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Propositional Non-Monotonic Reasoning and
Inconsistency in Symmetric Neural Networks

Gadi Pinkas

1. Introduction

Recent non-monotonic (NM) systems are quite successful in capturing our intuitions about default rea-
soning. Most of them, however, are still plagued with intractable computational complexity, sensitivity
to noise, inability to combine other sources of knowledge (like probabilities, utilities...) and inflexibility
to develop personal intuitions and adjust themselves to new situations. Connectionist systems may be
the missing link. They can supply us with a fast, massively paraliel platform; noise tolerance can emerge
from their collective computation; and their ability to learn may be used to incorporate new evidence
and dynarnically change the knowledge base. We shall concentrate on a restricted class of connection-
ist models, called symmetric networks ([Hopfield 82],[Hopfield 84], [Hinton, Sejnowski 86]). They are
characterized by recurrent network architecture, symmetric weight matrix (with zero diagonal) and a

quadratic energy function that should be minimized,

We shall demonstrate that symmetric networks are natural platforms for propositional defeasible
reasoning and for noisy knowledge bases. In fact we shall show that every such network can be seen as

encapsulating a body of knowledge and as performing a search for a satisfying model of that knowledge.

Our objectives in this paper are first to investigate the kind of knowledge that can be represented
by those symmetric networks, and second, to build a connectionist inference engine capable of NM

reasoning from incomplete and inconsistent knowledge, expressed symbolically.

2. Reasoning with World Rank Functions

We begin by giving a model-theoretic definition for an abstract reasoning formalism. Qur objective

is to define such formalism independently of any symbolic language. Later we shall use it to give an



2 PINKAS

interpretation for the knowledge embedded in symmetric neural nets (SNN), and for the reasoning

process performed by them.

DEFINITION 2.1 A World Rank Function (WRF) with respect to a set of possible worlds M is a function
ki M — R U {co} that ranks each of the possible worlds with a number that is in (—co...00].
A WRPF is propositional iff it is defined over the set of truth assignments (i.e., dom(k) = 2"), and it is

strict iff it ranks the worlds using only 0 and co. (i.e., range(k) = {0, 00}).

A WRF k always carries preference knowledge (a partial order induced over the worlds by the relation
< in R; see [Lehmann 89]). We say that §; is preferred over Qg if £(Q) < k(£22), and if two worlds are
ranked equally, we say that there is no reason to prefer one over the other. In addition, we may interpret
the world’s rank as the utility assigned to the world, or even give it a probabilistic interpretation, like:

P(Q)/P(Q2) = e(k1)-k(S22)) (as in [Derthick 88]).

DEFINITION 2.2 A world Q is called ¢ model of a WRF £ iff k(2) < co.
A model £ satisfies a WRF k iff it minimizes the function; i.e., k(Q) = rniny.
Let Ty be the set of all satisfying models of WRF k. We say that k entails k' (kj=k') iff all the models

that satisfy k satisfy also &’; i.e., Iz C [yt

NM systems “jump” to conclusions based on evidence given, and later may retract those conclusions
based on new evidence. It is convenient to divide the knowledge from which we want to reason into
“background” knowledge and “evidence” (see [Geffner 89} ). The background knowledge is relatively
fixed and there should be an easy way to combine evidence with it. In our formalism, combining the

evidence is simply done by adding together the two WRFs.

DEFINITION 2.3 Let f,e,k be WRFs. Lvidence e entails { with respect to a background knowledge k,

k
written (ef=f), iff &+ ef=f. The evidence function e is usnally but not necessarily strict.

T'We will usually use entailment of strict WRFs.
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3. Connectionist energy functions

In the next section we briefly review symmetric connectionist models and explain the concept of energy
functions. We then show that every symmetric neural network (SNN) can be viewed as performing a

search for a satisfying model of some WRF.

3.1, Symmetric connectionist models

Connectionist networks with symmetric weights use gradient descent to find a minimum for quadratic
energy functions. A k-order energy function is a function  : {0,1}® — R that can be expressed in a
sum-of-products form with product terms of up to k variables. We denote this sum-of-products form

by:

1

215i1<i2<---<:';,5n Wiy, i, Th T T, T E1g£1<---<ik_15n Wiy, iy Tiz " Ty T ob ElgiSn Wiy

Quadratic energy functions are special cases of energy functions in the form :
E(a:l,...,a:n) = E w,-jz:,-zj-i—zw,:a:,-.
1<i<jsn i<n

We can arbitrarily divide the variables of an energy function into two sets: visible variables and hidden
variables. The visible variables represent visible atomic propositions, while the hidden variables are
usually not of interest to an external observer and are used for computational reasons. An energy

function with z; ...z, visible variables and ¢; ...¢ hidden variables is denoted by E(:E',f)

There is a direct mapping between the quadratic energy functions described above and connectionist
networks with symmetric weights that minimize them. Each variable of the function maps into a neuron
unit - a node in a graph (hidden variables are mapped into hidden units), and is connected by symmetric
arcs to other units Unit ¢ is connected to unit j by a weight w iff the energy function includes a term
of the form: —wz;z;. A unit ¢ has a threshold w iff the energy function includes a term of the form:
we;. Hyper-graphs with Sigma-Pi units can be used for mirnimizing high-order energy functions with

similar mapping ([Sejnowski 86}).
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3.2. Reasoning with energy functions

A SNN can be viewed as an implementation of @ WRF. A model is a zero/one truth-assignment to the
visible variables of the function. For each such assignment we can compute a rank by clamping the
visible variables to the zero/one values of the assignment and letting the free variables £ (the hidden

units) settle to values that minimize the function.

DEFINITION 3.1 The rank of the energy function E(#,7) is the minimum value E(Z,%) gets for all

possible assignments of the hidden variables f; i.e., Erankg(Z) = MIN. t—-{E(f, 3.

For every SNN there is an Erankp function that is associated with its energy Tunction F We consider
this function to be the WRF implemented by the network? (similarly, every WRF can be approximated
by a SNN). A search performed by the SNN for a global minimum is then interpreted as a search for a
satisfying model for the WRF Erankg.® We will interchangeably use energy functions, rank functions

and conventional graph description to represent the functional behavior of symmetric networks.

4. Symbolic languages to describe WRFs

Our next step is to describe symbolically the knowledge that is encapsulated in a network. We shall
define several languages and show their equivalence. We shall allow transformation from one form
of knowledge representation to another, and for that purpose, we define several types of equivalence

relations that preserve basic properties of the knowledge.

DEFINITION 4.1 A calculus is a triple < £,m(), M > where £ is a language, M is a set of possible
worlds and m : £ — {k | & is a WRF }} is a function that returns for each sentence of the language £
a WRF. m(s) is called the interpretation of the sentence s.

Let 5,8, e,k € £; a model Q satisfies s (Qf=s) iff it satisfies m(s).

A sentence s eniails sentence s’ (sf=¢') if the WRF m(s) entails the WRF m(s’). Similarly, a combination

?In [Pinkas 90c] we showed an algorithm that generates for every energy function E an equivalent (possibly) higher
order energy function that does not have hidden units. This high-order function is exactly Erankz.
% A Boltzman machine implementation of an energy function (without hidden units) also mimics the probabilistic knowl-

edge that is carried by the function, since at equilibrium when the temperature is one, P(Q1)/P(Q2) = e—(B(R1)-E(82))
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of a background sentence with an evidence sentence is interpreted as the addition of their corresponding

WRFs; ie, e!is iff (m(e) + m(k))=m(s).

Both classic predicate logic and propositional logic can be viewed as calculi whose languages describe

strict WRFs.

ExamMpLE 4.1 Propositional calculus is < £,m(), 2" >, where £ is the language of propositional well
formed formulae (WFFs) and m() outputs the function (co(1 — H,)), when given a WEFF 5. H,(X) is

the characteristic function of the WFFs and is recursively defined as:

X; if s = X; is an atomic proposition
&y — I_Hs’(X_.) if s =5’
Ho(X) = Hy (%) x H,,(X) ifs=s1 A8

Hoy(X)+ Hoy(R) = H (X)) x H, (X)) ifs=51V s

The reader can easily observe that any propositional WFF describes a strict WRT that returns 0 for

truth assignments that satisfy the WFF and oo for assignments that do not satisfy it.

DEFINITION 4.2 Let s € £; and s € £, be sentences of two (possibly different) caleuli < £y, m;, M >

and < Lo, my, M >; we define equivalence between them:

1. s is strongly equivalent to &' (sés’ } iff their corresponding WRF's are equal, up to a constant dif-

ference; i.e., m(s) = m’(s")+¢. We call this equivalence “magnitude preserving” or s-equivalence.

2. s is p-equivalent to &' (s&s’) iff their associated WRFs induce the same ordering over the set of
worlds; i.e., V21, Qq, m(s)(21) < m(s)(£) I m/(s")(1) < m'(s")(22). We call this equivalence

“preference preserving” or p-equivalence.

3. s is weakly equivalent to &' (s%s’) iff their corresponding WRFs have the same sets of satisfying

models; i.e., Tyys) = Imesry. We call this equivalence “minima preserving” or w-equivalence.

OBSERVATION 4.1 1. Iftwo background sentences are strongly equivalent, then for any given evidence
function ¢, the two corresponding WRFs entail the same set of conclusions; i.e., if e is any evidence

and kek’, then for every WRF f, (m(k) + e)=F iff (m'(k") + e)=f.%

‘In addition, two strongly equivalent WRFs have the same probabilistic interpretation since P()/P(Slg) =
({21 )=k(§22)) = o((F (1 )4e)— (K (R2)+2)),
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2. If two background sentences are p-equivalent, then for every strict evidence e, the fwo correspond-
ing WRF’s entail the same set of conclusions. Le: if dom(e) = {0,00} and k,%k’, then for every
WREF f, (m(k) + e)l=f iff (m'(k") + e)=f. We can’t guarantee this property for any non-strict

evidence.

3. If two senlences k, k' are weakly equivalent, then for every WRF f, m(k)|=f ifm'(k")=f. We

can’t guaraniee this property o hold once we try {0 add evidence to both k and k'.

If all we want is to preserve the set of conclusions achievable from a piece of knowledge, we may use
transformations which only preserve the minima (weak equivalence). If however we would like to be able
to combine strict evidence to our transformed knowledge, we need to perform “preference preserving”
transformations. We need “magnitude preserving” transformations (strong equivalence) if we want to
combine any evidence or give probabilistic/utility interpretation to our transformed knowledge. Most

of our transformations in the reminder of this paper are “magnitude preserving”.

We define now an equivalence between two calculi.

DEFINITION 4.3 A caleulus ) =< £,2%,m > is (s-/p-/w-) equivalent to a calculus ¢’ =< £,2", m' >
iff for every s € £ there exists a (s-/p-/w-) equivalent s’ € £’ and for every s € £’ there exists a

(s-/p-/w-) equivalent s € L.

We thus can use the language £ to represent every WRY that is representable using the language £,
and vice versa. In the sections to come we shall present several equivalent calculi and show that all of

them describe the knowledge embedded in SNNs,

5. Calculi for describing symmetric neural networks

The algebraic notation that was used to describe energy functions as sum-of-products can be viewed as
a propositional WRF. The calculus of energy functions is therefore < {£},2", m() >, where {E} is the
set of all strings representing energy functions written as sum-of-products, and m(E) = Erankg. Two
special cases are of particular interest: the calculus of quadratic functions and the calculus of high-order

energy functions with no hidden variables.
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In [Pinkas 90a],[Pinkas 90c] we gave algorithms that 1) Convert high-order energy functions to
strongly equivalent® low-order ones with additional hidden variables, and 2) Convert energy functions
with hidden variables to strongly equivalent (possibly) higher order ones without those hidden variables.
These algorithms allow us to trade the computational power of Sigma-Pi units with additional hidden
units. We therefore conclude that the calculus of high-order energy functions with no hidden units is
strongly equivalent to the calculus of quadratic functions. Thus, we can use the langnage of high-order
energy functions with no hidden units to describe any symmetric neural network (SNN) (with arbitrary
number of hidden units). For the remainder of this paper we will use this high-level language to describe

symmetric networks without being concerned about hidden units.

In [Pinkas 90a] we also proved that the satisfiability of propositional calculus is equivalent (weakly)
to quadratic energy minimization. We gave algorithms to convert any satisfiable WEF to a weakly
equivalent quadratic energy function (of the same order of length), and every energy function to a
weakly equivalent satisfiable WFF'. As a result, propositional calculus is weakly equivalent to the calculus
of quadratic energy functions and can be used as a high-level language to describe SNNs. However,
two limifations exist: 1) The algorithm that converts an energy function to a satisfiable WFF may
generate an exponentially long WFF; and 2) The equivalence is weak; although the WFF and the
energy function have the same set of satisfying models, neit;her evidence can be added nor a utility or
probabilistic interpretation is preserved. (Examples of p-equivalent calculi exist but they are out of the

scope of this paper).

In the next section we will define a new logic calculus that is strongly equivalent to the calculus of

energy functions and that does not suffer from the limitations discussed above.

6. Penalty calculus

We now extend propositional calculus by augmenting assumptions with penalties (like in [Derthick 88]).
The extended calculus is able to deal with an inconsistent knowledge base (due to noise, errors in

observations, efc...) and will be used as a framework for defeasible reasoning.

5In these papers we were concerned only with weak equivalence, but it is easily shown that strong equivalence holds.
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DEFINITION 6.1 A Penally Logic WFF (PLOFF) ¢ is a finite set of pairs. Each pair is composed
of a real positive number (including oo), called penally, and a standard propositional WFF, called
assumpilion ;ie., ¥ = {< p;,0; >| pi € RY U {0}, ; is a WFF, i = L..n}.

The violation-rank of a PLOFF 1 is the function (Vranky () that assigns a real-valued rank to each of
the truth assignments. The Vrank, function is computed by summing the penalties for the assumptions
of 3 that are violated by the assignment; i.e., Vranky(£) = 3; piH-p (£).°

Penally Logic calculus is the triple < £,2",m() >, where £ is the set of all PLOFFs and (V¢ € L)

m(v¥) = Vranky.

We may conclude that a truth assignment &, satisfies a PLOFF o iff it minimizes the violation-rank
of ¥ to a finite value. i.e., Vranky(Z) = MINyrank, < co. A sentence v therefore entails ¢ iff any
model that minimizes the violation-rank of ¢, also minimizes the violation-rank of ¢. The operator
“union” (U) in the meta-language, plays the role of A (AND) in classic predicate and propositional
logic. It allows us to combine two PLOFFs simply by merging them. The reader may check that
Vrankyuy = Vranky + Vreanky (when ¢ Ny’ = ¢).7 The evidence in penalty calculus is therefore

cumulative; we can combine evidence with background simply by merging the two PLOFFs together.

7. Proof-theory for penalty calculus

Although our inference engine will be based on the model-theoretic definition, a proof procedure still

gives us valuable intuition about the reasoning process and about the role of the penalties.

DeFiNITION 7.1 T is a sub-theory of a PLOFF # if T is a consistent subset (in the normal sense) of
the assumptions in t; i.e., T C {t; [< pi,10; >€ 9} = Uy, (note that Uy may be inconsistent).

The penalty of a sub-theory T of % is the sum of the penalties of the assumptions in % that are not
included in 77 i.e., penaltyy (T) = 2‘,056(%-—7’) pi and is called the penally function of 1.

A Minimum Penalty sub-theory (MP-theory) of ¥ is a sub-theory T that minimizes the penalty function

of ¢; i.e., penaltyy (1) = MINg{penaltyy(S) | S is a maximal consistent sub-theory of %}.

$We may consider some of the atomic propesitions of 1 as “hidden” {free). Vranky() is then computed by letting
these hidden propositions to settle so that the penalty is minimized. i.e., Vranky (@) = MIN;{Z piH-p(Z,D)}.

TWe need to alter the definition of U if we want the property to hold also when ¥rny’' 3 ¢. The union U should double
the penalties of the assumptions participaling in ¥ N ¥'s
w1 Ut = {1 — P2} Ude — b1} U{< 2pi, 0 >| < piyips DE Y1 Nafip)
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The reader may observe that any MP-theory is a maximal consistent -sub-set of I/ and therefore a model
that satisfies a MP-theory, T, violates all the assumptions not in 7' (and only these assumptions). We

therefore conclude the following lemma:

Lemma 1 The penally of a MP-theory, T, is equal to the viclation-rank of all the models that satisfy

T; i.e., penaltyy(T) = Vranky(Q) if QET.

This allows us to use a proof-theoretic ranking function (penalty,) instead of the model-theoretic func-

tion (Vrank).

DEFINITION 7.2 Let 3 and ¢ be two PLOFFs and let 73,75 ... 7% and 77,73 ... Ti+ their MPMC-

theories respectively. We say that ¢, iff Vf=1 Ti- V;“;l T;.

We can device a Proof theoretic procedure for by by first identifying the MPMC-theories of both ¥
and ¢, and then checking that the disjunction of all the MPMC-theories of ¢ can be proved (using a
standard propositional calculus proof procedure) from any MPMC-theory of 1. Note that when the
set of assumptions of ¢ is consistent, there is only one MPMC-theory which is U, so we have to check
only that T;Hip for all MPMC-theories T; of 1. Intuitively, we can look at the process as if conflicting
sub-theories compete among themselves and those who win are those who have the maximum sum of

penalties. 7 must follow from all the winning sub-theories.
Theorem 1 The proof procedure is sound and complete; i.e., Y= iff Y.

This mechanism is useful both for dealing with inconsistency in the knowledge base and for defeasible
reasoning. When we detect inconsistency we usually want to adopt a sub-theory with maximum car-
dinality (we assume that only a minority of the observations are erroneous). When all the penalties
are one, minimum penalty means maximum cardinality. Penalty logic is therefore a generalization of
the maximal cardinality principle. For defeasible reasoning, the notion of conflicting sub-theories can
be used to decide between conflicting sets of arguments. Intuitively, a set of arguments A; defeats a
conflicting set of arguments Ay if A; is supported by a “better” sub-theory than all those that support

Ay (A; wins if it is included in a MP-theory and A» is not).
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ExAMPLE 7.1 Two levels of blocking (from [Brewka 89]):

1 meeting 1 usually go to the Monday meeting,.

10 sick —(— meeting) If I'm sick I usually don’t go to the meeting,.

100  cold-only — meeting If I have only a cold then I tend go to the meeting.
1000 coid-only — sick If I have a cold it means I'm sick.

Without any additional evidence, all the assumptions are consistent, and we can infer that “meeting” is
true (from the first assumption). However, given the evidence that “sick” is true, we prefer models that
falsify “meeting” and “cold-only”, since the second assumption has greater penalty than the competing
first assumption (The only MP-theory, does not include the first assumption). If we include the evidence
that “cold-only” is true, we prefer again the models where “meeting” is true, since we prefer to defeat
the second assumnption rather than the third or the fourth assumptions.

EXAMPLE 7.2 Nixon diamond:
10 N—Q@Q  Nixon is a guaker.

10 N-—E  Nixon is a republican.
i @—P Quakers tend to be pacifists.
1 BR—-P Republicans tend to be not pacifists.

When Nixon is given, we reason that he is both republican and quaker. We cannot decide however,
whether he is a pacifist or not, since in both possible models (those with minimal Vrank) either the
third or fourth assumption is violated; i.e., there are two MP-theories: one, does not include the third
assumption, while the other, does not include the fourth. The first MP-theory entails =P whereas the

second entails P. We cannot decide therefore about P even though we can conclude Q A R.

8. Penalty logic and energy functions

In this section we show that penalty calculus is strongly equivalent to the calculus of quadratic energy
functions. We shall give algorithms to convert a PLOFT into a strongly equivalent quadratic energy
function and vice-versa.

We first show that every PLOFF can be reduced into a quadratic energy function,

Theorem 2 For every PLOFF ) = {< p;,0; >| i = 1...n} there exists a strongly equivalent quadratic

energy function E(Z,%) such that (VE)Vranky() = Erankg(8).8

We can construct % from 1 using the following procedure:

8This is just an approximation since we translate infinite penalties into sufficiently large but finite weights.
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1. “Name” all ,’s using new hidden atomic propositions T;? and construct the set {< oo, Ty—¢; >}.

The high penalty guarantees that these WFFs will always be satisfiable.

2. Construct ¢ = {< o0, Ti=p; >} U {< p;, T; >} so that the T’s (with the original penalty)

compete with each other (¢ is strongly equivalent to ).

3. Construct the energy function }; BEr,rp, — EJ- piT;, where 3 is chosen to be sufficiently large
so that it is is greafer then the sum of all finite penalties (8 is practically o), and Ey is the

energy function obtained from ¢ using the following algorithm from [Pinkas 90c]:

() convert the WFF into a conjunction of sub-formulas, each of at most three variables.!® This

is done by adding some additional hidden atomic propositions;
(b) assuming the result is of the form A; ¥;;, the energy function is computed to be 37, H-.(p'.j;

(¢) convert the cubic terms in the result to quadratic ones using a high-order to low-order

procedure [Pinkas 90a].11

Note, that 1) if p; = 0o we substitute 7; = 1 (clamping it); and 2) if p; has three variables or less, there

is no need to “name” it; the pair < p;,; > can be used directly in %’

EXxaMPLE 8.1 Converting the “meeting” example; we first show the general case with “naming” (as if

the assumptions were of more then three variables):
Penalty WFF Ep (&)
1000 T+ meeting 1000(Ty — 21 M 4+ M)
1000 Ty« (sick —(— meeting)) 1000(T3SM — 2T — 5 — M + ThS + Th M)
1000 T3¢+ ( cold-only — meeting) 1000(—T3 — C + 273C + M — T3 M — T5C M)

1000 T4+ (cold-only —+ sick) 1000(—Ty — C + 2T4C + 5 — Ty — TyCS)
1 il -17%

10 T —~1075

100 T3 —100T7%

1000 Ta —1000T,

The energy function we get by summing the energy of the assumptions is:
100073 5M — 1000T3CM — 10007,CS — 200071 M -+ 1000755 + 1000753 + 200073C — 1000730 +

200074C — 1000745 + 1000M — 2000C + 99977 — 20107, — 110075 — 20007,. It is shown as a cubic

®Similar to Poole’s default naming [Poole 88].
10Tn contrast to the familiar 3-SAT, connectives in a sub-formula are not limited to disjunctions of literals,
11 This step is not necessary if we allow for high-order connectionist networks [Sejnowski 86].
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symmetric network in fig 1-a and as a quadratic network in fig 1-b. Since the assumptions in our

example have less then three variables each, we can generate a simpler (strongly equivalent) network

from the energy function of 3°; pi B, = 1(—M) + 100(C — CM) + 1000(C — CS5) (see fig 1-c).

Tigure 1: Equivalent symmetric networks for the meeting example (the numbers in the circles are
thresholds): a) Cubic; b) Quadratic; and ¢) quadratic for the simple conversion (no naming).

Theorem 3 Every energy funclion E is strongly equivalent to some PLOFF 1, such that Erankry =

Vranky +c.
The following algorithm generates a strongly equivalent PLOFF from an energy function:

1. Eliminate hidden variables (if any) from the energy function using the algorithm of [Pinkas 90a].

2. The energy function (with no hidden variables) is now brought into a sum-of-products form and
is converted into a PLOFT in the following way:
Let B(ZF) = >0, wi Hi‘:l z;, be the energy function.

We construct a PLOFF ¢ = {< —wj;, /\:;‘-_"1 zi, > w < 0} U {< uy, —1/\5;’31 z;, > wp > 0}.
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Vranky is equal to the sum of the positive weights when A z;, is true ([T X}, = 1) minus the sum of
the negative weights when - A Xj_ is true (JT X;, =0). On the other hand E(Z) is:
F- Y wr Y we N wiNue 5w
wg>ﬂl\nz;n=1 w,-(OAH:c;n=1 w;>t)l\/'\:r:;ﬂ w;<0 w;<0/\—-/\x;n
Therefore, B(Z) = Vranky(%) + 3, .o wi- The size of the PLOFF that is generated is of the same

order as the size of the original function (in its sum-of-products form or in its network form).
COROLLARY 8.1 Penalty calculus is strongly equivalent to the calculus of quadratic energy functions.

As a result, penalty logic can be used as a language to describe symmetric neural networks; it is
expressive enough fo represent in a compact way every such network, and for every sentence in this

language we can generate a compact symmetric neural network that represents the same WRF.

9. A sketch of a connectionist inference engine

Suppose a background PLOFF #, an evidence PLOFF e, and a standard logic WFF . We would
like to construct a connectionist network to answer one of the possible three answers: 1) p Uelp; 2)
Y U el=(—¢p); or 3) both ¥ }=¢ and ¥ J=(—p) (“unknown”). For simplicity let us first assume that the
evidence e is a strict conjunction of literals (atomic propositions or their negation) and that ¢ is an

atomic proposition. Later we’ll deseribe a general solution.

Intuitively, our connectionist engine is built out of two sub-networks, each that is trying to find a
satisfying model for ) U e. The first sub-network is biased to search for a model which satisfies also ¢,
whereas the second sub-network is biased to search for a model which satisfies —. If two such models
exist then we conclude that ¢ is “unknown” (3% U e entails neither ¢ nor —¢). I no model also satisfies

0, we conclude that 3 U el=—p, and if no model also satisfies —¢, we conclude that 1 Uel=gp.

To implement this intuition we first need to duplicate our background knowledge v and create
its copy ¥’ by naming all the atomic propositions 4 using A’. For each atomic proposition @ that
might participate in a query, we then add two more propositions: “QUERYG” and “‘UNKNOWNg”.

QUERYq is used to initiate a query Q: it will be externally clamped by the user, when he or she
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inquires about Q. UNKNOW N 4 represents the answer of the system. It will be set to TRUE if we

can conclude neither that v entails ¢ nor that v entails ¢.

Our inference engine can be therefore described (using the high-level language of penalty logic) by:

P searches for a model that satisfies also @

Uy’ searches for a model that satisfies also —Q

U{< ¢, (QUERYg—Q) >} bias 7 to search for a model that satisfies @
U{< ¢,(QUERYg—(-Q") >} bias ¢’ to search for a model that satisfies (=Q’)

U{< 6,(@A-Q)—UNKNOWNg >}  if two satisfying models exist that do not agree on @,
we conclude “UNKNOWN”
U{< 6,(Q=Q)=(-=UNKNOWNg) >} if despite the bias we are unable to find two such
satisfying models we conclude “UN K NOW Ng”
Using the algorithm of Theorem 2, we generate the corresponding networl.

To initiate a query about propositional @ the user externally clamps the unit QU ERYy. This causes
a small positive bias ¢ to be sent to unit @ and a small negative bias —¢ to be sent to Q'. Each of the
two sub-networks ¢ and ', searches for a global minimum (a satisfying model) of the original PLOFF.
The bias (¢) is small enough so it does not introduce new global minima. It may however, constrain
the set of global minima: if a satisfying model that also satisfies the bias exists then such model is in

the new set of global minima.

The network therefore tries to find models that satisfy also the bias rules. If it succeeds, we conclude
“UNKNOWN?”, otherwise we conclude that all the satisfying models agree on the same truth value for
the query. The “UNKNOWN?” proposition is then set to “false” and the answer whether ¥=¢ or
whether 9|=—¢ can be found in the proposition Q. If Q is “true” then the answer is ¥'[=p since Q holds

in all satisfying models. Similarly, if Q is false, we conclude that Y=g

When the evidence is a strict conjunction of literals we can add it to the background network
simply by clamping the appropriate atomic propositions, In the general case we need {o combine an
arbitrary evidence e and query an arbitrary WFF ¢: We do this by building an inference network for

PpUelU{< co, Qg >} and querying @, the new atomic proposition.

The network that was generated converges to the correct answer if it manages to find a global
minimum. An annealing schedule like in {Hinton, Sejnowski 86] may be used for such search. A slow
enough annealing is certain to find a global minimum and therefore the correct answer, but it might take

exponential time. Since the problem is NP-hard, we will probably not find an algorithm that will give
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us always the correct answer in polynomial time. Traditionally in Al, knowledge representation systems
traded the expressiveness of the language they use with the time complexity they allow [Levesque 84].12
The accuracy of the answer is usually not sacrificed. In our system, like in [Derthick 88] we trade the
time with the accuracy of the answer. We are given limited time resources and we stop the search when
this limit is reached. The annealing schedule can be planned to fit the time limitation and an answer is
given at the end of the process. Although the answer may be incorrect, the system is able to improve

its guess as more time resources are given.

10. Related work

Derthick [Derthick 88] was the first to observe that weighted logical constraints (which he called “cer-
tainties”) can be used for non-monotonic connectionist reasoning. We follow his direction and there are
many similarities and differences that will be discussed in the longer version of this paper. There are
however, two basic differences: 1) Derthick’s “Mundane” reasoning is based on finding the most likely
model that satisfies 2 WFF; his system is never skeptical; 2) Our system can be implemented using
standard low-order units, and we can use models like Hopfield nets or Boltzman machines that were

relatively well studied (e.g., a learning algorithm exists).

[Shastri 85] is a connectionist non-monotonic system for inheritance nets that uses evidential rea-
soning based on maximurm likelihcod. Our approach is different; we use low-level units and we are
not restricted to inheritance networks.!® Shastri’s system is gnaranteed to work, whereas we trade the

correctness with the time.

Our WRFs have a lot in common with Lehmann’s ranked models [Lehmann 89]. His result about the
relationship between rational consequence relations and ranked models can be applied to our paradigm;
yielding a rather strong conclusion: for every conditional knowledge base we can build a ranked model
(for the rational closure of the knowledge base) and implement it as a WRIF using a symmetric neural
net. Also, any symmetric neural net is implementing some ranked model and therefore induces a rational

consequence relation.

12Qommectionist systems like [Shastri, Ajjanagadde 90] and [Holdobler 80] trade expressiveness with time complexity.
13We can easily extend our approach to handle inheritance nets, by looking at the atomic propositions as predicates
with free variables. Those variables are bound by the user during query time.
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Our penalty logic has some similarities with systems that are based on the user specifying priorities
to defanlts (like [Brewka 89), [Lifschitz 85])). The closest is Brewka’s system that is based on levels of
reliability. In fact Brewka’s system for propositional logic can be mapped to penalty logic by selecting
large enough penalties, Systems like [Poole 88] (with strict specificity) can be implemented using our
architecture, and the penalties can therefore be generated automatically from knowledge bases described
in simple conditional languages (that do not force the user to state explicitly numbers or priorities to
the assumptions). There are however several differences: 1) Our language is more expressive and we can
implicitly state a preference relation between sets of assumptions. 2) Brewka is concerned with maximal
consistent sets in the sense of set inclusion, while we are interested in sub-theories with maximum
cardinality (generalized definition). As a result we prefer theories with “more” evidence. For example
consider the Nixon diamond of example 7.2 when we add < 10, N—FF > and < 1, FF—-P > (Nixon
is also a football fan and football fans tend to be not pacifists). Most other NM systems [Touretzky 86],
[Simari,Loui 90], [Geffner 89] will still not decide whether P is true or false, Our system decides that
—P holds (based on more evidence!?) since it is better to defeat the one assumption that quakers tend
to be pacifists, than the two assumptions supporting —P. We can correct this behavior by multiplying
the penalty for Q—P by two. Further, a network with learning capabilities can adjust the penalties

autonomously and thus develop its own intuition.

Because we do not allow for arbitrary partial orders ([Shoham 88] [Geffner 89],[Lehmann 89]) of
the models, there are other fundamental problematic cases where our system concludes the truth (or
falsity) of a proposition while other systems are skeptical. For the following example!® we have a clear
intnition of what should be the preference relation; however, there is no WRTF that induces such order.
E.g. A D Bf{strict implication), B—~C, A—~C, D—C, E—-C. Given A A D as evidence, C should
be “unknown” and therefore f(4,B,C,D,-E) = f(A,B,~C,D,FE). When given EADAB, C is
“unknown” and therefore f(4, B,~C, D, E) = f(-A,B,C,D,E). Given BA E, C is “unknown” and
therefore f(—A,B,C, D, E) = f(A, B,~C,—D, E). However, given A as evidence we prefer to conclude
—C since A~+—C' is more specific then B—C, and therefore f(4, B,~C,=D,E) < f(4, B,C, D,=E).

Of course no such function f exists (otherwise we had: f(4, B,C,D,—E) < f(4, B,C, D,-E)).

'4and not because it is inherently ambiguity-blacking.
15Thanks to Hector Geffner for suggesting this example.
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11. Conclusions

We have developed a notion of reasoning using world-rank-functions independently of the use of symbolic
languages. This concept suits well the connectionist sub-symbolic approach. We showed that any
symmetric neural network can be viewed as if it is searching for & satisfying model of such a function,

and every such function can be approximated using these networks.

Several equivalent high-level languages can be used to describe symmetric neural networks: 1)
quadratic energy functions [Hopfield 82]; 2) high-order energy functions with no hidden units [Pinkas 90a];
3) propositional logic (only weakly equivalent), and finally 4) penalty logic. All these languages are
expressive enough to describe any symimetric network and every sentence of such languages can be
translated into a symmetric network. We gave algorithms that perform these transformations, which

are magnitude preserving (except for propositional calculus).

We have developed a calculus based on assumptions augmented by penalties that fits very naturally
the symmetric models’ paradigm. This calculus can be used as a platform for defeasible reasoning
and inconsistency handling. Some NM systems can be mapped to this paradigm and therefore suggest
settings of the penalties. When the right penalties are given (for example using algorithms like in
[Brewka 89] that are based on specificity), penalty calculus features a non-monotonic behavior that
(usually) matches our intuition. Penalties do not necessarily have to come from a syntactic analysis
of a symbolic language; since those networks can learn, it is theoretically possible for such networks
to adjust their WRFs and develop their own intuition.!® It is possible to show, though, that some

intuitions cannot be expressed in world-rank-functions.

Revision of the knowledge base and adding new evidence are easy tasks if we use penalty logic to
describe the network: adding (or deleting) a PLOFF is simply computing the energy function of the
new PLOFF and then adding (deleting) it to the background energy function. A local change to the

PLOFF describing the network is translated to a local change in the network.

We sketched a connectionist inference engine for penalty calculus. When a query is clamped, the

global minima of such network correspond exactly to the correct answer. Using massively parallel

16By intuition I mean: the set of conclusions drawn from a piece of knowledge. This set is dependent only on the WRF.
By adjusting the WRF a network can therefore develop its own intuition.
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hardware convergence should be very fast, although the worse case for correct answer is still exponential.

The mechanism however trades the soundness of the answer with the time given to solve the problem.
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