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In [13], Kleene formulated a truth-notion called "readability" for
formulas of intuitionistic number theory(1). David Nelson(2) showed that
every number-theoretic formula deducible in the intuitionistic predicate
calculus(3) (stated by means of schemata, without proposition or predicate
variables) from realizable number-theoretic formulas is realizable. In par-
ticular, then, every formula in the symbolism of the predicate calculus (with
proposition and predicate variables) which is provable in the intuitionistic
predicate calculus has the property that every number-theoretic formula
(in the number-theoretic symbolism without proposition or predicate vari-
ables) which comes from it by substitution is realizable. This property was
applied by Kleene to demonstrate that certain formulas provable in the
classical predicate calculus are unprovable in the intuitionistic predicate
calculu's(4).

The question naturally arises whether the converse of Nelson's result
holds. That is to say, is an arbitrary formula of the predicate calculus prov-
able whenever every number-theoretic formula obtained from it by substitu-
tion is realizable? If this question could be answered in the affirmative, we
should have a completeness theorem for the intuitionistic predicate
calculus(6).

Received by the editors August 14, 1952.
(') A familiarity with the fundamental results pertaining to this concept is presupposed.

For this purpose, the reader is referred to the above paper or to [17, §82].
The conjecture which is disposed of in this paper was proposed by Kleene in correspondence

in November 1941, and was the only one of an early group of conjectures about realizability
which was not settled by 1945. It was discussed by him in a paper before the Princeton Bicen-
tennial Conference on the Problems of Mathematics in December 1946 (unpublished). The
author took up the investigation in 1947, following a suggestion by Kleene that Jaskowski's
matric treatment of the Heyting propositional calculus [lO] might provide a basis for attacking
that part of the problem which concerns the propositional calculus. The solution by a counter-
example, presented here, was obtained in February 1951.

The material in this paper is included in JaSkowski's truth-tables and realizability, a thesis
submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the
University of Wisconsin and accepted in February 1952. In the thesis, the proofs of the fol-
lowing lemmas and theorems are given in greater detail: 3.2, 4.5, 4.6, 4.7, 4.8, 5.1, 5.2, 5.3, 5.4,
6.1, 7.1, 7.2.

(2) Cf. Nelson [23, Theorem l] or Kleene [17, §82, Theorem 62(a)].
(3) Cf. [8; 9; 2].
(4) Cf. [13, §10]. Other demonstrations were given later: cf. [14; 17, §80; 22].
(6) For the classical predicate calculus, there is the well known completeness theorem of

Gödel [4]. For the intuitionistic predicate calculus, on the other hand, no completeness theo-
rem was known until 1949, when one not closely connected with the logical interpretation was
found by Henkin [7] as a kind of converse of a result of Mostowski [22].
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2 GENE F. ROSE (July

The position of the intuitionists that mathematical reasoning can never
be completely formalized (cf. [8]) found subsequent confirmation in Gödel's
celebrated incompleteness theorem for number theory [5], which applies to
both classical and intuitionistic systems. However, this does not preclude
the possibility that, as in the corresponding case for classical reasoning, an
(effectively) formalizable set of principles might embrace all forms of intui-
tionistic reasoning which entail only the subject-predicate structure (or
perhaps only the propositional form) of the propositions involved. If the
stated conjecture should be true, the Heyting calculus would already give
such a characterization; if false, a counterexample might point the way
either to finding a more explicit intuitionistic interpretation or to extending
the calculus to include additional principles acceptable in the intuitionistic
predicate logic. Consequently, the conjecture was investigated with no clear
indication a priori as to its truth or falsity.

We now know that it is false; and a counterexample can be presented
briefly (cf. Theorem 6.1 below). This counterexample, however, was dis-
covered only after prolonged, systematic attempts to establish the conjec-
ture for various classes of formulas, beginning with the propositional calculus,
and to abstract some general principles. This paper contains, besides the
decisive example, the principal results of the investigation which culminated
in it. Inasmuch as the counterexample appeared within the propositional
calculus, the part of the problem relating to the full predicate calculus was
never reached. The fact that the completeness conjecture holds for the part
of the intuitionistic propositional calculus without implication (cf. Theorem
7.5 below) emphasizes the special difficulty connected with the intuitionistic
interpretation of implication.

The counterexample is established only classically(6). Hence, rather than
immediately seeking an extension of the intuitionistic propositional calculus,
we should examine the interpretation along the following lines.

Kleene reports(7) that his current work on realizability of formulas with
function variables, as proposed in [16, end §2], may cast new light on the
intuitionistic interpretation of number-theoretic formulas containing im-
plication or negation.

Moreover, one might seek to establish completeness by allowing the sub-
stitution of formulas from the enlarged class containing function variables.
A complete predicate calculus should provide for just those methods of
predicate reasoning which are valid in any part of intuitionistic mathematics.
One can start with a given notion of formula with an interpretation, and
consider the class of all predicate formulas valid for reasoning with these
formulas. Then, as the class of formulas is increased, the class of predicate

(6) All results in this paper are established intuitionistically, except those which are indi-
cated as only having been established classically.

(7) In December 1951.
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1953] PROPOSITIONAL CALCULUS AND REALIZABILITY 3

formulas does not increase. The "complete predicate calculus" can be defined
(noneffectively) as the inner limiting set of the sets of valid formulas upon
repeating this process for all conceivable extensions of the "formal context."
It was a major discovery of Gödel [4] that, in the case of classical logic, one
already obtains the inner limiting set after including the number-theoretic
formulas, as one might expect from the earlier results of Löwenheim [18]
and Skolem [25]. In analogy to the classical case, it was natural that the
first attempt at a completeness property for the intuitionistic predicate
calculus should be by a number-theoretic interpretation; but it must be kept
in mind that this is not the only possibility.

Part I
1. Propositional calculus. We shall refer to the variables and formulas of

the number-theoretic formal system of [13, §4] as n-variables and n-formulas.
We now consider the propositional calculus as a separate formal system, and
refer to its variables and formulas as p-variables and p-formulas. Let us de-
fine a p-formula to be realizable if and only if every n-formula obtained from
it by substituting n-formulas for its p-variables is realizable. The set of
realizable p-formulas will be denoted by "$."

A propositional calculus will be called consistent with respect to realizability
if its provable p-formulas form a subset of $; complete with respect to realizabil-
ity if the set of its provable p-formulas contains $. In investigating the con-
jecture that the Hey ting propositional calculus is complete with respect to
realizability, we shall treat this calculus as it is set forth by modus ponens,
the substitution rule, and the following axioms (where a, b and c are distinct
p-variables) :
(la)    aDOOa). (lb) (aDb)D((aD(bDc))D(aDc)).
(3)      aZXbDa&b). (4a) a & bDa.

(4b) a & bDb.
(5a)    aDaVb. (6) (aDc)D(flOc)D(aVb:>c)).
(5b)    bDaVb.
(7)      (aDb)D((aDnb)Dla)- (8) ~|0(aDb).
The set of p-formulas provable in the Heyting propositional calculus will be
denoted by "£>."

The postulates of the classical propositional calculus differ from those of
Heyting's in that the last axiom above is replaced by ~ ~~[a I) a. The set of
p-formulas provable in this calculus will be called "31."

2. Matrices. Our use of matrices (or truth-tables) for the representation
of sets of p-formulas is based directly on [20], [lO], and [21, p. 3], and
ultimately on [19] and [24]. By a (finite) matrix M, let us understand a
system consisting of a finite set of elements closed under each of three binary
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4 GENE F. ROSE [July

operations Z)m, &m, Vji/ and one unary operation \M, and having a non-
empty subset of designated elements. An evaluating function with respect to a
matrix M is any homomorphic mapping of the p-formulas into M such that
D, &, V, and | (regarded as formal operations) correspond respectively to
Z)m, &m, \/m, and \m- A p-formula fulfils M if and only if it is mapped
into a designated element by every evaluating function with respect to M.
A matrix M is regular if and only if, for arbitrary matrix elements e and /, /
is designated whenever e and eZ^itf are designated. A matrix M is a char-
acteristic matrix for a set ft of p-formulas if and only if ft is the set of p-formu-
las which fulfil M. A sequence {Mi} (i = 0, 1, • • • ) of matrices is regular if
and only if each Mi is regular and there is an effective process by which, for
all i, Mi+i is defined in terms of M,. Such a sequence is a characteristic se-
quence for a set ft of p-formulas if and only if ft is the set of p-formulas which
fulfil every matrix in the sequence.

Gödel [6] has shown that § has no regular characteristic matrix. Jaskow-
ski [lO], however, has exhibited a characteristic sequence for §. In Theorem
7.6, we shall show that "iß has no regular characteristic matrix; the existence
of a characteristic sequence for ty remains an open question.

We shall devote the remaining sections of Part I (§§3-5) to an inessen-
tially modified(8) presentation of Jaskowski's above-mentioned result, for
which a detailed proof is nowhere available in the literature. The results on
realizability follow in Part II.

3. Simple conjunctions and simple implications.
3.1. Definitions. We shall denote finite, possibly empty, sequences of

p-formulas (of n-formuas) by capital Greek letters. For p-formulas (for
n-formulas) A, A, "A |—A" will mean that A is deducible from A in the
Heyting propositional calculus (in the intuitionistic predicate calculus with
equality and the Peano axioms). By "AH |—B" we shall mean that Al—B
and Bl-A. We shall use A~B as an abbreviation for (ADB) & (BDA),
saying that A is equivalent to B if I— A~B.

We write " Ha» A¿" for A0 & • • • & A», and " £¿s» Ai" for A0V • ■ •
VAn, where Ao, • • • , A„ are p- or n-formulas called the members of the
conjunction or disjunction respectively(9). For any j^n, the result of replacing
A; by B in JJi¿n Ai will be denoted by "j(B) n<s» A»."

Henceforth, lower-case latin letters will be used, in connection with
p-formulas, only for the designation of p-variables which, unless otherwise
specified, are not necessarily distinct.

A simple conjunction is a p-formula K of the form IX¿s« A,- where each
A¿ has one of the following forms(10): (i) a, (ii)     |a, (iii) aDb, (iv) aDbVc,

(8) The modifications will be noted as they occur.
(9) More specifically, JJ.á» A¡ is A0 for n = 0, and ( • • • ((A0& AO & A2) • • • ) & A„ for

ne2. Similarly for ¿J*S" A>-
(10) aZ)t>Vc means aD(t>Vc), and a & b^c means (a & b)3c

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] PROPOSITIONAL CALCULUS AND REALIZABILITY 5

(v) a & bDc, (vi) (aZ)b)Z)c. We define the degree d(K) of K to be the num-
ber of members which have form (vi).

A simple implication is a p-formula of the form KDz where K is a simple
conjunction and z is any p-variable(n).

If K is the simple conjunction j[X<£* A,-, P is the simple implication
KZ)z and A3- is (a,Ob/)Dcy, then we denote j(a¡ & (b/Dcj)) ITiSn A,- by
"K'" and KOby by "P'."

3.2. Lemma. // P is a p-formula of the form U,gn B.Oz where each B,-
is an implication or a negation, then P is interdeducible with a simple implica-
tion.

Proof. Let P fulfil the hypothesis of the lemma. For each B„ define £(BS)
to be 0 or the number of (occurrences of) p-variables and |'s in B¿ according
as Bi has one of the forms (ii)-(vi) or not. Let q(P) be maxiS„ £(B,); m(P),
the number of B.'s such that p(Qx) =g(P). The proof is completed by showing
that Io the lemma holds when q(P) —0 and 2° if g(P) >0, then there exists a
p-formula Q, interdeducible with P, such that either q(Q) <g(P) or else
<Z(Q)=<Z(P)andm(Q)<m(P).

3.3 Theorem. Every p-formula is interdeducible with a simple implica-
tion^2).

Proof. Let P be an arbitrary p-formula, x a p-variable not in P. Then
PH l—(PDx)Z)xH \- [3.2] a simple implication.

4. The matrix-sequence {J,}. Let us define the set ï thus. Io If x is a
natural number, then x£ï. 2° For any d¡tl, if Xi, • ■ ■ , XdCEX, then
(xi, • • ■ , Xd)£ï. For any d^l and any x£ï, "xw" denotes the ¿-tuple
(x, ■ • ■ , x). 3° All elements of ï are given by Io and 2°.

The partial ordering relation < in ï is defined thus. Io For any d^l and
any i (l^i^d), Xi<(xu ■ ■ ■ , x¿). 2° For any ¿2:1 and any i (l^i^d), if
x<xit then x<(xit ■ ■■ , xd). 3° For any x, y in ï, x<y only as required by
Io and 2°.

Note that, for any x in ï, x is distinct from x(1), which is (x).
4.1. We define an infinite set {M} of matrices in such a way that, for

each member, the elements are in Ï and the designated element is unique.
For any M in {M], we denote the designated element by "bM" and the
(possibly empty) set of undesignated elements by "Am-" Thus:

4.1.1. The matrix L0 whose sole element is 0 is in { M) (13).

(") The class of simple implications differs from Jaskowski's class of regular formulas in
that a member of the premise of a regular formula may have one of the additional forms
aVDZ)c,     ]aZ)b, a3(bZ)c), a^)b & c, aZ)    |b, but it may not be a variable.

(12) Jaskowski states without proof that any formula is interdeducible with a formula of
the form Ro & • • • & R„ where each Ri is regular.

C3) This matrix corresponds to Jaákowski's 8i.
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6 GENE F. ROSE [July

4.1.2. If ME{M}, then T(M)E.[M}, where T(M), which for conven-
ience we denote by "N," is defined thus. Let ¿»jv = def bM, and Aif = deî Am
+ {on} where a^ is the least natural number n such that for no element x
of M is n = x or n <x. Now for any x in M, let a«(ï) be x or a¿\r according as
xCZAm or x = bM- We define the operations of iV in terms of those of M, using
the following tabular form.

xDn y

x = btf

X = aM(u)

x &cn y

y = bN y = aM(v)

x = bN

x = ajf(w)

x Vn y

x Z)m y
u Z)m y

y = bff

<xm(x Dm v)

u Z)mV

y = aM(v)

x&Lm y

cxm(u &.M y)

y = bN

cím(x &LM v)

aM(u &A/ v)

y = aM(v)

x = bN

X  =   «Af(«)

i
]jv x = def <

x Vm y x V/m v
U Vm J aA/(« Va/ »)

a.w(   |a/ x) if    x = ¿>tf,

|m m    if x = ajii(w).

The w-fold iteration of the operation V will be denoted by 'Tn."
4.1.3. If del and, for all i (l^i^d), MiCZiM}, then (Mlt ■ • • , Md)

CZ{M}, where (Mi, • ■ • , Md), which for convenience we denote by "P," is
defined thus. The elements of P are just those ordered d-tuples(xi, ■ • ■ , xd)
such that, for all i (l^it^d), x.GAfi. The designated element bp is
(bui, ■ • • , bMd). The operations of P are given by

(x\, ■ ■ ■ , xd) op (yi, • ■ • , yd) = def (xi oM¡ yi, ■ • • , xd oMi yd),

~~]p (xi, • • ■ , xd) = def (   \mv Xi, • • • ,    ¡Md xd),

where "o" denotes D, &, or \/(14)- For any d^l and any Min {M},'^^"
denotes the á-tuple (M, • • • , M).

Note that, for any M in ¡M}, M is distinct from Af(1>.
4.1.4. All matrices in [M] are given by 4.1.1.-4.1.3.

(") This operation replaces Jaákowski's iterated binary product. As a result, our {M\
differs from his corresponding (80nr- However, there is a biunique mapping of {M\ onto
(80 nr such that corresponding matrices are isomorphic.
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1953] PROPOSITIONAL CALCULUS AND REALIZABILITY 7

4.2. For all n>0, we define Ln to be T"(L0). The sequence {¿„}
(w = 0, 1, • • • ), which is clearly a subset of {M}, plays an important part in
our investigation. The elements of Ln are 0, • • • , n. The matrix L\ is the
usual two-valued logic; consequently (cf. [24, pp. 169-171]) it is a regular
characteristic matrix for 81. For n > 0, the operations of L„ are given by

(j if i = 0 or if i > j > 0,
iDlJ =  <

10 o
(j if i = 0

* &£„ 3 -   1 .     ..        .
I* otherwise;

therwise;

or if i > j > 0,

I i if i = 0 or if i> j > 0,
I7 otherwise;

_     .        (0 if * = 1,
\L„ I   =    <(I otherwise.

4.3. The sequence {/<} (i = 0, 1, ■ ■ • ) also is a subset of {m\. This se-
quence corresponds to Jaskowski's {3,} (i = 0, 1, • • • ). Its members are
defined by recursion thus: 70 = def Lu Ji+i = deíT(J¡i+1)). In §5, we shall prove
that {/,-} is a regular characteristic sequence for ^>. The following lemmas
give some properties of {if} which will facilitate this proof. We shall con-
tinue to use "N" to denote T(M) and "P" to denote (Mi, • • • , Md).

4.4. Lemma. For each matrix M of \m],

x Z)m x = x Dm &m = x Va/ 6aí = bM Va/ x = b$t\
bM Z)m X =  bM &A/ X =   X &A/ bM  =   x.

Corollary. Each matrix in {m\ is regular.

4.5. Lemma. If MCZ{m) and x, yCZM, then xZ)t/y = xZ)My-

4.6. Lemma. For any matrices Mi, • • • , M<¡ in [m], let vx, • • • , vd be
arbitrary evaluating functions with respect to M\, • • • , Md; w be the
evaluating function with respect to P such that, for any p-variable q, w(q)
= (v1(q), • • • , vd(q)). Then for any p-formula P, w(P) = (vi(P), • ■ • , vd(P)).

4.7. Lemma. For any matrix M in [M], let v be an arbitrary evaluating
function with respect to N; w be the evaluating function with respect to Y(NW)
such that w(q) =v(q)(:d). Then, for any p-formula P, w(P) =v(P)w.

4.8. Lemma. For any matrix M in [m], let v be an arbitrary evaluating
function with respect to M; w be the evaluating function with respect to N such
that w(q) =o¿M(v(q)). Then, for any p-formula A with one of forms (ii)-(v),
w(A)=v(A).
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5. Proof that {Ji} is a regular characteristic sequence for @.

5.1. Lemma. If P is an axiom of the Hey ting propositional calculus and
MCZ { M], then P fulfils M.

5.2. Theorem. For any matrix M in {M} and p-formulas A, P such that
A|—P: if each member of A fulfils M, then so does P(16).

Proof. It can be shown that the conclusion holds under each of the fol-
lowing cases: Io P is an axiom. 2° PGA. 3° Ah A, A |— AD P and the conclusion
holds for A and for A DP- 4° A \- A, P results from A by substitution and the
conclusion holds for A.

If M is a matrix, KDz a simple implication (cf. 3.1), then a normal
(refuting) evaluation of KDz with respect to M is any evaluating function
with respect to M which maps each member of K into bM and z into AM-

5.3. Lemma. Let Pbea simple implication K3z. Then either P has a normal
evaluation with respect to Jdi.K), or (— P(16).

Proof. Let K be JXg„ A,-, and s(K) be the number of (occurrences of)
p-variables and |'s in K. The proof is by exhaustive cases 5.3.1-5.3.3, with
the induction hypothesis that the lemma holds for all simple implications
K'Dz' such that either Io d(K')=d(K)-l or 2° d(K')=d(K) and s(K')
<s(K). In each case, "d" denotes d(K).

5.3.1. Suppose that no member of K is a p-variable. If d(K) =0, a normal
evaluation of P with respect to J0 can be readily constructed. If d(K) —d>0,
consider two alternatives for the P''s.

Suppose that a P' fulfils Jd-i- For such aj, inasmuch as \—P', P is equiva-
lent to j(cj) IXign AiDz. Now either the latter simple implication ££j or it
has a normal evaluation v with respect to Jt-i. In the former case, h-P.
In the latter case, a normal evaluation of P with respect to Jd can be con-
structed in terms of v.

Suppose, on the other hand, that no PJ fulfils Jd-\- Now for each i
(l^i^d) there is a normal evaluation v¿ with respect to Jd-\ of the ¿th P'.
Then a normal evaluation of P with respect to Jd can be constructed by
mapping each p-variable q into aA/((î»i(q), • • • , vd(q))) where M is J(fL\-

5.3.2. Suppose that a member of K is a p-variable but no such p-variable
occurs in a member of form (ii)—(vi). Then the lemma is easily established
under the respective subcases that every member of K is a p-variable or a
member of K is not a p-variable.

5.3.3. Suppose that p is a member of K and a member Ay contains p and
is not a p-variable.

(16) For the case of empty A, the corresponding proposition for (?0llr ¡s stated, without
proof, by Jaskowski.

(16) This lemma and proof were supplied by the author after several unsuccessful attempts
to establish the "Lemma" of [10, p. 60] with the aid of Jaskowski's rough outline.
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1953] PROPOSITIONAL CALCULUS AND REALIZABILITY 9

If Ay is "~]P. then r-P.
If Ay is aDp, aDbVp, aDpVb, (aDb)Dp or a & bDp, then the lemma

follows in view of its validity for j(p) LT¿s« A¿Dz.
If Ay is pDa, then the lemma follows in view of its validity for j(a) IJign A,-

Dz.
If Ay is pDaVb, then the lemma follows in view of its validity for

j(a) II»S» AiDz and for j(b) ILs* A.-Dz.
If Ay is (pDa) Db, p & aDb or a & pDb, then the lemma follows in view

of its validity for j(aZ)b) ilis« A¡Dz.
If Ay is (aDp)Db, then the lemma follows in view of its validity for

j(b) ILss« A«Oz-
5.4. Theorem. {Ji} is a regular characteristic sequence for §.

Proof. Use Corollary 4.4, Theorem 5.2, and Lemma 5.3, the last in con-
junction with Theorems 3.3 and 5.2.

In addition to being a characteristic sequence for §, {Ji\ affords a deci-
sion procedure for the Heyting prepositional calculus. Thus, for an arbitrary
p-formula P, an interdeducible simple implication P* can be found by an
effective procedure. By an effective procedure, it can be determined whether
or not P* fulfils Jd, where d is the degree of the premise of P*, and conse-
quently whether or not P*, and therefore P, is in ÍQ. (It should be noted that
the number v(i) of elements in /< is a rapidly increasing function of i(17).
For this reason, the latter step in the decision procedure is, in general, too
long to be practical.)

Part II
6. Proof that, classically, the Heyting propositional calculus is incomplete

with respect to realizability. The following intuitive symbolism will be used
henceforth.

Intuitive symbolism    Predicate or natural number denoted

P (materially) implies Q
P and Q
Por Q
(P^Q)&(Q-+P)
for all x, P
there exists x such that P
ithe least x such that P, if (Ex)P;
^undefined, otherwise
(x)iR-*P)
(Ex)(R&P)

(") We have y(0) =2, v{i-\-l) = {v(i))i+1 + l, so that J6 already has more than 1060 elements.

P^Q
P&Q
PWQ
P = Q
ix)P
(Ex)P

pxP

(x)BP
(Ex)RP
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Intuitive symbolism    Predicate or natural number denoted

pxRP pxiR & P)
Xxi • • • xm-t The function which / is of x\, • • • , xm in that order(18)
(x)„ 0 or the highest power of the (w + l)th prime which

divides x, according as x is 0 or not(19)

For any w^l and any z, xu • • • , xm, we let {z}(xi, ■ • • , xm) be
U(pyTm(z, Xi, • • ■ , xm, y)). This is undefined when not (Ey)Tm(z, x\, ■ • ■ ,
xm, y)- The notation appeared first in [11, footnote 7]. For the definitions
and theory of the primitive recursive function U and the primitive recursive
predicate Tm, cf. [12, §§7, 4] or [17, §§57, 58, 63, 65].

We shall have available a primitive recursive function S% of m + l vari-
ables (for each wïïl and ra^l) with the following property. If e defines re-
cursively <t>iyi, • • • , ym, Xi, • • • , x„) as a function of m+n variables, and
ki, • • • , km are fixed natural numbers, then S%(e, k\, ■ ■ ■ , km) defines re-
cursively <p(k\, • • ■ , km, Xi, • • • , x„) as a function of the remaining variables
Xl, * * * , xn\   ).

For any natural number e and n-formula F, "e r F" shall mean that e
realizes F. For any n-formula F, "r F" shall mean that F is realizable, i.e.
that (Ee)e r F.

If "x," "xi," "y," • • • represent certain natural numbers intuitively, then
"x," "xi," "y," • • • shall represent the corresponding numerals, and con-
versely.

If xi, • • • , xm are distinct n-variables (p-variables), and if "F(xi, • • -, xm)"
is explicitly introduced to stand for a certain term or n-formula (a certain
p-formula), thereafter for any other appropriate set of terms (of n-formulas
or p-formulas) ti, • • • , tm, "F(ti, ■ • • , tm)" shall stand for the result of
substituting ti, • • • , tm for the free occurrences (for the occurrences) of
Xi, • • • , xm, respectively, throughout F(xx, • ■ • , xm).

As we remarked in the introduction, it follows from Nelson's Theorem 1
that the Heyting propositional calculus is consistent with respect to realiza-
bility. On the other hand, for the intuitionist, the question as to its complete-
ness remains open. In Theorem 6.1, however, we exhibit a p-formula not in
§, whose readability follows from the law of double negation for a particular
predicate of the form (Ec)Q(b, c) with Q primitive recursive. Hence, class-
ically, the Heyting propositional calculus is incomplete with respect to
realizability.

(18) This notation is taken from [l ]. Our use differs from that of Church, however, in that
his X was defined only for functions of one variable, and functions of m variables were obtained
by iteration.

(") The notation appeared first in [12, p. 50]. Here (x)n is used in the sense of [15] or
[17, §45, #19]; it is primitive recursive.

(!°) Cf. [11, p. 153] or [17, §65, Theorem XXIII].
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1953] PROPOSITIONAL CALCULUS AND REALIZABILITY 11

6.1. Theorem. Classically, ^}(£§.

Proof. Let D = def |a0V |ai, where a0 and ai are distinct p-variables,
and P(a„, aO=def (nnD3D)DnnDV~lD)I)-nD V~P- Let/o de-
fine recursively Xè-2°-3°,/i define recursively Xô^1^0, and/=2/o-3/l. Define
as follows the primitive recursive predicates R and 5:

Rib, c) m def iEfij^iTiib, (f)i, (c)i) & (77((c)y))„ = 0) & («), = 2°-3°,
S(b, C)  - def (i)y<2(r,(ô, (/)y,  (C)y)  & (t/((C)y))„ =   1)  & (c)2 =  21-3".

Let e define recursively \b(pc(R(b, c)\/S(b, c)))2. We shall show that if

(1) (i)(not not (Ec)(R(b, c) V S(b, c)) -* (Ec)(R(b, c) V S(b, c))),

then, for arbitrary n-formulas F0 and Fi,

(2) (so) • • ■ (*,) e r P(F0*, ¥?),

where z0, • • • , zp are the distinct free n-variables of P(F0, Fi) in order of
first free occurrence, and F0* and F* result from F0 and Fi respectively by
substituting z0, ■ ■ ■ , zp for z0, • • • , zp. Thus the realizability of P(a0, ai)
follows from the classically true proposition (1).

We note the following facts pertaining to an arbitrary closed n-formula E.
It follows directly from [13, §5] that if E is unrealizable, then |E is realized
by any natural number, in particular by 0. Thence, using also [13, p. 114 (c)],
we have (not r E)=r   |E; and hence (not not r E) = (not r   |E)= r   |   |E.

For convenience, let us denote    |F0*V   |F* by "G."
Now assume (1). We show that, if

(3) b r n~| G D G) D ~n G V n G,
then

(4) {e}(b)r^T\GV~]G;
i.e. that (2) holds. To show this, assume (3) and

(5) not (Ec)(R(b, c) V S(b, c)).

Assume

(6) r G,

so that r | |G but not r~|G. From (6), r~\F0*\/r~^F?. Therefore (2°-3°r G)
V(21-3°r G). Therefore (for~]~liGDG)y(f1r~]~\GZ)G). Therefore either
(Ec)(T,(b, (f)0, c) & (U(c))o = 0) or (Bc)(Ti(b, if)u c) & (£7(c))„ = 0). Hence
(Ec)R(b, c). In view of (5), we have

(7) not r G

with (6) discharged. Then not r       |G but r   |G, so that/0 and/i each realize
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nnGDG. Therefore (Ec)(T,(b, (/)0, c) & (t/(c))0=l) & iEc^T^b, (/)i, c)
& (L7(c))o = l). Hence (Ec)S(b, c). In view of (5), we have not not (Ec)(R(b, c)
VS(b, c)) with (5) discharged. From (1), then, (Ec)(R(b, c)\/S(b, c)). Let
c = pc(R(b, c)\/S(b, c)). Then R(b, c) V5(6, c). Assume

(8) R(b, c)

and

(9) not r G.

Then/o and/x each realize ~\~~\GD>G, so that (7\(6, (/)0, (c)o)—>(t/((c)o))o
= 1) & (7^(6, (/)i, (c)i)^(<7((c)i))o=l). Therefore not Rib, c). Thus not
not r G with (9) discharged. It follows that r~]~~\G, so that ic)2r~^T~|GV_|G.
Assume

(10) 5(6, r)
and

(11) /-G.

Then if0r-TZ\GDG)Vifir-T-{GDG), so that (7^(6, (/)„, (c)o)-*(U((c)0))o
= 0) V(7\(6, (f)u (c)1)^(C/((c)1))o = 0). Therefore not 5(6, c). Thus not r G
with (11) discharged. It follows that r |G, so that (c)2 r | |GV |G. But
{e}(6) = (c)2, so that (4) holds with (8) and (10) discharged.

Thus, classically, P(a0, ai) CZty- The proof is completed by showing that
P(a0, ai) does not fulfil /3, so that, in view of Theorem 5.4, P(a0, ai)€£§.
Let vino) and v(&1) be (((1), (0)), ((0), (0)), ((0), (0))) and (((0), (1)),
((0), (0)), ((0), (0))) respectively. Then it can be shown that »(P(a0, ai)) =4.

7. The completeness with respect to realizability of the D-less part of
the Heyting propositional calculus.

7.1. Theorem. Every Z)-less p-formula not in § is equivalent to a disjunc-
tion   ;,«. Py of p-formulas not in 8Í.

Proof. A p-variable already has the required form. Assume that the
theorem holds for D-less p-formulas P and Q; then it can be shown that the
theorem holds for P & Q, PVQ, and ~\P. In treating ~|P, note that ""|P£3l
-+~\Pe$ (cf. Glivenko [3]).

7.2. Lemma. Let to, ei, • • • be the sequence of iprimitive recursive) functions
of one variable such that eo is identically 0 and, for all m>0, em(e) =em_i((c)i)
or m according as (e)0 is 0 or not. If F is a closed n-formula of the form ~Yln<,m Pi,
then for all e,

e r F —> (£¿),-ám(em(e) = i & r F,).

Proof. Use induction on m.
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7.3. For Theorem 7.4, let x and y be distinct n-variables, and for each j
let "Uy(x)" denote 3yVy(x, y), where Vy is a predicate symbol expressing the
primitive recursive predicate T"i((x)y, x, y). We are making the assumption
that the predicate symbols Vy are available in the number-theoretic formal
system for convenience. However, this entails no loss of generality in the re-
sults; cf. [17, §82 Lemma 47 and §49 Corollary Theorem 27] (also [13, p. 116
first paragraph and p. 119 second paragraph from below]). The same remark
applies to the use of the predicate symbol A in §8.

7.4. Theorem. Let P(a0, • • • , an) be an arbitrary disjunction "^2n¿m P¿
of p-formulas not in 8Í, where ao, • • • , a„ are the distinct p-variabks of
P(a0, • • • , a„). Then not r P(U0(x), • • • , U„(x)).

Proof. There exist (cf. 4.2) evaluating functions v0, • ■ • , vm with respect
toil such that (i)i¿mVi(Pi) = l. Assume that r P(U0(x), • • • , U„(x)). Then
there exists a general recursive function <£ such that

(1) (x)cb(x) r P(U„(x), • • • , Un(x)).

For each (i, j) (i^m, jún), let the general recursive predicate R,j be given
by
(2) Rii(x) = def tm(<b(x)) = i & í)¡(ay) = 0.

Then (cf. [12, Theorem I]) there are natural numbersfo, ■ • • , fn such that,
for each jún,

(3) L'AX*) - (Wi(/a *, y),
¿am

Let f—p(," ■ ■ ■ pfy. In view of Lemma 7.2 and (1), there is a natural number
i*^m such that

(4) *JMfi) = i*&r Or,
where Q,* results from P¿* under the substitution of U0(/), ■ • • , U„(/) for
a0, • ■ • , an. Then, using (2), for arbitrary j^n, vMsli) = 0—» >.««. Ra(f);
moreover (i)(i^m & Ra(f)-^i = i* & »¿(ay) =0), so that X)¿s» Rn(f)-*vi*(a.i)
= 0. Thus, using (3), U)t»»í&y)Tii(f)if f, y)^vrt&i) =0). It follows (cf.
[13, p. 114, (a), (m)]) that (j)iSn(r\Ji(f)=Vi'(a¡) =0). Therefore, in obtaining
Q¿* from Pj*, the closed n-formula substituted for any p-variable a is realizable
or not according as o,-*(a) is 0 or 1. Consequently (cf. [17, §82 Example 3(a)]),
inasmuch as z)i*(P,«) = l, not r Qt», contrary to (4). We conclude that not
r P(Uo(x), • • • , U„(x)).

Consider an arbitrary D-less p-formula P not in §. By Theorem 7.1,
P is equivalent to a p-formula Q which is a disjunction ¿3fs« P< of p-formulas
not in 31. Substitute n-formulas for the p-variables of P and Q in such a way
thatUo(x), • • • , Un(x) are substituted for the distinct p-variables a0, • • • , a„
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of Q; let P* and Q* be the n-formulas resulting under this substitution from
P and Q respectively. In view of the consistency of the Heyting propositional
calculus with respect to realizability, r P*DQ*. By Theorem 7.4, not r Q*;
hence not r P*. We conclude that, for every D-less p-formula P, P£§
—>P£'Í5- Because there is a decision procedure for the Heyting propositional
calculus (cf. §5, end), we can conclude (intuitionistically) that P£^3—»P£§.
Combining this result with the consistency property, we have Theorem 7.5.

7.5. Theorem. For any Z)-less p-formula P, PG^^PE^.
7.6. Theorem. ty has no regular characteristic matrix.

Proof. Let M be an «-valued, regular characteristic matrix of ^3. We
exhibit a p-formula P of the form 2¿a>n P¿ whose members are not in 31
and which fulfils M. (Gödel [6] gives a stronger p-formula of this form which
serves the same purpose.) Then PE^, contrary to Theorem 7.4.

Let ao, • • • , a„ be distinct p-variables. Let ipa, qo), • • • , ipm, qm) be
the distinct ordered pairs of natural numbers ip, q) such that p<q^n. For
all i^m, let P, = def Ka^ & |a4i). Then 23,gm P»1S a p-formula P whose
members are not in 3Í. Consider an arbitrary evaluating function v with re-
spect to M. Since there is one more p-variable in P than there are elements
in M, v must map at least one pair of distinct p-variables aPi, aqi ii¡¿m) into
the same element. For such a pi and <?,-, »(P.) =»( |(aPj & |ap>)). In view of
the consistency of the Heyting propositional calculus with respect to realiz-
ability, |(aPi & ]aPi) and POP are in ^5, so that »(P.) and »(POP) are
designated, hence so is »(P).

8. Sets which contain <ß.
8.1. Lemma. Hypothesis: a0, • • • , am are p-variables; v is an arbitrary

evaluating function with respect to a matrix Ln (w>0); Xo, • • • , xp are the
distinct natural numbers, in ascending order, among 0, 1, »(ao), • • • , »(am);
e is the mapping, defined over {x0, • ■ • , xp}, which carries x¿ into i; »* is any
evaluating function with respect to Lm+2 such that »*(ao) =e(»(a0)), • • • , »*(am)
= e(»(am)); P is any p-formula whose p-variables are among a0, • • • , am.
Conclusion: »*(P) =e(»(P)).

Proof. We use induction corresponding to the inductive definition of P.
Basis: The lemma obviously holds if P is one of the p-variables a0, • • ■ , am.
Induction step: Io Let P be A o B, where o is D, &, or V- Now
»(P)=»(A) o¿„ »(B), where by the induction hypothesis »*(A) =e(»(A)) and
»*(B)=e(»(B)). Then »(A) =0V^(A) >»(B) >0=»*(A) =0V»*(A)>»*(B)
>0. By referring to 4.2, we can verify that »*(A) o£m+1»*(B) =e(»(A)
oin»(B)), so that »*(P)=e(»(P)). 2° Let P be ~~|A. Now »(P)=-|l.»'(A),
where by the induction hypothesis »*(A) =e(»(A)). Then »(A) = 1 =»*(A) = 1.
It follows from 4.2 that ~"k,+i«'*(A)=«(—1*.«^)), so that »*(P) =e(»(P)).

Let 8 be the set of p-formulas for which {Ln} is a characteristic sequence.
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8.2. Theorem. Let P be an arbitrary p-formula, and ao, • • • , am be its
distinct p-variables. Then PE8 —P fulfils Lm+2.

Proof. Clearly, PE8—>P fulfils Lm+2. Now, for any n, let » be an evaluat-
ing function with respect to Ln which maps P into ALn. Construct e and »*
as in the hypothesis of Lemma 8.1. Then »*(P) =e(»(P))E^4i,m+r Thus not
P fulfils Ln—mot P fulfils Lm+2. But the predicate P fulfils Ln is effectively
decidable; hence, intuitionistically, P fulfils Lm+2—>P fulfils Ln. We conclude
that P fulfils Lm+2-*PCZ2.

Corollary. The predicate PE8 is effectively decidable.

8.3. Definition. Let "B(x)" denote 3yA(x, y)V—l3yA(x, y), where A
is a predicate symbol expressing the primitive recursive predicate Tiix, x, y),
and x and y are distinct n-variables (cf. 7.3). The n-formula B(x) is unrealiz-
able (cf. [17, §82 Theorem 63 (i)]). We now define the n-formulas F„(x)
and G„(x) (« = 1, 2, • • • ), in each of which x is the sole free n-variable:

Fi(x) = def "1 B(x),        Gi(x) = def Vz(z <0 B(z)),

where z does not occur in B(x); for all w>0,

Gn+1(x) - def Vz(z < x D F.(z) V Gn(z)),

F„+i(x) = def Gn+1(x) D Fn(x) V Gn(x),

where z does not occur in F„(x)VGn(x).
We shall make frequent use of the fact that any n-formula, deducible by

means of the intuitionistic predicate calculus with equality and the Peano
axioms from realizable n-formulas, is realizable (cf. [23, Theorem l] or
[17, §82 Theorem 62 (a)]). For the present use of "h," cf. 3.1.

8.4. Lemma. For all n>0,

(i) r- nn f„+i(x),
(2) r-TG»W,
(3) classically, not r F„(x) V G„(x).

Proof. First, we establish I— |Gi(x) by formal induction. Thus
\-~\~|Gi(0). Moreover, noting \- Vx~TÍB(x), we have ~:\~]Gi(x) r-~~nVz(z
<xdb(z)) & nnB(x)r-nn(vz(z<xDB(z)) & BW)r-"nGi(x'), with x
held constant. Next, note that for all w<0,

(4) h G„(x) D Vw(w g x D G„(w)) ;

hence r-G„(x)DG„+i(x); hence ~~ ~~|G„(x)(-    1   |G„+i(x). So (2) holds. Fur-
thermore, for all «>0, ~~ ~]G„(x)|—        |Fn+i(x); hence (1) holds.

To prove (3), we use induction on n.
Basis. Note that \-~|Fi(x) and —]Fi(x), Fi(x)VGi(x)l-Gi(x), so that
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Fi(x)VG1(x)r-Gi(x)l-B(x). Therefore not r Fi(x)VGi(x).
Induction step. For «>0, assume that

(5) r Fn+1(x) V G»+,(x).

Then there exists a general recursive function <j> such that (x)<p(x) r F„+i(x)
VGB+i(x).

Now assume also

(6) (Ex)(y)y±x(<b(y))0 = 0.

For such an x, (y)y-zx(<t>(y))xr F„+i(y). Let e define recursively Xya-(<£(:y))i-
Consider any y. For all a, if ary Six, then v^x(21), hence J5[(e,y)} (a) rF„+i(y).
Thus

(7) r Vy(y ^ x D Fn+1(y)).

Note that

(8) h F„+1(x) & Gn+1(x) D Gn+1(x').

Now (holding x constant) x<x, G„+i(x)|- [(4)]G„+i(x'), and x^x, G„+1(x),
Vy(yèxDFn+1(y))r-Fn+1(x) & G„+1(x)r-[(8)]G„+i(x'). Hence

(9) G„+1(x), Vy(y ^O Fn+1(y)), G„+1(x) h G„+1(x')

with x held constant. From (9) and |—G„+i(0) by formal induction, G„+i(x),
Vy(y^xDF„+1(y))l-VxGn+i(x). But VxGn+i(x)|-Vx(Fn(x)VG.(x)). Hence
Vy(y ̂  xDFn+1(y)) h G„+1(x) D Vx(Fn(x) V G»(x)) h HG,+!(x) D HH Vx
(F„(x)VG„(x)). Then, using (7) and (2), rnnVx(F„(x)VG„(x)), contradict-
ing the induction hypothesis (noting [13, p. 114 (f)]). By reductio ad ab-
surdum, not iEx)iy)y^xi<f>iy))o — 0, with (6) discharged.

Thence classically

(10) (x)(Ey)^x(4,(y))0^0.

But then \x■pyyèx(<j>(y))o^O is a general recursive function \p. For arbitrary
x, Tp(x) Six; hence, letting y = \p(x), we have 0 r y j=xand (^(x))i r Gn+i(y) ; thus
(2 exp yp(x))-(3 exp 2°-3(*^^)r 3y(y^x & Gn+1(y)). Therefore r3y(y^x
& Gn+1(y)). But 3y(y^x & G,+1(y))h [cf. (4)] G„+1(x)r-Fn(x) VG»(x), so
that r Fn(x)VG„(x), contradicting the induction hypothesis. By reductio ad
absurdum not r F„+1(x) VG„+i(x), with (5) discharged.

This completes the induction step.
Henceforth, we shall denote F,(x) and G,(x) by "F," and "G„" for all

i>0. Also, let F0 = def 0 = 0.

8.5. Lemma. For all i and j (i>j>0),

(21) Here we are assuming that y ^x ¡s a prime n-formula, but the proof could be similarly
constructed under alternative formalizations (cf. 7.3).
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(11) r-FyDFi,
(12) hFiDFy~Fy,
(13) h-Fi&Fy~Fy,
(14) h Fi V Fy ~ F,-.

Proof. (11) is immediate. To prove (12), note

(15) i > f > 0~* I- G, D F,-,
(16) j>  O^h  GyDFy — Fy

(using (2) and f- |Fi and noting that \-~ \|B(x)D |B(x), in establishing
(16) for i=l). Hence if i>j>0, h [(15)] (F,DFy)D(GyDFy) h [(16)]
(FiDFy)DFy. We obtain (13) and (14) directly from (11).

8.6. Definition. For each «>0, define as follows the set Vn of n-formu-
las: Io Fo, • • • , F„EF„; 2° if A and P>CZVn, then A o B and —\A£V„,
where o is D, &, or V ; 3° all members of Vn are given by Io and 2°. Let the
mapping e„ be defined as follows over Vn: 1° en(F,)=¿ (í' = 0, ■ • • , n);
2°en(Ao B)=en(A) o¿„ e„(B), whereo is D,&,or V, and «„("|A) =—U„e„(A).

8.7. Lemma. For all n>0, e„(F) =k—*\-F~Fa; for every F in Vn.

Proof. (We shall write "e" for e„.) The lemma obviously holds for
F0, • • • , F„. If by the induction hypothesis the lemma holds for A and B,
then it holds for ADB, A & B, AVB and ~~|A. Thus, let e(A)=i, e(B) =j.
Note that h-F0 and refer to 4.2 for the operations of Ln.

If i = 0, then e(ADB)=i,e(A&B)=j,€(AVB)=i and h-ADB~F0DFy
~Fy, hA&B ~ F0&Fy~Fy, hAVB ~FoVFy~F0. Now leti>0. If
j = 0, then e(ADB)=0, e(A & B) =i, e(A VB) =0 and h ADB ~ ADF0 ~ F0,
\- A & B ~ Fi& F» ~ F,-, h A VB ~ A VFo ~ F0; if i>j>0, then e(ADB) =j,
e(A&B)=j, e(AVB)=iand r-ADB~FOFy~[8.5]Fy, h-A&B~Fi&Fy
~[8.5]Fy, r-AVB~FiVFy~[8.5]F¿; if i&j, then «(ADB) =0, e(A & B)=i,
e(AVB)=jand hADB ~FOF,- ~ [8.5] F0, l-A & B~F< & F,-~ [8.5]
F,-, hAVB~FiVFy~[8.5]Fy.

If i=l, then e(~|A)=0 and \-~|A~nFi~[8-3] F0. If *=0, then «("IA)
= 1 and r-"lA~—|Fo~[8.3] Fi_ If ¿>1( then e( |A) = 1 and \-~[A^HF«
~[8.4, 8.3] Fi.

8.8. Theorem. Classically, tyCZ2.

Proof. Let P be an arbitrary p-formula not in 2; a0, • • • , am be its dis-
tinct p-variables; » be an evaluating function with respect to Ln such that
»(P)>0. For each j^m, let Ey = def F„(aj.). Let P* result from P under the
substitution of Eo, • • • , Em for ao, • • ■ , am. Then P*CZVn, and for the
mapping €„ of 8.6, €„(P*)=»(P). From Lemma 8.7, therefore, r-P*~,F„(p).
Thus rP*—>rF„(P); hence (classically) in view of (3), Lemma 8.4, not r P*.
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We conclude that PE$. Thus PE8->PE$, from which PE^->PE8 fol-
lows intuitionistically in view of Corollary 8.2.

8.9. Theorem. SCfiß.
Proof. Let a0 and ai be distinct p-variables. Referring to 4.2, we find

that (aoDai) V(aiDa0)E8. By Theorem 7.4, this p-formula is not in %
In view of Theorems 8.8 and 8.9, 'iß is (classically) a proper subset of 8.

Now 8 is a proper subset of 31 (proper because aV |a is in 31 but not in 82).
Hence, through §6 and Theorems 8.8 and 8.9, we have established (classi-
cally) the following chain of proper set-inclusions:

€> C $ C 8 C 31.
(Note that, intuitionistically, 'iß is a proper subset of 81. Thus, it follows from
[17, §82 Example 3 (a)] that ^)3C3l; moreover, we have referred in 8.3 to
Kleene's example of an unrealizable n-formula obtained from aV   |a; hence
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