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Abstract

Propositional quantifiers are added to a propositional modal language

with two modal operators. The resulting language is interpreted over so-

called products of Kripke frames whose accessibility relations are equiva-

lence relations, letting propositional quantifiers range over the powerset of

the set of worlds of the frame. It is first shown that full second-order logic

can be recursively embedded in the resulting logic, which entails that the

two logics are recursively isomorphic. The embedding is then extended to

all sublogics containing the logic of so-called fusions of frames with equiv-

alence relations. This generalizes a result due to Antonelli and Thomason,

who construct such an embedding for the logic of such fusions.

1 Introduction

Propositional modal logics allow the formulation of general laws for a given
modality. E.g., claiming �p → p to be a theorem of the logic of metaphysical
necessity means claiming that what is necessary is the case. But not all general
statements of interest to philosophers have this simple universal form. An ex-
ample is the claim that every possible proposition is strictly implied by some
possible proposition which strictly implies, for every proposition, either it or
its negation. To express such statements, it is natural to introduce quantifiers
binding the propositional variables of standard modal logic, with which it can
be formulated as follows:

(At) ∀p(�p→ ∃q(�q ∧ �(q → p) ∧ ∀r(�(q → r) ∨ �(q → ¬r))))

Such quantifiers have a long history in modal logic, having been employed by
pioneers such as Lewis and Langford (1932, p. 179) and Kripke (1959, p. 12).
(At) is also of great philosophical interest: A proposition which strictly implies,
for each proposition, either it or its negation, can be thought of as playing
the role of a possible world, so the question whether (At) is true is crucial to
the philosophical debate about the nature of possible worlds, and in particular
the proposal that worlds can be taken to be propositions of a special kind.
Such matters have been, and continue to be, discussed at length in philosophy
and logic; see, e.g., Gallin (1975, pp. 79–89), Stalnaker (1976), Fine (1977),
Williamson (2013, pp. 102–108), and Holliday (forthcoming). It is clear that the
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philosophical investigation of such matters will benefit greatly from a systematic
formal investigation of the role which (At) plays in theorizing about propositions
and modality; this motivates the formal study of modal logics with propositional
quantifiers.

The study of propositionally quantified modal logics received some attention
around 1970, with contributions by Bull (1969), Fine (1970), Kaplan (1970),
and Gabbay (1971). The most important strand of investigation interprets log-
ics with propositional quantifiers over Kripke frames. Taking the elements of
the set W in a Kripke frame �W,R� to represent possible worlds, and taking
a proposition to correspond to a collection of worlds (the worlds in which it is
true), propositional quantifiers are interpreted as ranging over the powerset of
W in a Kripke frame �W,R�. Each class of Kripke frames therefore determines
a propositionally quantified modal logic as usual, namely as the set of formu-
las true in each world of each such frame on any valuation function mapping
propositional variables to sets of worlds. As shown by Fine (1970), many of
the classes of frames which give rise to interesting propositional modal logics
lead to propositionally quantified modal logics which are not recursively axiom-
atizable. These results were later strengthened and unified by Kaminski and
Tiomkin (1996), who show for every class of frames containing all frames vali-
dating S4.2, i.e, all reflexive, transitive and convergent frames, that the set of
sentences of second-order predicate logic valid on all standard models (hence-
forth SOL) can be recursively embedded in the propositionally quantified logic
of this class of frames. It follows by routine considerations that the two sets
are recursively isomorphic; see Kremer (1993) for a careful presentation of the
relevant complexity-theoretic matters. The fact that adding propositional quan-
tifiers to propositional modal logic often gives rise to such a complex logic may
be one reason why the study of propositional quantifiers has been comparatively
marginal within modal logic.

Although propositional quantifiers often lead to highly complex modal logics,
this is not always the case. The most important result in this regard concerns the
propositionally quantified modal logic of frames whose relations are equivalence
relations. Kaplan (1970) and Fine (1970) show it to be decidable, and provide
recursive axiomatizations. Such results are of particular interest to philosophers
interested in the role of (At) in thinking about metaphysical necessity, a modal-
ity which is often considered to be governed by the modal logic S5, the set of
formulas valid on all and only those frames whose relation is an equivalence
relation. Fine (1977) suggests that not just worlds, but also instants (of time)
can be understood as special propositions, relying on a variant of (At) using a
temporal operator for always, for which S5 is plausible as well. This proposal
suggests the question whether a propositionally quantified modal logic with two
operators, one formalizing necessarily and one formalizing always, each of which
individually is governed by the theorems of S5, is recursively axiomatizable.

Such a logic is considered by Antonelli and Thomason (2002), who investi-
gate the propositionally quantified bimodal logic of the class of frames which
contain two equivalence relations interpreting the two modalities. They show
that this logic is not recursively axiomatizable by embedding SOL in it, a re-
sult for which Kuhn (2004) provides a simpler proof. While this is interesting, it
is a somewhat limited result, since there is a range of classes of bimodal frames
which give rise to bimodal logics whose two unimodal fragments are both S5,
but which differ in the interaction principles between the two modalities. This
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paper strengthens the result, showing how to embed SOL in any logic of an in-
terval of propositionally quantified bimodal logics whose lower bound is the logic
considered by Antonelli and Thomason. The interval contains many of the most
plausible candidates of a combined modal-temporal logic, and so shows that in
investigating principles like (At) in such a setting, it may well be impossible to
characterize the logical truths using a recursive axiom system.

2 Frames and Fusions

Let the formal language to be used be based on a countable set of propositional
variables Φ, using the Boolean operators ¬ for negation and ∧ for conjunction,
two unary modal operators � and �, and a universal quantifier ∀ binding propo-
sitional variables. Other Boolean operators such as ∨, → and ↔ are understood
as syntactic abbreviations, and similarly for �, �, and ∃, where � ∶= ¬�¬ and
� ∶= ¬ � ¬.

Let a unimodal frame be a pair F = �W,R� such that W is a set, called the set
of worlds, and R is a binary relation on W , called the accessibility relation. Let
an equivalence frame be a frame �W,R� such that R is an equivalence relation on
W . A bimodal frame is a triple F = �W,R−,R�� such that W is a set, and R− and
R� are binary relations on W . Relative to a valuation function V ∶ Φ → P(W )
and a world w ∈W , truth is defined inductively as usual:

F, V,w � p iff w ∈ V (p)

F, V,w � ¬ϕ iff not F, V,w � ϕ

F, V,w � ϕ ∧ ψ iff F, V,w � ϕ and F, V,w � ψ

F, V,w � �ϕ iff F, V, v � ϕ for all v ∈W such that R−wv

F, V,w � �ϕ iff F, V, v � ϕ for all v ∈W such that R�wv

F, V,w � ∀pϕ iff F, V [P �p], w � ϕ for all P ⊆W

where V [P �p](p) = P and V [P �p](q) = V (q) for all q ∈ Φ�{p}.
For any bimodal frame F = �W,R−,R��, let a formula ϕ be valid on F if

F, V,w � ϕ for all V ∶ Φ→ P(W ) and w ∈W . For any class C of bimodal frames,
let ϕ be valid on C if ϕ is valid on all frames in C. Let the quantified logic of C,
written ΛC, be the set of formulas ϕ valid on C.

Antonelli and Thomason (2002) and Kuhn (2004) consider the class FE of
fusions of equivalence frames : the class of frames F = �W,R−,R�� such that
R− and R� are both equivalence relations on W . They establish that ΛFE is
recursively isomorphic to SOL. FE is minimally restrictive among classes of
bimodal frames validating the theorems of S5 for both unimodal fragments: in
any bimodal frame which is not a fusion of equivalence frames, at least one
accessibility relation is not an equivalence relation, and so some theorem of S5
for one of the two modalities is not valid on this frame. To a first approximation,
one can therefore think of FE as appropriate for bimodal systems containing two
S5 modalities which are completely independent.
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3 Products

In many applications of bimodal logics, the two modal operators are related in
non-trivial ways. E.g., consider a combined spatio-temporal modal logic of two
operators everywhere and always. In this case, one might want to require the
two operators to commute:

� � p↔ � � p

How might one construct bimodal frames for a logic of everywhere and always

which validate this formula? A natural idea is to start with two sets of indices,
one for locations and one for times, associated with equivalence relations of
being spatially connected and being temporally connected. The set of worlds
is then the set of location-time pairs. Two such pairs stand in the accessibility
relation for everywhere if they contain the same time index and the two location
indices are spatially connected; they stand in the accessibility relation for always
if they contain the same location index and the two time indices are temporally
connected.

Thinking of the two sets of indices with their associated equivalence relations
as equivalence frames, this suggests a more general procedure, which allows one
to combine any two unimodal frames into a bimodal frame; this is known as
forming the product of two unimodal frames. Formally, for uni-modal frames
F− = �W−,R−� and F� = �W�,R��, let the product of F− and F� be the bimodal
frame F− × F� = �W− ×W�,R

′

−
,R′
�
�, where

R′
−
�x−, x���y−, y�� iff R−x−y− and x� = y�, and

R′
�
�x−, x���y−, y�� iff x− = y− and R�x�y�.

Let PE be the class of products of equivalence frames.
Bimodal frames along these lines were already explored in (Segerberg, 1973),

and it follows from Segerberg’s results that the unquantified bimodal logic of
PE is decidable. Many applications of bimodal logic can be understood as in-
volving versions of such products. For more on the general theory of products
and their applications, see Gabbay and Shehtman (1998), Gabbay et al. (2003)
and Kurucz (2007). In fact, the case which motivates the present study, the
modal-temporal logic of necessarily and always, is often investigated using such
products, e.g., in Kaplan (1978).

The rest of this section proves that just like ΛFE, the propositionally quan-
tified logic of fusions of equivalence frames, ΛPE, the propositionally quantified
logic of products of equivalence frames, is recursively isomorphic to SOL.

Theorem 1. ΛPE is recursively isomorphic to SOL.

As noted above, it suffices to construct a recursive embedding of SOL in
ΛPE. This will be done in several stages; first, it will be noted that SOL can
be recursively embedded in one of its fragments, then it will be shown how to
recursively embed the logic of a subclass of PE in ΛPE, and finally, a recursive
embedding of the fragment of SOL in the logic of the relevant subclass of PE
will be specified.

The restricted fragment of SOL does not contain any non-logical constants,
no logical identity connective, and only binary second-order variables. Call this
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fragment SOL
′; it can be obtained by intersecting SOL with the set of sen-

tences built up from first-order variables and binary second-order variables
(both assumed to form countably infinite sets), allowing only atomic predi-
cations, Boolean combinations (for simplicity, using only ¬ and ∧) and first-
and second-order quantifiers. Montague (1965, p. 257) already notes that every
second-order sentence is equivalent, on standard models, to one containing only
binary second-order variables, attributing the result to Kaplan. Although no
explicit mapping is specified, the existence of a recursive embedding of SOL in
SOL

′ follows, e.g., from a result due to Rabin and Scott, presented in Nerode
and Shore (1980, section 1). In contrast to frames, where the set W may be
empty, it will be assumed that only non-empty sets serve as standard models
for second-order logic; this choice is immaterial, but simplifies the presentation
of the results.

Turning to the required subclass of PE, define first a universal frame to be
a unimodal frame F = �W,R� such that R is the universal relation on W , i.e.,
R = W 2. Let a square frame be the product of a universal frame with itself.
Let PU be the class of products of universal frames, and S the class of square
frames. It will now be shown how to recursively embed ΛS in ΛPE.

For any bimodal frame F = �W,R−,R�� and w ∈W , let Fw be the subframe

generated by w, defined as usual (see, e.g., Blackburn et al. (2001, p. 138)). The
following lemma extends a standard observation on subframes to the present
language with propositional quantifiers:

Lemma 2. A formula ϕ is valid on a bimodal frame F = �W,R−,R�� iff for all

w ∈W , ϕ is valid on Fw.

Proof. Let w ∈W , and let Fw = �W
′,R′

−
,R′
�
� be the subframe generated by w.

For each V ∶ Φ → P(W ), let V ′ ∶ Φ → P(W ′) be the mapping p � V (p) ∩W ′.
An induction on the complexity of ϕ shows that for all V ∶ Φ → P(W ) and
v ∈W ′, F, V, v � ϕ iff Fw, V

′, v � ϕ. As all the other cases are routine, consider
the induction step for propositional quantifiers:

F, V, v � ∀pϕ iff F, V [P �p], v � ϕ for all P ⊆W

iff Fw, (V [P �p])
′, v � ϕ for all P ⊆W (by IH)

iff Fw, V
′[P �p], v � ϕ for all P ⊆W ′

iff Fw, V
′, v � ∀pϕ

Thus a formula is falsifiable at a world v in Fw just in case it is falsifiable at v
in F, from which the claim follows.

Lemma 3. ΛPE = ΛPU.

Proof. The products of universal frames are the subframes generated by worlds
of products of equivalence frames, so the claim follows from Lemma 2.

Two syntactic abbreviations in the bimodal language are needed to construct
the embedding of ΛS in ΛPE. It is easy to see that the following formula expresses
– over products of universal frames – that p is an atomic (singleton) proposition:

atom(p) ∶=�� p ∧ ∀q(� � (p→ q) ∨ � � (p→ ¬q))

Fact 4. For any frame F in PU, valuation function V and world w: F, V,w �

atom(p) iff V (p) is a singleton set.
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Propositions in products of universal frames can be understood as relations
between the two underlying sets of worlds. It is easy to see that the following
construction expresses – over products of universal frames – that p is a bijection:

∆(p) ∶= ��(p ∧ ∃q(atom(q) ∧ �(p→ q)))∧

��(p ∧ ∃q(atom(q) ∧ �(p→ q)))

Fact 5. For any product F of universal frames on sets W− and W�, valuation

function V and world w: F, V,w �∆(p) iff V (p) is a bijection from W− to W�.

Thus, ∃p∆(p) expresses – over products of universal frames – the property of
being isomorphic to a square frame; with this, ΛS can be embedded in ΛPU = ΛPE:

Lemma 6. The mapping ϕ � (∃p∆(p) → ϕ) recursively embeds ΛS in ΛPU =

ΛPE.

Proof. If ϕ ∉ ΛS, then there is a square frame on which ϕ is not valid. This is
also a product of universal frames, on which, by Fact 5, ∃p∆(p) is valid. Thus
this frame shows that ∃p∆(p)→ ϕ is not valid on products of universal frames,
and so ∃p∆(p)→ ϕ ∉ ΛPU.

If ∃p∆(p) → ϕ ∉ ΛPU, then there is a universal frame on which ∃p∆(p) → ϕ

is not valid. Thus relative to some valuation function V and world w, ∃p∆(p)
is true and ϕ is false. By Fact 5, it follows that the frame is isomorphic to a
square frame. Since validity is invariant under isomorphisms, ϕ is invalid on
some square frame, and so ϕ ∉ ΛS.

It therefore only remains to recursively embed SOL
′ in ΛS. The idea is to

map each SOL
′-sentence to a sentence of the bimodal language such that the

first is true when interpreted on a set non-empty D just in case the second
is true when interpreted on the square frame FD which is the product of the
universal frame on D with itself. The task is thus to use the bimodal language
to simulate, on any such square frame, quantification over elements of D and
binary relations on D.

To simulate first-order quantification, any d ∈D will be uniquely associated
with a proposition of FD. There are many options; a natural one is given by the
function γD ∶ d � {�d, e� ∶ e ∈ D}. Call a proposition a column in FD if it is in
the range of γD. This is easily seen to be expressible in the bimodal language
over square frames as follows:

column(p) ∶=�� (p ∧ ∀q(�(p→ q) ∨ �(p→ ¬q)))

Fact 7. For any square frame FD, valuation function V and world w: F, V,w �

column(p) iff V (p) is a column in FD.

First-order quantification over D is thus easily simulated using propositional
quantification restricted to columns.

Quantification over binary relations on D may seem straightforward to simu-
late, since the propositions in FD are simply subsets of D2, i.e., binary relations
on D. One might therefore try to simulate such second-order quantifiers directly
using propositional quantifiers. The difficulty with this proposal is simulating
predications: a bimodal formula is needed which, given an arbitrary proposition
P ⊆ D2 and columns γD(d) and γD(e), expresses that �d, e� ∈ P . No formula
suggests itself.
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Instead, it is helpful to fix an arbitrary permutation δ on D; that a propo-
sition is a permutation can be expressed using ∆(p). Let a binary relation R

not be represented by itself, taken as a proposition, but by the proposition
δ.R = {�d, δ(e)� ∶ �d, e� ∈ R}. Since the map R � δ.R is a permutation of P(D2),
unrestricted propositional quantification can still be used to simulate binary
second-order quantification. And it is now possible to express in the bimodal
language that �d, e� ∈ R using the propositions γD(d), γD(e) and δ.R: this is the
case iff �d, δ(e)� ∈ δ.R, and so iff there is a world in which δ.R and γD(d) are
true, and from which a world is �-accessible where both δ and γD(e) are true.

The following diagram illustrates this idea. The elements of D are depicted
as arranged horizontally in some arbitrary order, and vertically in the corre-
sponding order obtained by applying δ to each element. The columns of d and
e are indicated using dashed lines.

d1 d2
. . .

δ(d1)
δ(d2)

⋮

D

D

d e

δ(e)
�d, δ(e)�

To make this idea precise, associate, injectively, each first-order variable x with a
propositional variable px and each binary second-order variable X with a propo-
sitional variable pX . A further variable q will be used (to refer to a permutation
of the domain as required for the simulation). With these propositional vari-
ables, a mapping from the second-order language to the bimodal language is
defined recursively:

(Xxy)∗ ∶=�� (pX ∧ px ∧�(q ∧ py))

(¬A)∗ ∶= ¬A∗

(A ∧B)∗ ∶= A∗ ∧B∗

(∃xA)∗ ∶= ∃px(column(px) ∧A
∗)

(∃XA)∗ ∶= ∃pXA∗

Consider a non-empty set D and permutation δ of D. For any assignment func-
tion a of first- and second-order variables to elements of D and binary rela-
tions on D, let aδ ∶ Φ → P(D2) such that aδ(q) = δ, aδ(px) = γD(a(x)) and
aδ(pX) = δ.a(X) (as defined above), for all first- and second-order variables
x�X. Writing D,a � A for A being true on D under the assignment function a,
the next lemma shows that ⋅∗ successfully simulates second-order logic, in the
following sense:
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Lemma 8. For any non-empty set D, permutation δ of D, second-order as-

signment function a on D, second-order formula A, and w ∈D2,

D,a � A iff FD, aδ, w � A∗.

Proof. By induction on the complexity of A. The most interesting case of the
induction is the base case; the other cases are routine:

FD, aδ,w � (Xxy)∗

iff FD, aδ,w ��� (pX ∧ px ∧�(q ∧ py))

iff there is a �d, e� ∈ aδ(pX) ∩ a
δ(px) such that for some d′ ∈D, �d′, e� ∈ aδ(q) ∩ aδ(py)

iff there is a �d, e� ∈ δ.a(X) ∩ γD(a(x)) such that for some d′ ∈D, �d′, e� ∈ δ ∩ γD(a(y))

iff there is a �d, e� ∈ δ.a(X) such that d = a(x) and δ−1(e) = a(y)

iff �a(x), δ(a(y))� ∈ δ.a(X)

iff �a(x), a(y)� ∈ a(X)

iff D,a �Xxy

As a last step, a variant ⋅† of the mapping ⋅∗ is defined which guarantees
that q is interpreted as a permutation:

A†
∶= ∀q(∆(q)→ A∗)

The next lemma shows that this has the intended effect when applied to sen-

tences of the second-order language:

Lemma 9. For any second-order sentence A, A† ∈ ΛS iff A ∈ SOL
′.

Proof. If A† ∉ ΛS, then there is a set D, valuation function V and w ∈ D2 such
that FD, V,w �∆(q)→ A∗. Thus V (q) is a permutation of D. Since only q may
be free in A∗, for any second-order assignment function a, FD, aV (q), w � A∗. So
by Lemma 8, D,a � A, whence A ∉ SOL

′.
Conversely, if A ∉ SOL

′, then D,a � A for some non-empty set D and
second-order assignment function a. Let δ be a permutation of D and w ∈ D2;
by Lemma 8, FD, aδ,w � A∗. Since δ is a permutation, FD, aδ, w �∆(q), and so
FD, aδ,w � ∀q(∆(q)→ A∗), whence A† ∉ ΛS.

Proof of Theorem 1. As noted above, SOL can be recursively embedded in
SOL

′. Lemma 9 recursively embeds SOL
′ in ΛS. Lemma 6 recursively embeds

ΛS in ΛPE. Composing the three embeddings produces a recursive embedding of
SOL in ΛPE, which, as remarked earlier, shows that the two logics are recursively
isomorphic.

4 In-Between

Fusions and products are among the best-studied ways of constructing a class
of bimodal frames from two classes of unimodal frames. As fusions impose in
a certain sense minimal constraints on the interactions of the two modal oper-
ators and products impose quite strong constraints on their interactions, it is
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of interest to consider combinations in strength between these two – compare
the combinations surveyed in Kurucz (2007). In this section, the embedding of
second-order logic in propositionally quantified bimodal logic is generalized to
any set of formulas between the logic of fusions of equivalence frames and the
logic of products of equivalence frames.

All that is required for the proof is to express – over fusions of equivalence
frames – the property of being a world whose generated subframe is isomorphic
to a product of universal frames. This can be done using the conjunction of the
following sentences:

com ∶= ∀p � �(� � p↔ � � p)

sing ∶= ∀p � �(∀q∀r((�q ∧ �r)→ � � (p→ (q ∧ r)))→

∀q(� � (p→ q) ∨ � � (p→ ¬q)))

The first guarantees a strong form of commutativity between � and �; adding
the second guarantees that every non-empty set of worlds which are all related
to each other by both relations is a sing leton set.

Lemma 10. For any frame F in FE, valuation function V , and world w:

F, V,w � com ∧ sing iff Fw is isomorphic to a frame in PU.

Proof. The if direction is straightforward to verify; assume therefore that F, V,w �
com ∧ sing. Let F = �W,R−,R�� and Fw = �W

′,R′
−
,R′
�
�. For a binary relation R

and set X, write R[X] for {y ∶ there is an x ∈X such that Rxy}.
Claim 1: W ′

= R−[R�[{w}]]. Since R− and R� are equivalence relations, it
suffices to show that (i)R−[R−[R�[{w}]]] ⊆ R−[R�[{w}]] and (ii)R�[R−[R�[{w}]]] ⊆
R−[R�[{w}]]. (i) follows from the transitivity ofR−. For (ii), assume wR�vR−uR�t.
Then by com, wR�vR�sR−t for some s ∈W . So by transitivity of R�, wR�sR−t.

Claim 2: For any v, u ∈ W ′, [v]R′
−
∩ [u]R′

�
≠ �. Let v, u ∈ W ′; by claim 1,

there are t, s ∈ W ′ such that vR′
−
tR′
�
wR′

�
sR′
−
u. So vR′

−
tR′
�
sR′
−
u, and thus by

com, vR′
−
tR′
−
rR′
�
u for some r ∈W ′. So vR′

−
rR′
�
u, as required.

Claim 3: For any v, u ∈ W ′, �[v]R′
−
∩ [u]R′

�
� ≤ 1. Assume for contradiction

that there are distinct t, s ∈ [v]R′
−
∩ [u]R′

�
. Consider a valuation which maps p

to {t, s}. By claim 1, the main conditional of sing must be true at t and s under
this valuation. However, while the antecedent is true, the consequent is false,
as can be seen by interpreting q as {t} or {s}, contradicting the truth of the
conditional.

Define F∗ to be the product of the universal frames based on the quotient sets
W ′�R′

�
and W ′�R′

−
(the sets of equivalence classes of the relevant equivalence

relation). It now suffices to show that the map f ∶ v � �[v]R′
�
, [v]R′

−
� on W ′ is

an isomorphism from Fw to F∗. Surjectivity follows by claim 2, injectivity by
claim 3, and that f respects the accessibility relations is straightforward.

Theorem 11. SOL can be recursively embedded in every set Λ such that ΛFE ⊆

Λ ⊆ ΛPE.

Proof. Assume ΛFE ⊆ Λ ⊆ ΛPE. Define a mapping τ ∶ ϕ� ((com ∧ sing)→ ϕ) on
the modal language. τ recursively embeds ΛPU in Λ, as will now be shown:

If ϕ ∉ ΛPU, then ϕ is not valid on some product of universal frames. By
Lemma 10, com ∧ sing is valid on this frame, so τ(ϕ) is not valid on it. Thus
τ(ϕ) ∉ ΛPE, and since Λ ⊆ ΛPE, τ(ϕ) ∉ Λ.
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If τ(ϕ) ∉ Λ, then as ΛFE ⊆ Λ, τ(ϕ) ∉ ΛFE. So there is a fusion of equivalence
frames F on which (com ∧ sing) → ϕ is not valid. Thus com ∧ sing is true and
ϕ is false relative to some valuation function and world w. By Lemma 10, it
follows that Fw is isomorphic to a product of universal frames. Since truth is
invariant under taking generated subframes (see the proof of Lemma 2) and
isomorphisms, it follows that there is a product of universal frames isomorphic
to Fw on which ϕ is not valid. Thus ϕ ∉ ΛPU.

As shown in Lemma 3, ΛPU = ΛPE, so τ recursively embeds ΛPE in Λ. Since
Theorem 1 recursively embeds SOL in ΛPE, composing the embeddings produces
a recursive embedding of SOL in Λ.

5 Conclusion

The propositionally quantified modal logic of equivalence frames is decidable,
but this does not extend to the propositionally quantified bimodal logic of frames
with two equivalence relations: Antonelli and Thomason (2002) show that full
second-order logic can be recursively embedded in the latter. Here, it is shown
that this holds as well for a much stronger propositionally quantified bimodal
logic, the logic of products of equivalence frames, as well as all logics in the
interval between these two logics. In particular, this shows that many of the
most natural candidates for the propositionally quantified modal-temporal logic
of necessarily and always are not recursively axiomatizable. Such logics are of
particular interest for a proposal of Fine (1977) that worlds and instants of
time can be understood as special propositions. In systematically investigating
this proposal using a propositionally quantified modal-temporal logic, it may
well not be possible to use a recursive axiomatization to characterize the logical
truths.
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