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Propositional Logic of
Supposition and Assertion

JOHN T. KEARNS

Abstract This presentation of a system of propositional logic is a founda-
tional paper for systems of illocutionary logic. The languageL .75 contains the
illocutionary force operators ‘�’ for assertion and ‘¬’ f or supposition. Sen-
tences occurring in proofs of the deductive systemS .75 must be prefixed with
one of these operators, and rules ofS .75 take account of the forces of the sen-
tences. Two kinds of semantic conditions are investigated; familiar truth condi-
tions and commitment conditions. Accepting a statementA or rejectingA com-
mits a person to accepting some statements (the symbol ‘+’ marks this value),
to rejecting some statements (−), and will leave the person uncommitted with
respect to others (n). Commitment valuations assign the values+,−, n to sen-
tences ofL .75; such a valuation is conceived as reflecting the beliefs/knowledge
of a particular person. This paper explores the relations between truth condi-
tions and commitment conditions, and between semantic concepts defined in
terms of these conditions.

1 Language and speech acts In this paper I develop a system of what I understand
to beillocutionary logic. In order to motivate this system and make it intelligible to
the reader, I briefly sketch a philosophical basis for the system. This sketchy foun-
dation will not be argued for, because there is no room for that in the present paper.
However, it should be clear how this foundation “gives rise to” the logical system that
is developed.

On my view, the fundamental linguistic “reality” is constituted by speech acts,
or linguistic acts. These are meaningful acts performed with expressions. The word
‘speech’ suggests someone talking out loud. But I use the phrase ‘speech act’ (and
‘linguistic act’) for acts of speaking out loud, or writing, or thinking with words. An
audience that listens or reads with understanding also performs speech acts.

Words don’t have, or express, meanings; words are not meaningful. Linguistic
acts are the primary meaningful items. Although it is linguistic acts that are mean-
ingful, various expressions are conventionally used to perform different kinds of
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meaningful acts. The meanings commonly assigned to expressions belong to the acts
which the expressions are conventionally used to perform. But it is not the conven-
tions associating meanings with acts which make the acts meaningful. The meaning
of a linguistic act depends primarily on the language user’s intentions. However, it
is normal to intend to use expressions to perform acts with which they are conven-
tionally associated. Still, a person can by misspeaking produce the wrong word to
perform a linguistic act. I might have been looking for the word ‘Michelle’ to refer
to my daughter Michelle, but by mistake have uttered the word ‘Megan’. I did refer
to Michelle, because I intended Michelle when I uttered ‘Megan’. Idirected my at-
tention to Michelle. However, my utterance will undoubtedly mislead my addressee
into directing his attention to Megan.

The speech-act understanding of language drives a wedge between syntax and
semantics, for it is expressions, not acts, that have syntactic features. Indeed, we can
regard expressions as syntactic objects. But linguistic acts are the “owners” of se-
mantic features. Linguistic acts are meaningful; some linguistic acts have truth con-
ditions, and are true or false. The connection between syntactic features and semantic
features is conventional and contingent.

The fundamental semantic feature of a linguistic act is itssemantic structure.
This is determined by the semantic characters of component acts and their organiza-
tion. I will illustrate this with an example. If, considering the wall to my right, I say
“That wall is white,” I have made a statement. This statement has a syntactic char-
acter supplied by the expressions used. A semantic analysis of the statement can be
given as follows.

(1) The speaker (myself) referred to the wall.

(2) This referring act identified the wall, and so provided a “target” for the act ac-
knowledging the wall to be white (characterizing the wall as white).

The semantic structure is constituted by the referring act, the acknowledging (char-
acterizing) act, and the enabling relation linking the two component acts. It is possi-
ble to characterize the semantic structure without mentioning the expressions used or
the order in which they occurred. Such a characterization is language-independent.
However, for a given semantic structure, there may be languages which (presently)
lack the resources to instantiate the structure.

Speech acts performed with a single word or phrase can be distinguished from
those acts (or activities) performed with a whole sentence. Somesentential acts can
appropriately be evaluated in terms of truth and falsity; these arepropositional acts. A
language user can perform a propositional act without accepting it as true. A speaker
might perform a propositional act and wonder if it is true, or doubt that it is true. A
disjunctive speech act, which is accepted, might contain two propositional compo-
nents, neither of which is accepted.

A propositional act can be performed and accepted all at once. I will characterize
such an act as anassertion. This is at odds with the terminology of Austin and Searle
and also with ordinary usage. As commonly understood, an assertion is performed by
a speaker or writer who is addressing an audience that understands her. On the com-
mon understanding, we can distinguish sincere from insincere assertions. However,
accepting the propositional act is what makes an assertion, as commonly understood,
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sincere. On my usage, an assertion doesn’t need an audience and it can be performed
out loud, in writing (or signing), or in a person’s head. All assertions (in my sense)
are sincere. Assertions as I understand them are little different than judgments (i.e.,
judgments performed with sentences). On one usage, the word ‘statement’ serves to
pick out assertions, but I shall use this word for propositional acts of all kinds. On
my usage, then, some statements are assertions and some are not.

As well as accepting a propositional act, a person can reject one; a person can
alsodecline to accept a propositional act, which is different from rejecting the act as
false. Accepting, rejecting, and declining are all illocutionary forces which charac-
terize some propositional acts. Someone can alsosuppose a propositional act to be
true, or suppose it to be false, in order to derive the consequences of this supposition.
If someone supposesA (to be true) and supposesB, and then infers a consequence
like ‘[ A & B]’, this consequence also has the force of a supposition.

I understand aninference to be a speech act which begins with propositional
premises having some illocutionary forces and moves to a conclusion having some
illocutionary force, where the conclusion is thought to be supported by the premises.
This is asimple inference, for simple inferences can be combined in various ways to
constitute complex inferences. The word ‘inference’ is in order when a person carries
out reasoning to discover something for herself. Anargument is a speech act whose
point is to support a conclusion selected in advance (or to show that certain supposi-
tions lead to a certain suppositional conclusion). Arguments are also either simple or
complex. A sequence ofn premise statements and one conclusion statement can be
considered apart from a context in which the premises are actually part of an inference
or argument. Such a sequence will be called both aninference sequence and anar-
gument sequence; argument sequences are not speech acts, though their components
are. We consider an argument sequence in order to focus on the relation between the
premises and the conclusion, when we wish to determine whether the premises sup-
port the conclusion.

The present speech-act approach to language employs the adjective ‘proposi-
tional’, but it provides no place for propositions as classically conceived. The only
propositional acts that exist are acts performed by some person on some occasion.
But we can represent kinds of propositional acts that no one has performed, just as
we can draw pictures of kinds of events that never took place. Whatever status such
propositional acts have must be conferred by whoever represents them. (They are not
“there” ahead of time.)

2 Logic and speech acts A logical theory, or logical system, has three parts: (1) an
artificial language, (2) an account of the truth conditions of sentences in the artificial
language—a semantic account, (3) a deductive system which codifies the logically
true sentences or the logically valid argument sequences of the language.

From my perspective, an artificial logical language isn’t really a language, al-
though I will continue to speak of logical languages. For no one speaks, writes, or
thinks the sentences of these artificial languages. Sentences of artificial languages
are not used to perform speech acts; these sentences are representations of proposi-
tional acts that might be performed using natural-language expressions. Sentences of
most logical languages are primarily concerned with semantic structure, and provide
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almost no syntactic information. For example, a sentence ‘[A ∨ B]’ can be used to
represent statements in virtually any natural language, no matter how these languages
differ from one another.

Although logical-language sentences represent statements that might actually be
made, these sentences often fail to represent statements of kinds commonly made. In
elementary logic courses, a statement made with

Some student in this class is a boy

might be translated like this:

(1) (∃x)[S(x) & B(x)]

or

(2) (∃x)[S(x, a) & B(x)]

The first-order sentences do not actually represent the semantic structure of the state-
ment they translate. A statement which has the structure represented by the logical-
language “translation” needs a sentence like this:

For something, it is a student in this class and it is a boy.

The first-order sentences represent a statement which is at best an approximation to
the original statement. Dealing with such approximations is sufficient for many log-
ical analyses, but it can be enlightening to devise artificial languages which perspic-
uously represent statements of kinds we commonly make.

An account of the syntax of an artificial logical language is a collection of rules
or principles for constructing representations. There is no reason why such an ac-
count should shed light on syntactic principles of natural languages. The semantics
of an artificial logical language is not directly concerned with the sentences of that
language. For it isn’t sentences that are true or false, in an artificial language or a
natural one. The truth-conditions of an artificial logical language are for statements
represented by logical-language sentences.

A concrete interpretation of a logical language determines what statements
(statement kinds) are represented by logical-language sentences. To provide a con-
crete interpretation of a first-order language, we might say something like the follow-
ing.

Let ‘ F(x)’ meanx is a fish
Let ‘M(x)’ meanx is a mammal.
Let ‘a’ mean Alaska, etc.

To give a concrete interpretation of a language of propositional logic, we would as-
sign entire statements to atomic sentences. Although we understand what a concrete
interpretation of an artificial language would accomplish, we don’t usually bother to
provide such interpretations. When using an artificial language to analyze statements
or arguments in a natural language, we commonly provide interpretations for only a
small number of artificial-language expressions.

Interpreting functions (valuations) which assign values to expressions of artifi-
cial logical languages provideabstract interpretations. Different concrete interpre-
tations can correspond to a single abstract interpretation. This is especially clear for
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a propositional language for which interpreting functions assign truth and falsity to
the atomic sentences, but it also holds for first-order and higher-order languages. An
abstract interpreting function gives logically salient features of the concrete interpre-
tations with which it is associated.

An artificial logical language makes it convenient to characterize certain classes
of statements and argument sequences. The logical form of an artificial-language sen-
tence is a visible feature of that sentence. An understanding of the truth conditions
associated with logical form allows us to devise efficient procedures for determining
that statement forms represent analytic truths or argument-sequence forms represent
valid argument sequences. But the logical forms of logical-language sentences do
not correspond to visible or perceptible features of the statements they represent. The
logical form of an artificial-language sentence represents an abstract level of seman-
tic structure. This logical form is an artifact of logical analysis; it is a mistake to look
for such forms in natural-language sentences or statements.

The deductive system which constitutes part of a logical theory is primar-
ily a system for codifying representations, and only indirectly a means for codify-
ing natural-language statements or argument sequences. Logically true sentences
of artificial languages represent statements which constitute a subclass of analytic
statements. Logically valid (sentential) argument sequences represent argument se-
quences which constitute a subclass of (simply) valid argument sequences. However,
some deductive systems are good for more than codifying representations. A real ar-
gument proceeds from asserted or supposed premises to an asserted or supposed con-
clusion. A natural deduction system sanctions the construction of deductions/proofs
from hypotheses in which the structures of the deductions represent the structures of
natural-language arguments. These proofs from hypotheses directly establish that a
sentence is logically true or that a (sentential) argument sequence is logically valid;
indirectly, they show that a statement is analytic or an argument sequence is valid.
They also provide understanding of the structures of actual arguments.

3 Some important semantic concepts Approaching language and logic from the
perspective of speech acts makes clear that many logically important semantic con-
cepts have been largely overlooked by current research. The semantic concepts of
entailment and consequence that have received most attention aretruth-conditional.
Statements/propositional actsA1, . . . , An truth-conditionally entail statement/pro-
positional actB if and only if any way of satisfying the truth conditions ofA1, . . . ,

An also satisfies those ofB. B is a truth-conditional consequence of A1, . . . , An in
the same circumstances. A statementB is truth-conditionally analytic if and only if
its truth conditions cannot fail to be satisfied.

A propositional act must be performed by someone at some time if it is to exist,
though we can represent kinds of acts that are never performed. But the truth con-
ditions of a propositional act are independent of the question of whether that act is
accepted. However, some logically important semantic concepts “take account” of
whether a propositional act is accepted or rejected.

Commitment is a fundamental feature of intentional acts. Its concept is too ba-
sic to be explained in terms of more fundamental notions. Everyone is familiar with
commitment, but not everyone calls it ‘commitment’. A person can be committed to
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perform an act. And performing one act can commit a person to performing another.
This is rational commitment, not moral commitment. Someone is not immoral or
sinful if she fails to honor rational commitment.

Deciding to doX commits a person to doingX. Deciding to catch the 8 o’clock
train to New York City also commits a person to going to the station before 8 o’clock.
And judging Peter to be in pain commits me to judging him to be uncomfortable and to
not judging him to be enjoying himself. Some commitments are “come what may”
commitments like the commitment to catch the train. Some are commitments that
only come up in certain situations, like the commitment to close the upstairs windows
if it rains while I am at home.

Statements/propositional actsA1, . . . , An basically entail statement/proposi-
tional actB if and only if acceptingA1, . . . , An commits a person to acceptingB.
B is a basic consequence of A1, . . . , An under the same circumstances. The com-
mitment to acceptB is not a come what may commitment. The person who accepts
A1, . . . , An is committed to acceptB if the matter comes up. A statement isbasically
analytic if and only if simply making/performing the statement commits a person to
accepting it.

Truth-conditional entailment and basic entailment coincide to a large extent, but
not entirely. Statements made with these sentences (on the same day)

Today is Tuesday or Wednesday.
It isn’t Wednesday.

both truth-conditionally and basically entail (on that day).

Today is Tuesday.

But if a given person accepts a statementA, this commits her to accepting the state-
ment made with ‘I believe thatA’; however, satisfying the truth conditions forA
won’t satisfy the truth conditions of a statement that some particular person believes
A. Some cases of truth-conditional entailment also fail to be cases of basic entail-
ment. For example, we can represent a collectionX of infinitely many propositional
acts such that if all their truth conditions were satisfied, thenB’s would be satisfied.
There is a truth-conditional entailment from the statements inX to B. But there is no
basic entailment, for no one can accept infinitely many statements.

A statement/propositional act isbasically analytic if and only if performing the
act commits a person to accepting it. The statement made with ‘This statement is in
English’ will be basically analytic. But it won’t be truth-conditionally analytic, for
it isn’t inevitable that a given speaker’s current statement is in English. (There need
not even be a current statement.) A more interesting example of a basically analytic
statement is one made with: I think, I exist.

The two kinds of entailment (and analyticity) are different, and it is important
to study each kind. With basic entailment, there is a distinction between simple, im-
mediate entailments and mediate entailments. The immediate entailments are sim-
ply “grasped” once a person understands the propositional acts. Mediate basic en-
tailments are constituted by chains of immediate entailments. There is no immedi-
ate/mediate distinction for truth-conditional entailment. We can see that basic entail-
ment is like an “absolute” deducibility, a deducibility not tied to a particular deductive
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system or other deductive apparatus. Basic entailment depends on the semantic struc-
tures of a language user’s acts, and on the consequences of accepting certain propo-
sitional acts (the “premise” acts).

Although the focus of twentieth-century research in logic, since Tarski anyway,
has been on truth-conditional entailment, logic need not and should not be so re-
stricted. Both concepts of entailment have been important historically. One role of
illocutionary logic as I understand this is to explore the two concepts and their inter-
relations.

4 A standard system of propositional logic The languageL .5 contains the con-
nectives ‘∼’, ‘ ∨’, ‘ & ’, and denumerably many atomic sentences. Brackets ([, ]) are
used for punctuation. Although the horseshoe ‘⊃’ of material implication is not a
primitive symbol ofL .5, wecan use ‘[A ⊃ B]’ to abbreviate ‘[∼A ∨ B]’. I have not
made the horseshoe a primitive symbol, because it is conventionally used for mate-
rial implication, and this is not a concept expressed by any ordinary expression. Sen-
tences made with the horseshoe do not provide good translations of ordinary condi-
tional statements. In a subsequent paper I will introduce a different expression for
forming conditional sentences. A(truth-conditional) interpreting function of L .5 as-
signs one of truth (T), falsity (F) to each atomic sentence ofL .5. Given an interpreting
function f , avaluation ofL .5 determined byf assigns to atomic sentences the val-
ues assigned byf , and assigns values to compound sentences on the basis of standard
truth-tables. IfA is a sentence ofL .5 which has T in the valuation determined by in-
terpreting functionf , I will indicate this by writing: f (A) = T.

A sentenceA of L .5 is logically true if and only if it is true for the valuation de-
termined by every (truth-conditional) interpreting function ofL .5. If A1, . . . , An, B
are sentences ofL .5, thenA1, . . . , An truth-conditionally imply B if and only if there
is no interpreting functionf of L .5 for which each ofA1, . . . , An has value T for
the valuation determined byf , but B has value F for this valuation. Implication is
the special case of entailment that is linked to the logical forms of artificial-language
sentences.

If A1, . . . , An, B are sentences ofL .5, thenA1, . . . , An/B is a(sentential) argu-
ment sequence of L .5. The sentencesA1, . . . , An are thepremises andB is thecon-
clusion. An argument sequenceA1, . . . , An/B is truth-conditionally logically valid
if and only if A1, . . . , An imply B. Logical validity is the special case of validity that
is linked to the logical forms of artificial-language sentences.

The deductive systemS .5 is a natural deduction system which employs tree
proofs. The theorems ofS .5 are argument sequencesA1, . . . , An/B such thatn ≥ 0.
If n = 0, we have an argument sequence/B. A theorem/B of L .5 can also be written
without the slant line:B. Theelementary rules of inference forS .5 are these:

& Introduction & Elimination ∨ Introduction

A B [ A & B] [ A & B] A B

[ A & B] A B [ A ∨ B] [ A ∨ B]

If we consider the defined symbol ‘⊃’, we have the elementary principle Modus Po-
nens:
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A [ A ⊃ B]

B

An instance of a rule in a tree proof is aninference figure. If all inference figures
are elementary in a tree proof from hypothesesA1, . . . , An to conclusionB, this tree
proof establishes that the argument sequenceA1, . . . , An/B is a theorem.

A nonelementary rule is for a move which “cancels” or “discharges” hypotheses
in a subproof. For example, this tree proof

A B
& I

[ A & B]
& E

B

establishes the theorem:A, B/B. The inference principle⊃Introduction allows us to
cancel the hypothesisA.

x
A B

& I
[ A & B]

& E
B

⊃ I, cancel A
[ A ⊃ B]

This is a proof from uncanceled hypothesisB to conclusion [A ⊃ B], establishing this
result: B/[ A ⊃ B]. An ‘ x’ i s placed above canceled hypotheses.

One primitive nonelementary rule is:∨Elimination.

{A} {B}
[ A ∨ B] C C

C

The sentences in braces are the hypotheses that are canceled by the rules. The second
nonelementary rule is:∼Elimination.

{∼A} {∼A}
B ∼B

A

It is to be understood that the sentence∼A is a hypothesis of one or both of the sub-
proofs leading to the conclusionsB and∼B. All occurrences of∼A as hypothesis
in either subproof are canceled by the application of this rule. Alternatively, the rule
∼Elimination may be regarded as having three forms:

{∼A} {∼A} {∼A} {∼A}
B ∼B B ∼B B ∼B

A A A
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For the defined symbol ‘⊃’, the inference principle⊃Introduction is nonelementary:

{A}
B

[ A ⊃ B]

A proof from uncanceled hypothesesA1, . . . , An to conclusionB establishes that
A1, . . . , An/B is a theorem ofS .5.

It is easy to show thatS .5 is truth-conditionally sound, which means that every
proof whose uncanceled hypotheses are true also has a true conclusion. This can be
proved by induction on the rank of a tree proof. The rank of a proof is the number
of distinct inference figures it contains. (0 is the lowest rank; a sentence standing
alone is a proof having rank 0.)S .5 is also complete in the sense of having all truth-
conditionally valid inference sequences among its theorems. Since every logically
true sentenceA corresponds to a truth-conditionally valid sequence/A, the system
S .5 is complete with respect to logical truth. The system is also complete with respect
to the truth-conditional logical consequences of a collectionX of sentences ofL .5.

Proofs inS .5 represent natural-language arguments. We can also use tree struc-
tures which are not proofs inS .5 to represent arguments. For example, the premises
of the following argument

∼A [ A ∨ B]

B

imply the conclusion, while the premise of this argument

∼ [ A & B]

∼B

does not imply the conclusion.
It is common in elementary logic texts to characterize arguments as valid or in-

valid. Although I have (unfortunately) done this in the logic texts I have written, I
have not done this in the present paper. Validity has been defined for argument se-
quences, not for arguments. If we understand anabstract premise-conclusion argu-
ment to be a pairX, B whereX is a collection of sentences (statements) andB is a sen-
tence (statement), we can easily adapt our earlier definition to cover abstract premise-
conclusion arguments. However, validity is not properly applied to arguments con-
ceived as speech acts.

An argument can be either simple or complex. The concept of validity which
applies to argument sequences or abstract premise-conclusion arguments can be “ex-
tended” to apply to simple arguments. For example, we might choose to characterize
this argument (the argument this represents)

∼A [ A ∨ B]

B

as valid. But the ordinary concept of validity has no application to complex argu-
ments. In this complex argument
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∼A [ A ∨ B]

B [ B ⊃ C]

C ∼A

[∼A & C]

the premises of each component argument entail their conclusion, and the hypothe-
ses of the overall argument entail the overall conclusion. But the overall argument is
neither valid nor invalid.

Someone might think we should take a complex argument to be valid if its hy-
potheses entail the ultimate conclusion. Such a decision would lead us to characterize
the argument above as valid. But then the following argument would also come out
to be valid,

A

[ A & B] [C ⊃ [ A & B]]

C

[C ⊃ A]

even though none of its components is.1

It is certainly possible to redefine ‘valid’ and ‘invalid’ so that we can character-
ize complex arguments as valid or invalid. But as customarily defined, the concepts
don’t apply to complex arguments. I think we should limit these concepts to argu-
ment sequences or abstract premise-conclusion arguments. Those arguments which
are speech acts are eitherdeductively correct or deductively incorrect. As a first
approximation, we shall understand a simple argument to be deductively correct if
its premises entail its conclusion. A complex argument is deductively correct if its
component arguments are deductively correct, and the uncanceled hypotheses (the
premises) of the complex argument entail the overall conclusion.

5 Representing illocutionary force Proofs inS .5 are satisfactory for identifying
logical truths and truth-conditionally logically valid argument sequences. And proofs
in S .5 represent (some) deductively correct arguments carried out with statements of
natural languages. But tree-structure arguments constructed from sentences ofL .5 are
not entirely perspicuous representations of natural-language arguments. When some
person makes an inference or argument from premises to a conclusion, if the premises
provide deductive support to the conclusion, that person should “see” this. When a
person recognizes that the conclusion follows from the premises, she is recognizing
that she iscommitted to accept the conclusion, once she has accepted the premises.
Commitment and its recognition provide the “motive power” taking an arguer from
premises to conclusion. Commitment is not generated by force-neutral propositional
acts.Accepting/asserting some statements commits a person to accepting or rejecting
other statements.Supposing statements also commits a person to supposing others.
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A perspicuous representation of an argument should include symbols for repre-
senting illocutionary force. IfA is a sentence of the artificial language, I will write

� A

to indicate thatA is accepted (asserted). To rejectA, I will write: � A. To decline
to acceptA, I would like to use the symbol ‘�’ with a line through it, but this is not
convenient with my word processor. So I will use

x � A

to decline to assertA. I can decline in this fashion if I judgeA to be false or if I simply
don’t know whetherA is true.

A sentenceA is aplain sentence. And� A (or� A, etc.) is acompleted sentence
(of the artificial language). The plain sentenceA represents a propositional act, and
‘� A’ represents the act of performing-and-acceptingA’s propositional act. It makes
no sense (it is not allowed) to iterate force indicators:�� A. And a completed sen-
tence� A cannot be a component of a larger sentence, as in [�A ∨ �B]. It might seem
that the prohibition on including one illocutionary force operator within the scope of
another is a departure from ordinary usage, for as well as making a statement:

(1) I assert that Richard has resigned.

It is also possible to say:

(2) I assert that I assert that Richard has resigned.

However, in (2) only the first ‘I assert that’ can serve as an illocutionary-force indicat-
ing device. The inner ‘I assert that’ merely predicates asserting of me (of the speaker).
In L .75, the illocutionary force operators have no predicative use.

To represent an act of supposing a statement true, I use the top half of the asser-
tion sign: ¬. And for supposing a statement (propositional act) false, I use the bottom
half of the sign of rejection:¬. Rotating the positive signs 180◦ yields the negative
force indicators, and vice versa.

If we expandL .5 with the force indicators ‘� ’ and ‘ ¬’, we get the language
L .75. A sentence ofL .5 is aplain sentence ofL .75. There are no other plain sentences.
If A is a plain sentence ofL .75, then� A and ¬A arecompleted sentences ofL .75.
There are no other completed sentences. (To keepL .75 relatively simple, I am not
introducing the force operators ‘�’ , ‘ ¬’, and ‘x �’.)

The deductive systemS .75 is obtained fromS .5. But in S .75, only completed sen-
tences can occur as steps in a proof. All of the rules ofS .5 are “transformed” to con-
stitute rules ofS .75. But the rules ofS .75 take account of illocutionary force. For an
elementary rule, if at least one premise is a supposition, so is the conclusion. If all
premises are asserted/accepted, then so is the conclusion. The following are all ex-
amples of &Introduction:

¬A ¬B ¬A � B � A � B

¬[ A & B] ¬[ A & B] � [ A & B]

So, if we believe (or know)B, we can supposeA and reason to the conclusion
‘[ A & B]’. We are not entitled toaccept this conclusion, because it depends (in part)
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on a supposition. Given that we acceptB, supposingA commits us tosupposing
‘[ A & B]’.

Weshall understand an argument like this

¬A � B

¬[ A & B]

to establish a result aboutrelative, or enthymematic, logical validity. The argu-
ment shows that ‘A/[ A & B]’ is logically valid with respect to a background of be-
lief/knowledge that includes B. If an argument sequence ‘A1, . . . , An/B’ i svalid with
respect to our current beliefs, then supposingA1, . . . , An will commit us to supposing
B, and acceptingA1, . . . , An will commit us to acceptingB.

Tree proofs can now begin either with an assertion� A or a hypothesis ¬B. An
assertion at the top of a branch is aninitial assertion of the tree proof. A hypothesis
is aninitial supposition. For the nonelementary rules

∨Elimination ∼Elimination

{ ¬A} { ¬B} { ¬A} { ¬A}
?[A ∨ B] ¬C ¬C ?B ?∼B

?C ?A

if the only uncanceled hypotheses in the subproofs leading to the sentences on the line
are those in braces, then the conclusion is an assertion. Otherwise it is a supposition.

The following proof

x¬[∼D ⊃ ∼B] ¬∼D
x x MP¬A � [ A ⊃ C] ¬B ¬∼B

MP ∼E, drop ¬∼D¬C ¬D
∨I ∨I

� [ A ∨ B] ¬[C ∨ D] ¬[C ∨ D]
∨E, drop ¬A, ¬B¬[C ∨ D]

establishes that ‘[∼D ⊃ B]/[C ∨ D]’ is logically valid with respect to knowledge/be-
lief that includes ‘[A ∨ B]’ and ‘[ A ⊃ C]’. This proof

x

¬∼∼A ¬∼A
∼E, drop ¬∼A

¬A

establishes that ‘∼∼A/A’ i s logically valid. Since this proof contains no initial as-
sertions, it establishes an “absolute” result. And this proof
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x¬∼A
x ∨I¬∼ [ A ∨ ∼A] ¬[ A ∨ ∼A]

∼E, drop ¬∼A¬A
∨I x¬[ A ∨ ∼A] ¬∼[ A ∨ ∼A]

∼E, drop ¬∼[ A ∨ ∼A]
� [ A ∨ ∼A]

has neither initial assertions nor uncanceled hypotheses. It establishes the assertion
‘� [ A ∨ ∼A]’.

In addition to the rules derived from those ofS .5, we will add one rule relating
the two illocutionary forces. A person who accepts/asserts a statement intends for this
to be permanent. But supposing a statement is like accepting it for a time, temporar-
ily. The force of an assertion “goes beyond” that of a supposition, but “includes” the
suppositional force. For this reason, we accept the following inference principle:

Weakening
� A

¬A
Our representations of illocutionary force provide a new understanding of the prin-
ciple that contradictory statements entail any statement. This principle is sometimes
challenged by proponents of relevance logic, who point out that a person who real-
izes that her beliefs are inconsistent will not ordinarily infer any statements from her
inconsistent beliefs. While this remark is true, it has no bearing on the correctness of
these principles:

� A ¬∼A ¬A � ∼A ¬A ¬∼A

¬B ¬B ¬B
Supposing inconsistent statements is perfectly legitimate, and leads to the supposition
of every statement. However, it isn’t legitimate to proceed like this:

� A � ∼A

� B

Once a person finds herself committed to both� A and� ∼A, she knows she is in
trouble. In such a case, she must abandon some of her beliefs.

The resources available inL .75 reveal another respect in which validity is an un-
satisfactory criterion for assessing arguments. Even though the argument sequence
‘ A, B/[ A & B]’ is a valid one, the following argument is not satisfactory:
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¬A ¬B

� [ A & B]

The premise acts, with the forces indicated, do not support the conclusion act.
We can now make a second attempt to characterize deductive correctness. A

simple argument isdeductively correct if and only if performing its premise acts com-
mits a person to performing the conclusion act. A complex argument isdeductively
correct if and only if its component arguments are deductively correct, and accept-
ing/making the initial assertions and supposing the hypotheses of the complex argu-
ment commits a person to performing the conclusion act (with its indicated force).

6 Commitment semantics Wehave characterized truth-conditional entailment and
basic entailment, as well as truth-conditional validity and basic validity. There are
other important commitment-based concepts. StatementsA1, . . . , An suppositionally
entail statementB, andA1, . . . , An/B is suppositionally valid if and only if suppos-
ing A1, . . . , An commits a person to supposingB. Suppositional entailment doesn’t
coincide with basic entailment. A statementA basically entails ‘I believe thatA’,
but there is no suppositional entailment in this case. For supposingA is not the same
thing as supposing thatA is believed; to supposeA is to suppose thatA is true. So
while this principle

� A

� I believe thatA

is deductively correct, this one is not:

¬A

¬I believe thatA

The truth-conditional semantic account forL .5 also applies toL .75 (to the plain sen-
tences ofL .75). In addition to the truth conditions of sentences ofL .75 (and the state-
ments these represent), it is appropriate to provide an account ofcommitment condi-
tions for sentences ofL .75. These conditions are relative to a given person or com-
munity. To indicate that the relevant person is committed to acceptingA, I will use
‘+’. To show that she is committed to rejectingA, I will use ‘−’. If she is committed
in neither “direction,” I will use ‘n’. So a commitment matrix for ‘∼’ looks like this:

A ∼A

+ −
− +
n n

The matrices for ‘&’, ‘∨’, and ‘⊃ ’ are as follows:
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A B [ A & B] [ A ∨ B] [ A ⊃ B]

+ + + + +
+ − − + −
+ n n + n
− + − + +
− − − − +
− n − n +
n + n + +
n − − n n
n n −, n +, n +, n

The values of component sentences are not in every case sufficient to uniquely deter-
mine the values of the compound sentence. IfA andB each haven, and are irrelevant
to one another, then ‘[A ∨ B]’ should have valuen. But if A has valuen, then so does
∼A; still, ‘[ A ∨ ∼A]’ should have+. And if A = ‘We will have spaghetti for dinner’
while B = ‘We will have tuna fish salad for dinner’, then ‘[A ∨ B]’ might have+
even though each disjunct hasn. Because of the last row in the matrices above, the
matrices are not sufficient for determining an acceptablecommitment valuation for
L .75. However, the failure of functionality for the three values is not a defect of the
commitment semantics. The three values, and the matrices, are important for captur-
ing our intuitions about commitment. The matrices will be supplemented to provide
an adequate commitment semantics; the present treatment is similar to the accounts
found in Kearns [1], [2], and [3].

To complete the semantic account based on commitment, we need to link it to
the truth conditional account. While not all of the statements a person accepts are
true, no one believes a statement which she thinks to be false. In developing com-
mitment semantics, we will idealize somewhat, and adopt the perspective of a per-
son whose beliefs might all be true—her beliefs don’t conflict with one another. This
is appropriate for uncovering deductive standards for arguments. We want to know
what arguments will preserve truth on the presumption that our beliefs so far are true.
A commitment valuation of L .75 is a function which assigns (exactly) one of+, −, n
to each sentence ofL .75.

Let E1, E2 be commitment valuations ofL .75. Then E2 is an extension ofE1 if
and only if both

(1) If E1(A) = +, thenE2(A) = +;

(2) If E1(A) = −, thenE2(A) = −.

So an extension of a commitment valuation disagrees with the original valuation only
for sentences assignedn by the original valuation.

Let f be a truth-conditional interpreting function of the plain atomic sentences
of L .75. A commitment valuationE is based on f if and only if E assigns+ only
to sentences true for the valuation determined byf , and assigns− only to sentences
false for that valuation. A commitment valuationE is coherent if and only if it is
based on a truth-conditional interpreting function ofL .75. A person whose beliefs
and disbeliefs are picked out by a coherent commitment valuation is a person whose
beliefs might all be true and whose disbeliefs might all be false. (Here the ‘might’
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indicates what I have elsewhere calledabsolute epistemic possibility.)
A coherent commitment valuation isminimally acceptable if and only if it satis-

fies the matrices above. IfE is a minimally acceptable commitment valuation based
on interpreting functionf , then〈 f ,E〉 is aminimally acceptable pair.

Let E0 be a coherent commitment valuation. Thecommitment valuation deter-
mined by E0 is the valuationE such that for every plain sentenceA,

1. if for every minimally acceptable pair〈 f ∗,E∗〉 such thatE∗ is an extension of
E0, wehave f ∗(A) = T, thenE(A) = +;

2. if for every minimally acceptable pair〈 f ∗,E∗〉 such thatE∗ is an extension of
E0, wehave f ∗(A) = F, thenE(A) = −;

3. Otherwise,E(A) = n.

In the preceding definition, we can think ofE0, E as follows. The person/community
for whom the commitment semantics is developed is thedesignated subject. The val-
uationE0 assigns+ to those sentences (statements) that the designated subject has
explicitly thought about and accepted (and which she still remembers).E0 assigns−
to those sentences she has thought about and rejected. SoE0 characterizes the desig-
nated subject’s explicit beliefs and disbeliefs at a given time. ThenE is intended to
be the valuation which picks out the sentences that the designated subject is commit-
ted to accept and reject on the basis of her explicit beliefs. It is initially plausible that
E does this; the following results help to show the adequacy of our definitions. Re-
sults that can be established in a straightforward fashion will be stated without proof
or with very sketchy proofs.

Lemma 6.1 Let E0 be a coherent commitment valuation of L .75. Let E1 be a mini-
mally acceptable extension of E0, and E2 be a minimally acceptable extension of E1.
Then E2 is a minimally acceptable extension of E0.

Lemma 6.2 Let f be a truth-conditional interpreting valuation of L .75, and let E0

be a commitment valuation based on f . Let E be the commitment valuation deter-
mined by E0. Then E is based on f .

Proof: SupposeE(A) = +. There are two cases.

Case 1: E0(A) = +. Then f (A) = T.

Case 2: E0(A) = n. Then for every minimally acceptable pair〈 f ∗,E∗〉 such that
E∗ is an extension ofE0, f ∗(A) = T. LetE∗∗ be the commitment valuation such that
E∗∗(A) = + if and only if f (A) = T andE∗∗(A) = − if and only if f (A) = F. It is
clear that〈 f ,E∗∗〉 is a minimally acceptable pair andE∗∗ extendsE0. Hence,f (A) =
T.

Similarly, if E(A) = −, then f (A) = F. �

Theorem 6.3 Let E0 be a coherent commitment valuation of L .75, and let E be the
commitment valuation determined by E0. Then E is minimally acceptable and E is
the commitment valuation determined by E .

Proof: By Lemma6.2, E is coherent. Now we must show thatE satisfies the com-
mitment matrices. Consider negation. SupposeA is a sentence ofL .75 such that
E(A) = +. There are two cases.
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Case 1: E0(A) = +. Then for every minimally acceptable pair〈 f 1,E1〉 such that
E1 extendsE0, E1(∼A) = − and f 1(∼A) = F. SoE(∼A) = −.

Case 2: E0(A) = n. Then for every minimally acceptable pair〈 f 1,E1〉 such that
E1 extendsE0, f 1(A) = T. But, for every such pairf 1(∼A) = F. SoE(∼A) = −.

If E(A) = −, wecan argue as above to showE(∼A) = +. SupposeE(A) = n. Then
E0(A) = n, and there is a minimally acceptable pair〈 f 1,E1〉 such thatE1 extends
E0, and f 1(A) = T, and another minimally acceptable pair〈 f 2,E2〉 such thatE2

extendsE0, and f 2(A) = F. Then f 1(∼A) = Fand f 2(∼A)=T. Hence,E(∼A)=n.
Consider ‘&’. SupposeE(A) = E(B) = +. Then for every minimally ac-

ceptable pair〈 f 1,E1〉 such thatE1 extendsE0, f 1(A) = f 1(B) = T. Hence
f 1[ A & B] = T. SoE[ A & B] = +.

If E(A) = − orE(B) = −, we can show thatE[ A & B] = −. SupposeE(A) =
+, E(B) = n. Then there is a minimally acceptable pair〈 f 1,E1〉 such thatE1

extendsE0, and f 1(A) = T, f 1(B) = T, and f 1[ A & B] = T, while for another
pair 〈 f 2,E2〉, E2 extendsE0, f 2(A) = T, f 2(B) = F, and f 2[ A & B] = F. Hence
E[ A & B] = n.

If E(A) = n,E(B) = +, the argument is similar. IfE(A) = E(B) = n, then
for some minimally acceptable pair〈 f 1,E1〉 such thatE1 extendsE0, f 1(A) = F,
and f 1[ A & B] = F. HenceE[ A & B] �= +. We can similarly show thatE satisfies
the matrix for ‘∨’.

To show thatE is the commitment valuation determined by itself, we argue as
follows. Suppose thatA is a sentence such that for every minimally acceptable pair
〈 f ∗,E∗〉 in which E∗ extendsE, f ∗(A) = T. And suppose thatE(A) �= +. Then
there is a minimally acceptable pair〈 f 1,E1〉 such thatE1 extendsE0 and f 1(A) = F.
Clearly,E0 is based onf 1. By Lemma6.2, E is based onf 1. But then,〈 f 1,E〉 is a
minimally acceptable pair in whichE extendsE, and f 1(A) �= T. This isimpossible!
Hence,E(A) = +. Similarly, if A is a plain sentence such that for every minimally
acceptable pair〈 f ∗,E∗〉 in whichE∗ extendsE, f ∗(A) = F, thenE(A) = −.

Clearly, if A is a plain sentence for which there is a minimally acceptable pair
〈 f ∗,E∗〉 in whichE∗ extendsE and f ∗(A) = T, and there is another minimally ac-
ceptable pair〈 f ∗∗,E∗∗〉 in which E∗∗ extendsE and f ∗∗(A) = F, thenE(A) = n.

�

Theorem6.3gives us reason to adopt the following definition.

Definition 6.4 A commitment valuationE is acceptable if and only if there is a co-
herent commitment valuationE0 such thatE is the commitment valuation determined
by E0.

7 Relative truth-conditional concepts A proof from hypotheses inS .75 will have
initial assertions� A1, . . . ,� Am(m ≥ 0) and hypotheses (initial suppositions)

¬B1, . . . ,

¬Bn(n ≥ 0). If the conclusion of the proof is¬C, the proof establishes
that argument sequence ‘B1, . . . , Bn/C’ i s logically valid with respect to background
knowledge/belief which includesA1, . . . , Am. If m = 0, then the argument sequence
is logically valid without qualification. If the conclusion of the proof is� C, then
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there are no uncanceled hypotheses, and the proof establishes thatC is true with re-
spect to background knowledge that includesA1, . . . , Am. If the conclusion is� C,
andm = 0, then the proof establishes thatC is a logical truth/law.

In order to characterize proofs inS .75 and the results these establish, we need to
introduce semantic concepts that are relative to the designated subject’s beliefs at a
given time. We can think of a coherent commitment functionE0 as characterizing
the designated subject’s beliefs and disbeliefs at some time. From the perspective of
this cognitive state, different futures are epistemically possible. In such a future, the
designated subject will not have given up any beliefs or disbeliefs, but she may have
acquired additional beliefs/disbeliefs—and not simply on the basis of inferences from
her present beliefs/disbeliefs. In an epistemically possible future, sentences will have
truth values that cohere with her present beliefs and disbeliefs.

LetE0 be a coherent commitment valuation ofL .75. Let f be a truth-conditional
interpreting function ofL .75, F 0 be a coherent commitment valuation forL .75 which
is an extension ofE0 and is based onf , andF be the commitment valuation deter-
mined byF 0. Then〈 f , F 0, F 〉 is anepistemically possible future for E0. The fol-
lowing results characterize epistemically possible futures.

Lemma 7.1 Let E0 be a coherent commitment valuation of L .75, and let E be the
commitment valuation determined by E0. Let F 0 be a coherent commitment valuation
which extends E0, and let F be the commitment valuation determined by F 0. Then
F is an extension of E .

Proof: Let A be a plain sentence ofL .75 such thatE(A) = +. SupposeF (A) �=
+. ThenE0(A) = n. And in every minimally acceptable pair〈 f ,E∗〉 such thatE∗

extendsE0, f (A) = T. But in some minimally acceptable pair〈 f 0, F ∗〉 in whichF ∗

extendsF 0, f 0(A) = F. This isimpossible, becauseF ∗ extendsE0. Hence,F (A) =
+. Similarly, if E(A) = −, thenF (A) = −. �

Theorem 7.2 Let A be a plain sentence of L .75. Let E0 be a coherent commitment
valuation of L .75, and let E be the commitment valuation determined by E0. Then
E(A) = +(−) if and only if in every epistemically possible future 〈 f , F 0, F 〉 for E0,
f (A) = T(F).

Proof: SupposeE(A) = +. Then in every minimally acceptable pair〈 f ∗,E∗〉 such
thatE∗ is an extension ofE0, f ∗(A) = T. Suppose there is an epistemically possible
future〈 f , F 0, F 〉 for E0 such thatf (A) = F. By the lemma,〈 f , F 〉 is a minimally
acceptable pair such thatF is an extension ofE0. This is impossible. So in every
epistemically possible future〈 f ,E0, F 〉 for E0, f (A) = T.

Suppose that in every epistemically possible future〈 f , F 0, F 〉 for E0, f (A) =
T. SupposeE(A) �= +. Then there is a minimally acceptable pair〈 f ∗,E∗〉 such that
E∗ extendsE0 and f ∗(A) = F. But then〈 f ∗,E∗,E∗〉 is an epistemically possible
future forE0. This is impossible, soE(A) = +.

Wecan similarly show thatE(A) = − if and only if in every epistemically pos-
sible future〈 f , F 0, F 〉 for E0, f (A) = F. �
Wewill define relative truth-conditional implication and validity in terms of epistem-
ically possible futures. LetE0 be a coherent commitment valuation ofL .75, and let
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A1, . . . , An, B be plain sentences ofL .75. Then A1, . . . , An truth-conditionally im-
ply B with respect to E0, and argument sequenceA1, . . . , An/B is truth-conditionally
logically valid with respect to E0 if and only if there is no epistemically possible fu-
ture〈 f , F 0, F 〉 for E0 such thatf (A1) = · · · = f (An) = T, but f (B) = F. Sentence
B is logically true with respect to E0 if and only if there is no epistemically possible
future〈 f , F 0, F 〉 for E0 such thatf (B) = F.

The following theorem, which relates the old absolute truth-conditional concepts
to the new relative ones is entirely obvious.

Theorem 7.3 Let A1, . . . , An/B be an argument sequence of L .75, and let C be a
sentence of L .75. Then

(a) A1, . . . , An/B is truth-conditionally logically valid if and only if A1, . . . , An/B
is truth-conditionally logically valid with respect to every coherent commitment
valuation E0;

(b) C is logically true if and only if C is logically true with respect to every coherent
commitment valuation E0.

A little care is needed to properly state soundness and completeness results forS .75

with respect to truth-conditional semantic concepts. But soundness and completeness
proofs forS .5 can be adapted to yield analogous results forS .75.

One difficulty in dealing with proofs inS .75 is thatL .75 does not contain the
force operator for rejection (the symbol ‘�’). But a coherent commitment valuation
E0 might assign− to a sentenceA andn to ∼A. The “idea” of our proofs is that
initial assertions should be sentences assigned+ by E0. But if E0(A) = − while
E0(∼A) = n, then the fact thatA is believed false will not play a role in such proofs.
If we had introduced ‘�’ and inference principles for rejection, we could have� A
serve as an initial denial. Instead we will allow� ∼A to be an initial assertion if
E0(A) = −, regardless of whetherE0(∼A) = +. The appropriate soundness result
for S .75 is the following, which can be proved by induction on the rank of�.

Theorem 7.4 Let � be a proof in S .75 from initial assertions � A1, . . . ,� Am and
(uncanceled) hypotheses ¬B1, . . . ,

¬Bn. Let E0 be a coherent commitment valuation
such that each Ai is either assigned + by E0 or is the negation of a sentence assigned
− by E0. Then

(a) if the conclusion of � is ¬C, then B1, . . . , Bn truth-conditionally imply C with
respect to E0;

(b) if the conclusion is � C, then n = 0 and in every epistemically possible future
〈 f , F 0, F 〉 for E0, f (C) = T (i.e., C is a logical truth with respect to E0).

The following theorems state completeness results.

Theorem 7.5 Let E0 be a coherent commitment valuation for L .75. Let X be a set
of plain sentences of L .75 and let C be a plain sentence of L .75 such that in every
epistemically possible future 〈 f , F 0, F 〉 for E0 in which each member of X has value
T for f , f (C) = T. Then there is a proof in S .75 from initial assertions which are
either assigned + by E0 or are the negations of sentences assigned − by E0 and from
initial hypotheses which are sentences in X to the conclusion ¬C.
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Lemma 7.6 Let � be a proof in S .75 from initial assertions � A1, . . . ,� Am and
hypotheses ¬B1, . . . ,

¬Bn to conclusion ¬C. Then there is a proof in S .75 from initial
assertions � A1, . . . ,� Am, � B1, . . . ,� Bn to conclusion � C.

Theorem 7.7 Let E0 be a coherent commitment valuation for L .75.

(a) Let ‘B1, . . . , Bn/C’ be an argument sequence which is truth-conditionally log-
ically valid with respect to E0. Then there is a proof whose initial assertions
are either assigned + by E0 or are the negations of sentences assigned − by
E0 and whose hypotheses are ¬B1, . . . ,

¬Bn which has conclusion ¬C.
(b) Let C be a sentence which is logically true with respect to E0. Then there is

a proof from initial assertions which are either assigned + by E0 or are the
negations of sentences assigned − by E0 to the conclusion � C.

8 Commitment-based concepts The commitment semantics above provides the
resources to define basic implication and basic logical validity. LetA1, . . . , An, B
be plain sentences ofL .75, and letE0 be a coherent commitment valuation forL .75.
Then A1, . . . , An basically imply B with respect to E0 and ‘A1, . . . , An/B’ is basi-
cally logically valid with respect to E0 if and only if for every epistemically possible
future〈 f , F 0, F 〉 for E0 such that eachAi is either assigned+ by F 0 or is the nega-
tion of a sentence assigned− by F 0, F (B) = +.

It isn’t appropriate to use ‘true’ for a concept based on commitment, so there
are no basic logical truths. Instead, a sentenceC is basically logically analytic with
respect to E0 if and only if in every epistemically possible future〈 f , F 0,F〉 for
E0, F (C) = +.

With respect toL .75, basic implication coincides with truth-conditional implica-
tion, and basic logical analyticity coincides with logical truth, as the following theo-
rems show.

Theorem 8.1 Let A1, . . . , An, B be plain sentences of L .75, and let E0 be a coher-
ent commitment valuation. Let A1, . . . , An truth-conditionally imply B with respect
to E0. Then these sentences basically imply B with respect to E0.

Proof: The sentence ‘[[A1 & · · · & An] ⊃ B]’ is true in every epistemically possi-
ble future forE0. By Theorem7.2, E [[ A1 & · · · & An] ⊃ B] = +. Now suppose
that〈 f , F 0, F 〉 is an epistemically possible future forE0 in which eachAi is either
assigned+ by F 0 or is the negation of a sentence assigned− by F 0. By the lemma
to Theorem7.2, F [[ A1 & · · · & An] ⊃ B] = +. But F [ A1 & · · · & An] = +. By
the matrices,F (B) = +. �

Corollary 8.2 Let E0 be a coherent commitment valuation for L .75, and let A be a
plain sentence of L .75 which is logically true with respect to E0. Then A is basically
logically analytic with respect to E0.

Lemma 8.3 Let A, B be plain sentences of L .75. Let E0 be a coherent commit-
ment valuation for L .75, and let E be the commitment valuation determined by E0.
And in every epistemically possible future 〈 f , F 0, F 〉 for E0 in which F (A) = +, let
F (B) = +. Then E [ A ⊃ B] = +.
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Theorem 8.4 Let A1, . . . , An, B be plain sentences of L .75. Let E0 be a coherent
commitment valuation for L .75 such that A1, . . . , An basically imply B with respect
to E0. Then A1, . . . , An truth-conditionally imply B with respect to E0.

Proof: By the lemma,E [[ A1 & · · · & An] ⊃ B] = +. Suppose〈 f , F 0, F 〉 is an
epistemically possible future forE0 such that f (A1) = · · · = f (An) = T. By the
lemma to Theorem7.2, F [[ A1 & · · · & An] ⊃ B] = +. Hence f [[ A1 & · · · & An]
⊃ B] = T. Clearly, f (B) = T. �

Corollary 8.5 Let E0 be a coherent commitment valuation for L .75, and let A be a
plain sentence of L .75 that is basically logically analytic with respect to E0. Then A
is logically true with respect to E0.

The fact that basic implication coincides with truth-conditional implication forL .75 is
not a deep result about the relation between these two semantic features. Instead the
coincidence is due to the poverty of expressive power ofL .75. (It is due to the extreme
simplicity of the semantic features represented by sentences ofL .75.) If L .75 were en-
riched with expressions that capture natural-language conditionals or with epistemic
modal operators, basic implication would diverge from truth-conditional implication.
However, forL .75 andS .75 we have the following as easy consequences of the truth-
conditional soundness and completeness ofS .75.

Theorem 8.6 Let � be a proof in S .75 from initial assertions � A1, . . . ,� Am and
hypotheses ¬B1, . . . ,

¬Bn. Let E0 be a coherent commitment valuation for L .75 such
that each Ai is either assigned + by E0 or is the negation of a sentence assigned −
by E0. Then

(a) if the conclusion of � is ¬C, then B1, . . . , Bn basically imply C with respect to
E0;

(b) if the conclusion of � is � C, then n = 0, and C is basically logically analytic
with respect to E0.

Corollary 8.7 If �, A1, . . . , Am, B1, . . . , Bn, C,E0 are as in the statement of The-
orem 8.6, E is the commitment valuation determined by E0 and the conclusion of �

is � C, then E(C) = +.

Theorem 8.8 Let B1, . . . , Bn, C be plain sentences of L .75, and let E0 be a coher-
ent commitment valuation for L .75. Then

(a) if B1, . . . , Bn basically imply C with respect to E0, there is a proof in S .75 from
initial assertions of sentences which are either assigned + by E0 or are the
negations of sentences assigned − by E0 and from hypotheses which are among

¬B1, . . . ,

¬Bn to conclusion ¬C;
(b) if C is basically logically analytic with respect to E0, then there is a proof from

initial assertions of sentences which are either assigned + by E0 or are the
negations of sentences assigned − by E0 to the conclusion � C.

Corollary 8.9 If E0 is a coherent commitment valuation for L .75, E is the com-
mitment valuation determined by E0, and C is a plain sentence of L .75 such that
E(C) = +, then there is a proof from initial assertions of sentences which are either
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assigned + by E0 or are the negations of sentences assigned − by E0 to conclusion
� C.

9 Coherence Statements have both truth conditions and commitment conditions,
and we have used abstract interpretations ofL .75 to give both the truth conditions and
the commitment conditions of statements represented by the sentences of the artificial
language. These abstract interpretations have enabled us to define truth-conditional
and basic concepts.

The commitment conditions that figure in commitment valuations involve com-
mitments to accept and reject statements. A person can also be committed to sup-
pose a statement true or to suppose it false, but we have not introduced symbols to
represent these “values.” It seems undesirable to have a special symbol to mark the
statements which the designated subject is committed to suppose, for there is consid-
erable variation about this from one moment to the next. However, commitments to
suppose statements are fundamental to proofs from hypotheses. If we supposeA1 and
A2, and then infer suppositionB, our inference is deductively correct only ifA1, A2

suppositionally entailB.
Although we need to understand and characterize suppositional implication if

we are to properly assess our proofs from hypotheses, inL .75 suppositional implica-
tion is defined as coinciding with truth-conditional implication. To supposeA is to
supposeA true, and this commits us to further suppose whatever statements we can
determine to be true once we are given thatA’s truth conditions are satisfied. The co-
incidence of suppositional and truth-conditional implication for systems of classical
logic is one reason why many have thought that the all logically important semantic
concepts are truth-conditional.

Statements are consistent or compatible with one another independently of their
illocutionary force. (It is propositional acts that are mutually consistent/compatible.)
But if A is incompatible withB, then acceptingA(� A) and acceptingB(� B) are acts
which are incoherent with each other. AcceptingA(� A) and supposingB( ¬B), or
supposing both( ¬A, ¬B) are also incoherent. The fundamental kind of incoherence
is between both performing and declining to perform a single act (a single specific
kind of act):� A andx � A are incoherent with each other, and so are¬A andx ¬A.
Acts which lead to this fundamental incoherence are also incoherent. This new usage
of ‘coherent’ and ‘incoherent’ “fits” our earlier definition of ‘coherent commitment
valuation’. IfE0 is a coherent commitment valuation, then it is coherent to accept the
sentences (statements) assigned+ by E0 and to reject the sentences assigned−.

It is never correct or appropriate to make incoherent assertions. If� A is inco-
herent with� B, and a person finds herself committed to both� A, � B, then she
needs to modify her beliefs so that she is no longer committed to accept bothA and
B. However, it is legitimate to make incoherent suppositions. That is the very “idea”
behind the inference principle∼Elimination. (It is the idea behind indirect proofs, or
reductio ad absurdum.)

If A1, . . . , An are incompatible, then they truth-conditionally entail every state-
mentB. If accepting all ofA1, . . . , An is incoherent, thenA1, . . . , An basically entail
every statementB. And if supposingA1, . . . , An is incoherent, then these statements
suppositionally entail every statementB. Tracing the truth conditions or the commit-
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ment conditions of the individual statements leads us to see that the conditions of an
arbitrary statement must also be satisfied.

The commitments generated by accepting or supposing individual statements
are not sufficient to explain our deductive practice. There is in addition a general com-
mitment to coherence (and, by extension, to compatibility/consistency). Consider the
argument represented by this proof from hypotheses:

x x

¬∼B ¬A
& I

¬[∼B & A]
& E

¬A ¬∼A
∼E, drop ¬∼B x

¬[ A ∨ B] ¬B ¬B
∨E,drop ¬A, ¬B

¬B
This establishes that the argument sequence ‘[A ∨ B],∼A/B’ i s logically valid (in
all three senses). The inference which exemplifies∼Elimination is not motivated
simply by truth conditions, because when considering only truth conditions, a person
is simply led to further suppositions. The inference principle∼Elimination yields
a further conclusion (possibly a supposition), but it also cancels a supposition. In
making a “move” according to∼Elimination, aperson is not simply tracing out the
commitments of her initial assertions and her hypotheses. There is an independent
(come what may) commitment to act coherently. Once the contradictory suppositions
are reached in the argument above, the arguer is committed to remove the incoher-
ence/inconsistency. The rule∼Elimination prescribes a certain format for doing this,
but other formats would be equally legitimate. Another format could sanction drop-
ping a different hypothesis.

Even in our deductive system the commitment to coherence can call for an ar-
bitrary one of two moves. In the proof

x

¬∼∼A ¬∼A
∼E, drop ¬∼A

¬A
which establishes that the argument sequence ‘∼∼A/A’ i s logically valid, the rules
allow us to reach either the conclusion¬A or ¬∼A. Either hypothesis might be can-
celed/discharged. The commitment here is to give up one of the inconsistent hypothe-
ses.

Our deductive practice depends for its correctness on the commitments gener-
ated by accepting or supposing statements and on the general commitment to coher-
ence. The commitment to coherence doesn’t always require that we accept or sup-
pose some particular statement or statements—it simply requires that we take steps
to eliminate incoherence.
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10 Correctness Our earlier account of deductive correctness still stands: a simple
argument is deductively correct if and only if performing the premise acts with their
forces commits a person to performing the conclusion act with its force. A complex
argument is deductively correct if and only if its component arguments are deduc-
tively correct and performing the (uncanceled) initial acts of the complex argument
commits a person to performing the conclusion act with its force.

It isn’t enough for an argument to be deductively correct. The following argu-
ment

� A � [ A ⊃ B]

� B

is deductively correct, but this argument isinappropriate for a person who doesn’t
believe bothA and ‘[A ⊃ B]’. The following deductively correct argument

� A � ∼A

� B

is inappropriate for everyone. A really satisfactory argument needs to meet certain
epistemic requirements. Let us say that an argument isepistemically appropriate if
and only if (1) it is deductively correct, (2) the arguer accepts the initial assertions,
and (3) the initial assertions are mutually coherent.

Even an epistemically appropriate argument can fall short of what we ideally
want. A person might construct an epistemically appropriate argument using rules
that he had been taught in his logic class, but whose correctness he had failed to grasp.
(He is like many of the successful students in our own logic classes.) Anepistemically
adequate argument is an epistemically appropriate argument in which the arguer rec-
ognizes/grasps the correctness of each component argument. Although many intro-
ductory logic texts claim that deductive perfection in an argument consists in a sound-
ness which amounts to validity together with true premises, what is really wanted is
epistemic adequacy in an argument for which the arguer has good grounds for accept-
ing the premises.

11 Future developments The present paper provides the foundation and the frame-
work for the future development of illocutionary logic. This is a quite different sort
of contribution than found in Vanderveken [4] and [5]. In those works, the focus is on
illocutionary acts in general, and logical features of all such acts. The present paper
investigates specific kinds of illocutionary acts, not illocutionary acts in general. We
have considered only suppositions and assertions. Natural next steps will extend the
present treatment to accommodate acts of declining to accept/assert and declining to
suppose, as well as acts of rejecting and supposing to be false.

Apart from laying the foundations, the present paper has provided a thorough
treatment of deductive standards for arguments. The limited application of validity
and the completely unimportant character of soundness understood as validity plus
true premises have been made apparent. Deductively, the best kind of argument is
not a sound argument, it is an epistemically adequate argument for which the arguer
has good grounds for accepting the premises.
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Because of the limited resources available inL .75, what certain statements of the
language truth-conditionally imply is the same as what they basically imply and what
they suppositionally imply. However, these three features will not always coincide.
Weare now in a position to extend the present treatment to deal with a variety of in-
teresting and important cases for which the concepts diverge. These include a natural
treatment of natural-language conditionals, and the exploration of various epistemic
modal concepts such as those treated in Kearns [1], [2], and [3].
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NOTE

1. That the ordinary concept of validity does not apply to complex arguments was first
pointed out to me in a talk that Gwen Burda delivered to the Buffalo Logic Colloquium
in the spring semester of 1995.
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