (KNN, SIMCA

and PLS-DA),24,25 powdered uranium concentrate (PCA and

SIMCA).26

This study presents a combination of LIBS emission spectra

with classication models. Reference values obtained via

physical mechanical testing of leather were used to calculate the

classication models. These models were established using 3

different chemometric techniques: (1) in the KNN model, the

Euclidean distance among samples is used to classify nearest

neighbors;27 (2) in SIMCA, a PCA is calculated for each class;27

and in (3) PLS-DA, the model must dene the dependent vari-

ables, and a model is calculated using PLS-factors.27,28

Thus, the goal of this study is to evaluate the use of LIBS

spectra combined with classication models, KNN, SIMCA and

PLS-DA as an alternative to physical and mechanical tests for

evaluation the quality of leather.

Experimental
Samples and physical mechanical tests

In the experiments, 375 leather samples were used with 60 from

sheep and 315 from cattle. These samples were tanned with

chromium (semi-nished and nished leather) and obtained

from animals bred at Embrapa Pecuária Sudeste. These animals

presented different characteristics, such as genetic group, sex,

weight, and age. The experiment was approved by the Animal

Research Ethics Committee of Embrapa Pecuária Sudeste

(CEUA/CPPSE, Protocol No. 04/2011). This committee follows

the law number 11794 (October, 08, 2008) that regulates the

incise VII of rst paragraph of article 225 from the Brazilian

Federal Constitution. This law establishes procedures for

experiments with live subjects (http://www.mct.gov.br/

upd_blob/0238/238343.pdf). Other characteristics including

the place and year of slaughter were also observed in the data

evaluation. A complete description (the intended application

purpose, color, process step, etc.) of the analyzed samples can

be seen in Table 1.

To perform LIBS analysis, each animal leather sample was

cut into a rectangle (3.00 cm � 4.00 cm) using a hydraulic press

(Metalúrgica Aço real, P-23) with cutting knives.

To obtain reference values for the classication models, all

samples were submitted to 18 physical and mechanical tests.

These tests were divided in two directions: 9 longitudinal (L)

and 9 transversal (T). Samples from L and T directions were

obtained parallel to the cranial–caudal axis of the animal,

according to ABNT NBR ISO 2418:2015.6 The tests comprise

samples intended to be used in car seats or shoes.

Aer slaughtering, the skins were subjected to the tanning

process and tanned with chromium(III) sulfate. Aer tanning,

six leather test specimens of each skin were collected with

razors in a hydraulic press with 3 in the L and 3 in the T

directions (ABNT NBR ISO 2418:2015).6 Before performing the

tests, the leather test specimens were conditioned for 48 hours

at 23 � 2 �C and relative humidity of 50 � 5% (ABNT NBR

10455:2014).29 Then, the thicknesses of the leather test speci-

mens were measured (ABNT NBR ISO 2589:2014).30 Finally, the

physical and mechanical tests were performed using a dyna-

mometer (Maqtest), and four different tests were performed:

determination of the tensile strength (ABNT NBR ISO

3376:2014);31 percentage extension or elongation of leather

(ABNT NBR ISO 3376:2014);31 determination of tear strength,

tongue tear of leather (ABNT NBR ISO 3377-1:2014);32 and tear

strength of leather, double hole (ABNT NBR ISO 3377-2:2014).33

The equipment measures the strength (N) required to break or

tear the leather, and using this value and the thickness or area,

the resistance is calculated in N mm�1 or N mm�2 according to

the standards mentioned above. The resistance values were

calculated by dividing the strength (N) for tear strength by the

thickness (mm) and the tensile strength was calculated by

dividing the strength (N) by the area (mm2).

LIBS: parameters optimization and analysis

In this study, a J200 LIBS instrument was used (Applied Spectra,

Fremont, CA, USA) with Axiom 2.5 soware. This instrument is

equipped with a Nd:YAG laser emitting at a fundamental

wavelength of 1064 nm delivering a maximum of 100 mJ energy

in a single laser pulse at a frequency of 10 Hz. A 6-channel CCD

spectrometer is used to record the spectral information from

186 to 1042 nm: channel 1: 186 to 309 nm; channel 2: 309 to

Table 1 Descriptions of the leather samples used in this study

Remarks Sheep leather Cattle leather

Intended

application

Shoes Shoes and car seats

Color Brown (60 samples) Hazel (17), dark hazel (57),

light hazel (112), green (112)

and black (17 samples)

Manufacture stage Finished leather Semi-nished and
nished leather

Year of slaughter 2006 2010 and 2011

Genetic groupsa DOR, SIN and SUF CANE, CASN, CATA,
HNE, HSN, and HTA

Age of the animals

(days)

104–201 342–725

Weight of the
animals (kg)

28.7–41.7 292–579

a DOR: Dorper; SIN: Santa Inês; SUF: Suffolk; CANE: father Canchin and
mother Nelore; CASN: father Canchin and mother 1/2Senepol + 1/
2Nelore; CATA: father Canchin and mother 1/2Angus + 1/2Nelore;
HNE: father Hereford and mother Nelore; HSN: father Hereford and
mother 1/2Senepol + 1/2Nelore; HTA: father Hereford and mother 1/
2Angus + 1/2Nelore.
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460 nm; channel 3: 460 to 588 nm; channel 4: 588 to 692 nm;

channel 5: 692 to 884 nm; channel 6: 884 to 1042 nm; spectral

resolution <0.1 nm from UV to Vis and <0.12 nm from Vis to NIR

and the spectra are composed of 12 288 variables. In the

experimental setup, three instrumental parameters can be

varied: laser energy from 0 to 100 mJ, delay time from 0 to 2 ms

and spot size from 50 to 250 mm. These three parameters were

evaluated initially using a full factorial design and later

a Doehlert design to establish a commitment condition for all

emission lines evaluated.34

The full factorial design is used in the rst stage of optimi-

zation to identify the inuence or effect of each variable on the

desired response.35 Aer the identication of the most impor-

tant variables, a renement of the data can be done by adding

more levels of the factorial design, using other planning as the

design Doehlert. Using this type of design, the variables can be

tested in different levels and the most important one can be

studied with more details.35

The samples were analyzed directly in the ablation chamber

without any preliminary treatment. Before the experiments,

a cleaning process using several laser pulses was performed.

Aer that, a total of 100 spectra were collected for each sample

in raster mode.

In the beginning, the 3 experimental parameters

mentioned before were evaluated at two levels using a full

factorial design (23 ¼ 8 experiments): laser energy (50 and 80

mJ), delay time (0.5 and 1.0 ms) and spot size (50 and 100 mm).

These analyses were performed on the front and back of 15

previously selected representative samples (sheep and cattle

leathers). The evaluated responses were the signal-to-

background ratio (SBR) for the 5 most intense emission lines

for Cr (283.5, 357.8, 359.3, 425.4 and 427.4 nm). Seven effects

(3 main effects, 3 secondary effects and 1 tertiary effect) were

calculated for each emission line, and their average was

used to rank the inuence of the variables in the spectral

condition.

Aer the identication of the order of the most important

variables, a Doehlert design was also performed. In this

experiment, the variables can be studied at different levels.

Table 2 shows the 15 experiments performed for the two

samples chosen for optimization, i.e., one cattle leather

sample and one sheep leather sample. In this new design, the

SBRs and analytical signal intensities were considered for the

5 most intense emission lines for Cr. These data were con-

verted into desirability, and the lower and higher values were

coded as 0 and 1, respectively. The 3 rst experiments

described in Table 2 represent the central point, and they were

performed to calculate the sum of the square of the pure error

(SSPE). In these 3 experiments, the variables are coded as 0,

and the laser energy, delay time and spot size are 50 mJ, 1.0 ms

and 75 mm, respectively. All experiments were performed in

aleatory order.

In the optimization, 15 models were calculated (5 for cattle, 5

for sheep and 5 for both) using the 5 most intense Cr emission

lines. The parameters of the models were evaluated using an

ANOVA (analysis of variance) table. Surface plots were obtained

for the calculated models allowing identication of the most

adequate conditions for all samples simultaneously.

Data analysis and classication models

The raw data were normalized by the individual area,36 averaged

over 100 pulses and mean centered. The dataset was organized

using Microso Excel, and a routine was developed for data

normalization using Matlab 2009 (The Math Works, Natick,

USA). Aurora soware (Applied Spectra) was employed for

emission lines identication, and Pirouette 4.5 (Infometrix,

Bothell, USA) was used for the data classication models

calculation.

The dataset consisted of a matrix with 375 rows � 12 288

columns, in which the rows represented the leather samples

and the columns represented the emission lines (from 186 to

1042 nm). An initial exploratory analysis using PCA was per-

formed to evaluate whether LIBS could differentiate several

sample characteristics: colors, type of animal, nished or semi-

nished leather, among others. Later, three classication

models were proposed for predicting the quality of the leathers:

KNN,27 SIMCA37 and PLS-DA.38 Classication and validation

datasets were separated using the Kennard–Stone algorithm.39

The classication set was composed of 80% of the samples, and

the validation set was composed of 20% (see details in Table S1,

in the ESI†). These classication models combine emission

signals that reect the quality of leather analyzed.

Results and discussion
Optimization of LIBS experimental conditions

Initially, three experimental parameters for the LIBS tech-

nique were evaluated by full factorial design. Fig. S1 (in the

ESI†) shows a probability plot of the seven effects calculated.

Using this plot, the most important effects were ranked: delay

Table 2 Doehlert design performed for optimization of the laser
energy, delay time and spot size conditions and the global desirability
calculated for each experiment at 359.0 nm

Experiment

Laser

energy (mJ)

Delay time

(ms)

Spot size

(mm)

Global

desirability (Dg)

Coded Real Coded Real Coded Real 359 nm

1 0 50 0 1.0 0 75 0.26

2 0 50 0 1.0 0 75 0.33

3 0 50 0 1.0 0 75 0.17

4 1 90 0 1.0 0 75 0.74
5 0.5 70 0.866 1.9 0 75 1.00

6 0.5 70 0.289 1.3 0.817 100 0.71

7 �1 10 0 1.0 0 75 0.00

8 �0.5 30 �0.866 0.1 0 75 0.19
9 �0.5 30 �0.289 0.7 �0.817 50 0.81

10 0.5 70 �0.866 0.1 0 75 0.56

11 0.5 70 �0.289 0.7 �0.817 50 0.74

12 �0.5 30 0.866 1.9 0 75 0.42
13 0 50 0.577 1.6 �0.817 50 0.77

14 �0.5 30 0.289 1.3 0.817 100 0.10

15 0 50 �0.577 0.4 0.817 100 0.33

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 104827–104838 | 104829
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time (2), laser energy (1), the interactions between laser energy

and delay time (12) and the laser energy and spot size (13).

High laser energy and low delay time produces positive

effects. The spot size (3) did not have a signicant inuence,

but there are interactions between this variable and the

others.

Fig. 1 Surface plots obtained for Dg from responses obtained at 359 nm: delay time versus laser energy (a), laser energy versus spot size (b) and
delay time versus spot size (c).
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Given these results, a renement of the data was performed

by varying the most important variables with more levels using

a Doehlert design (see Table 2). Laser energy was varied across 5

levels (10, 50, 65, 80 and 90 mJ), delay time (the most important

variable) across 7 (0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 ms) and spot

size (the least important) across 3 (50, 75 and 100 mm); the

monitored responses were converted to desirability. In this

case, the lowest and the highest SBR and intensity were con-

verted to 0 and 1, respectively. In the beginning, calculating

a global model was attempted by combining the 5 emission

lines monitored in both types of leathers (cattle and sheep), but

it was not possible to obtain a valid model. Then, individual

models were calculated for each emission line in each type of

leather, and only the emission line at 359.0 in cattle leather

presented a regression model without a lack of t.

Table 2 also shows the global desirability (Dg) calculated at

359.0 nm for each experiment. The generated model (only the

valid coefficients) is represented by eqn (1):

Dgð359 nm; cattleÞ ¼

0:31
�0:11

þ 0:37
�0:13

LEþ 0:16
�0:13

DT� 0:24
�0:13

SSþ 0:29
�0:22

DT2

þ 0:32
�0:21

SS2 þ 0:41
�0:31

LE� SS (1)

where LE, DT and SS are the laser energy, delay time and spot

size, respectively.

The signicance of this model was evaluated using an

ANOVA, and the statistical parameters are presented in Table S2

(in the ESI†).

In this model, it is possible to see that there is a strong

synergism (this is the highest coefficient in eqn (1)) between the

laser energy (LE) and the spot size (SS). The calculated model

did not show lack of t because when themean of the squares of

the lack of t and the pure error are statistically the same, the

calculated F value (2.26) is lower than the tabulated one (19.3)

with a 95% condence level (see Table S2, in the ESI†). The

correlation coefficient (R2) was 0.927.

The surface responses obtained from this model are pre-

sented in Fig. 1. The laser energy (x-axis), delay time (y-axis), and

Dg (z-axis) are shown in Fig. 1a. The best working conditions are

obtained with a laser energy of 90 mJ and a delay time of 1.9 ms

(the predicted Dg is approximately 1). Fig. 1b and c shows the

other combinations of the variables (laser energy and spot size

and delay time and spot size). Analyzing these gures, it is

possible to see that high Dg is observed when the spot size is 100

or 50 mm.

Thus, a new experiment was performed by keeping the

variables already optimized at 90 mJ and 1.9 ms and varying only

the spot size to 50 or 100 mm. The spot size of 50 mm showed the

best desirability results. Thus, to validate the model, the opti-

mized conditions were also tested for the other 4 Cr emission

lines in both types of leather. This condition was compared with

the most intense signal previously obtained in the Doehlert

design before optimization. In all cases, the signal intensity

signicantly improved aer optimization (see Fig. 2).

In addition, aer laser pulse and visual inspection none

unusual damage was noted in the samples (see Fig. S2 at ESI†).

Fig. 2 Emission signals for the 5 most intense Cr lines for leather
samples (cattle and sheep) after and before experiments for LIBS
parameter optimization.
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It is also important to mention that it is hard to perform

a fair comparison among the published paper because

different instrumental setups are described. In a paper pub-

lished in 2011,18 for example, the energy was 25 mJ, but the

laser wavelength was 532 nm. Yet in 2011 Nasr et al.14 pub-

lished a paper dedicated to the analysis of leather and the laser

energy and wavelength were 100 mJ and 1064 nm, respectively.

The main advantage of the present study is the fact that now

exactly the same experimental conditions can be reproduced

worldwide, because a commercial system is used. The calcu-

lated irradiance for the operational conditions used was

765 GW cm�2.

Analysis of the leathers

Fig. 3 presents a general description of a representative LIBS

spectra obtained from a leather sample (sheep). This spectrum

is an average of 100 spectra. The identied and most intense

signals are highlighted and numbered from 1 to 29, and their

corresponding emission lines are listed in Table 3. The majority

of the emission lines identied are from Cr as expected due to

the leather tanning process with chromium(III) sulphate. The

most intense emission lines were observed for Cr and Na at

520.8 (peak 17) nm and 588.9 (peak 21), respectively. These two

chemical species, as well as others found in the leather samples,

are from several chemical reagents added in the tanning

processes.8–11

In order to evaluate the spectrum reproducibility, several

calculations using 100 spectra obtained in raster mode (a line) in

a sample were performed. Aer that, signal height for the

following emission lines were calculated (5Cr emission lines):

267.7, 357.8, 359.3, 425.4 and 427.4 nm. Then, 10 ratios were

evaluated (267/357, 267/359, 357/359, 425/427, 267/425, 267/427,

359/425, 357/427, 359/427 and 357/425). Fig. S3 (at ESI†) shows

box plot graphics for the 10 calculated ratios. As can observe the

values are constant and follow a normal distribution.

Exploratory analysis using PCA

PCA is a tool that allows to project high dimensional data set in

a small number of variables (named principal component, PC),

allowing to observe differences and verify relations among

variables.27 Two new matrices are generated in a PCA, a loading

matrix that represents the weight of the original variables and

a score matrix with the projections of the samples.28

A PCA analysis was calculated using the obtained data matrix

(375 samples and 12 288 variables) with the normalized and

mean-centered dataset. Several categories were analyzed, but

differences were only observed when the leather color was

considered. The scores and loadings for rst three principal

components were evaluated, and Fig. 4a presents the scores

values plot for PC1 for different samples, with 74% of the

explained variance, while Fig. 4b presents the loadings plot for

PC1 at different wavelengths. The main distinction of the

samples as the color is due to the C, Cr and Na with positive

values for PC1 and Ca with negative. The other PCs are pre-

sented in the ESI, and Fig. S4 and S6† show scores plots for PC2

and PC3, while Fig. S5 and S7 (all in ESI†) show their respective

loadings, presenting emission lines that can be associated with

the pigments used in the samples.24

Table 3 Emission lines (I atomic and II ionic) identified in the analyzed leathers

Identication Elements Wavelength (nm) Identication Elements Wavelength (nm)

1 C I 247.8 16 Cr I 520.6

2 Cr II 267.7 17 Cr I 520.8

3 Mg I 279.8 18 Cr I 529.8

4 Mg I 280.1 19 Cr I 534.5
5 Cr I 357.8 20 Cr I 540.9

6 Cr I 359.3 21 Na I 588.9

7 Cr I 360.5 22 Na I 589.5

8 Ca II 393.3 23 H I 656.2
9 Ca II 396.8 24 N I 742.3

10 Ca I 422.6 25 N I 744.2

11 Cr I 425.4 26 N I 746.8

12 Cr I 427.4 27 K I 766.4
13 Cr I 428.9 28 K I 769.8

14 Cr I 464.6 29 O I 777.4

15 Cr I 465.2

Fig. 3 Typical emission spectra obtained for a leather sample.
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According to Fig. S5 (in the ESI†), Cr and Na have inuences

on the positive values of PC2, and C, Mg, Cr, Ca and O are

responsible for the negative part of PC2. A separation among 6

leather colors can also be seen in Fig. S7 (in the ESI†), where

the elements responsible for the separation are Ca, Na and O

for the positive values of PC3 and C, Cr and K for the negative

values.

Fig. 4 PC1 scores plot (a) and PC1 loading plot (b) for the leather samples in different colors.

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 104827–104838 | 104833
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Classication models proposition

In this part of the study, the samples were divided into two

classes. Table 4 presents the specications elected for each

test. These specications were organized according to ABNT

NBR 13525:2016 40 that was recently published and shows

orientation values for acceptance of quality leather for

physical and chemical testing. These values were used as

orientation parameters to establish the classes, and attempts

were made to keep 50% of the samples in each class.

For example, tests 1, 5 and 8 are related to the thicknesses of

the samples, and the reference value is 1.2� 0.2 mm. Sheep and

cattle presented values varying from 0.870 to 2.25 mm and 0.890

to 2.17 mm in the longitudinal and transversal directions,

respectively. In this case, samples with thickness lower than

1.91 for L and 1.89 for T mm were grouped in class 1.

These classes were then used to calculate classication

models using the spectral information obtained by LIBS. Table

5 presents the values obtained when KNN was used to predict

class 1 samples. The dataset was divided into calibration and

validation, and 4 gures of merit were calculated: accuracy,

sensitivity, specicity and false alarm rate. The average accuracy

obtained for class 1 in the L direction was 78.8 for calibration

and 76.1% for validation. Accuracy represents the percentage of

correct predictions of the model. In the case of SIMCA and PLS-

DA, the accuracy presented similar results and varied from 71.6

to 80.5% for calibration and validation in the two classes. The

sensitivity for class 1 is the ability of the model to correctly

predict class 2 samples, and the results ranged from 61.6 to

84.6% for all calculated models. The false alarm rate is the

number of incorrect predictions divided by the total number of

samples for a specic class. The false alarm rate for the 3

calculated classication models varied from 14.4 to 36.9% for

all models. The last gure of merit was the specicity, and this

value computes the number of correct predictions for a specic

class divided by the total number of samples from the same

class. In general, the specicity goes from 61.6 to 84.6%. The

ideal situation is accuracy, sensitivity and specicity equal to

100% and false alarm rate equal to 0%.

Tables 5 and 6 show the results for KNN for classes 1 and 2,

respectively. Individual models were calculated for each test in

the two evaluated directions. The number of selected neighbors

varied from 3 to 5. Tables S3–S6 (all in the ESI†) shows the

results for SIMCA and PLS-DA. In general, the models proposed

with PLS-DA were slightly better. Fig. 5 shows a receiver oper-

ating characteristics (ROC)41 curve for test 1 (measuring thick-

ness in tensile tests, see Table 4) in class 1 samples (0.87–1.91

for L and 0.89–1.89 for T) for PLS-DA calibration (Fig. 5a) and

validation (Fig. 5b) data sets. The calculated area under the

curves varied from 0.74 to 0.76, and the models can be

considered fair.

ROC curves for the other tests (from 2 to 9) are shown in

Fig. S8–S11 at ESI.† In general the area under the curve varied

from 0.6 (poor) to 0.9 (good).

Although classication models achieved around 80% correct

classication, we believe that the models developed, will be useful

for practical applications, because they are easy to implement in
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Table 6 Accuracy, sensitivity, false alarm rate and specificity obtained for class 2 of KNN model

Test Direction

Calibration class 2 Validation class 2

Number

of

samples

Number

of

neighbors

Accuracy

(%)

Sensitivity

(%)

False

alarm

rate (%)

Specicity

(%)

Number

of

samples

Accuracy

(%)

Sensitivity

(%)

False

alarm

rate (%)

Specicity

(%)

1 L 142 3 78.0 81.0 25.4 74.6 42 81.3 90.9 26.2 73.8

2 L 151 4 65.3 58.4 27.8 72.2 36 61.3 61.5 38.9 61.1

3 L 137 5 68.7 68.1 30.7 69.3 48 62.7 55.6 33.3 66.7
4 L 146 5 77.3 77.9 23.3 76.7 41 73.3 58.8 14.6 85.4

5 L 144 5 79.9 81.9 22.2 77.8 42 73.3 69.7 23.8 76.2

6 L 147 5 83.6 88.2 21.1 78.9 39 81.3 86.1 23.1 76.9

7 L 146 3 84.6 85.6 16.4 83.6 40 80.0 77.1 17.5 82.5
8 L 118 5 79.0 85.8 28.8 71.2 38 81.0 88.0 23.7 76.3

9 L 125 3 92.9 96.9 11.2 88.8 32 90.5 93.5 12.5 87.5

Average 78.8 80.4 23.0 77.0 76.1 75.7 23.7 76.3

Median 78.9 81.5 23.1 76.9 78.0 76.4 23.7 76.3
SD 8.24 11.36 6.20 6.20 9.45 14.74 8.49 8.49

1 T 144 5 77.0 83.3 29.9 70.1 41 77.3 79.4 24.4 75.6

2 T 140 3 69.3 67.5 28.6 71.4 46 76.0 72.4 21.7 78.3
3 T 151 5 70.3 71.1 30.5 69.5 36 69.3 71.8 33.3 66.7

4 T 148 6 91.3 90.1 7.4 92.6 38 85.3 83.8 13.2 86.8

5 T 143 5 80.6 84.6 23.8 76.2 43 84.0 87.5 18.6 81.4

6 T 146 3 77.7 80.5 25.3 74.7 41 83.8 90.9 22.0 78.0
7 T 144 3 82.3 83.9 19.4 80.6 42 81.3 90.9 26.2 73.8

8 T 121 5 76.2 79.4 27.3 72.7 38 79.4 88.0 26.3 73.7

9 T 127 5 93.7 97.6 10.2 89.8 30 92.1 97.0 13.3 86.7

Average 79.8 82.0 22.5 77.5 80.9 84.6 22.1 77.9
Median 78.7 82.7 24.6 75.4 81.1 86.1 22.0 78.0

SD 8.33 9.07 8.47 8.47 6.47 8.61 6.47 6.47

Table 5 Accuracy, sensitivity, false alarm rate and specificity obtained for class 1 of KNN model

Test Direction

Calibration class 1 Validation class 1

Number

of samples

Number

of neighbors

Accuracy

(%)

Sensitivity

(%)

False alarm

rate (%)

Specicity

(%)

Number of

samples

Accuracy

(%)

Sensitivity

(%)

False alarm

rate (%)

Specicity

(%)

1 L 158 3 78.0 74.6 19.0 81.0 33 81.3 73.8 9.1 90.9

2 L 149 4 65.3 72.2 41.6 58.4 39 61.3 61.1 38.5 61.5

3 L 163 5 68.7 69.3 31.9 68.1 27 62.7 66.7 44.4 55.6
4 L 154 5 77.3 76.7 22.1 77.9 34 73.3 85.4 41.2 58.8

5 L 155 5 79.9 77.8 18.1 81.9 33 73.3 76.2 30.3 69.7

6 L 152 5 83.6 78.9 11.8 88.2 36 81.3 76.9 13.9 86.1

7 L 153 3 84.6 83.6 14.4 85.6 35 80.0 82.5 22.9 77.1
8 L 134 5 79.0 71.2 14.2 85.8 25 81.0 76.3 12.0 88.0

9 L 127 3 92.9 88.8 3.1 96.9 31 90.5 87.5 6.5 93.5

Average 78.8 77.0 19.6 80.4 76.1 76.3 24.3 75.7

Median 78.9 76.9 18.5 81.5 78.0 76.3 23.6 76.4
SD 8.24 6.20 11.36 11.36 9.45 8.49 14.74 14.74

1 T 156 5 77.0 70.1 16.7 83.3 34 77.3 75.6 20.6 79.4

2 T 160 3 69.3 71.4 32.5 67.5 29 76.0 78.3 27.6 72.4

3 T 149 5 70.3 69.5 28.9 71.1 39 69.3 66.7 28.2 71.8
4 T 151 6 91.3 92.6 9.9 90.1 37 85.3 86.8 16.2 83.8

5 T 156 5 80.6 76.2 15.4 84.6 32 84.0 81.4 12.5 87.5

6 T 154 3 77.7 74.7 19.5 80.5 33 83.8 78.0 9.1 90.9
7 T 155 3 82.3 80.6 16.1 83.9 33 81.3 73.8 9.1 90.9

8 T 131 5 76.2 72.7 20.6 79.4 25 79.4 73.7 12.0 88.0

9 T 125 5 93.7 89.8 2.4 97.6 33 92.1 86.7 3.0 97.0

Average 79.8 77.5 18.0 82.0 80.9 77.9 15.4 84.6
Median 78.7 75.4 17.3 82.7 81.1 78.0 13.9 86.1

SD 8.33 8.47 9.07 9.07 6.47 6.47 8.61 8.61
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industrial eld and can offer preliminary results. In addition,

suspicious values can be further conrmed with standard

methods. Whereas traditional testing to ensure the quality of the

leather is too laborious, time-consuming and requires large

amount of leather, so the leather used in the tests will be

destroyed and discarded, thus reducing its economical value. In

Fig. 5 ROC curves for class 1 samples in PLS-DA calibration (a) and validation (b) data sets (see test identification in Table 4). Solid and dotted
lines represents tests performed in transversal (T) and longitudinal (L) directions, respectively.

104836 | RSC Adv., 2016, 6, 104827–104838 This journal is © The Royal Society of Chemistry 2016
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addition, generally physical and mechanical tests are performed

in private laboratories, adding higher production costs, thus

prevents a quality control more strictly, because only a small part

of the leathers will be submitted to the tests. In this case, around

80% of correct classication should be enough. Using LIBS

alternatively coupled to a classication model, the analysis could

be made in the tannery itself with a portable LIBS, for example.

This approach can present a high analytical frequency without

damaging the leather, which can be further commercialized

(without it being necessary to cut pieces). Finally, the proposed

method can increase prot at the time of sale, in addition as it

takes only a few seconds for analysis, this way all leathers could be

inspected, and determine the quality of 100% of leather produced

and not just a fraction as is usually done.

Conclusions

Classication models (KNN, SIMCA and PLS-DA) were devel-

oped using LIBS emission spectra and associated with physical

mechanical tests on leather as reference values. The predictive

abilities of the models were similar, showing that three models

can be used to predict leather quality for sheep and cattle

satisfactorily. The models generate concordant predicted

results with the reference values for the physical mechanical

tests in both evaluated directions, demonstrating the potential

of using this tool in combination with LIBS to predict the

quality of sheep and cattle leathers using a single model. The

proposed method is fast, and no chemical residues are

generated.
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