
UC Irvine
ICS Technical Reports

Title
Propositional semantics for disjunctive logic programs

Permalink
https://escholarship.org/uc/item/1zk0t50q

Authors
Ben-Eliyahu, Rachel
Dechter, Rina

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1zk0t50q
https://escholarship.org
http://www.cdlib.org/

Propositional Semantics for Disjunctive

Logic Programs

Rachel Ben-EIiyahi^
rackel@cs. ucla.edu

Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

Rina Dechter

dechter@ics.uci.edu

Information and Computer Science

University of California, Irvine, CA 92717

Technical Report 92-66

April, 1992

revised December, 1992

2nd revision, April, 1993

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

To appear in the Annals of Mathematics and Artificial Intelligence. Appeared in the Pro
ceedings of the Logic Programming Conference, Washington, DC, 1992.

This work was supported in part by grants NSF IRI-88-21444, AFOSR900136, GE Corporate
R&D, Toshiba of America, and by Xerox Palo Alto.

Prepositional Semantics for Disjunctive

Logic Programs

Rachel Ben-Eliyahu

Cognitive Systems Laboratory

Computer Science Department

University of California

Los Angeles, California 90024

rachel@cs.ucla. edu

Rina Dechter

Information & Computer Science

University of California

Irvine, California 92717

dechter@ics. uci. edu

May 17, 1993

Abstract

In this paper we study the properties of the class of head-cycle-free

extended disjunctive logic programs (HEDLPs), which includes, as a

special case, all nondisjunctive extended logic programs. We show that

any propositional HEDLP can be mapped in polynomial time into a

prepositional theory such that each model of the latter corresponds

to an answer set, as defined by stable model semantics, of the former.

Using this mapping, we show that many queries over HEDLPs can be
determined by solving propositional satisfiability problems.

Our mapping has several important implications: It establishes
the NP-completeness of this class of disjunctive logic programs; it
allows existing algorithms and tractable subsets for the satisfiability
problem to be used in logic programming; it facilitates evaluation of
the expressive power of disjunctive logic programs; and it leads to the
discovery of useful similarities between stable model semantics and
Clark's predicate completion.

1 Introduction

Stable model semantics for logic programs [BF87, Fin89, GLOl] successfully
bridges the gap between two lines of research — default reasoning and logic

programming. Gelfond and Lifschitz [GL91] pointed out the need for explicit
representation of negated information in logic programs and accordingly de
fined extended logic programs as those that use classical negation in addition

to the negation-as'failure operator. They then generalized stable model se
mantics for the class of extended logic programs.

One advantage of stable model semantics is that it is closely related to
the semantics of Reiter's default logic [Rei80], and within the framework of
default logic an extended logic program may be viewed as a default theory
with special features. This relationship implies that insights, techniques, and
analytical results from default logic can be applied in logic programming, and

vice versa. The work presented here puts this observation into practice. We

use techniques developed for answering queries on default theories [BED91,
BED92] to compute answer sets for disjunctive logic programs according to
stable model semantics. We also show how stable model semantics can be

given an interpretation in prepositional logic.
Specifically, we show that a large class of extended disjunctive logic pro

grams (EDLPs) can be compiled in polynomial time into a prepositional

theory such that each model of the latter corresponds to an answer set of

the former. Consequently, query answering in such logic programs can be

reduced to deduction in prepositional logic. This reduction establishes the

NP-completeness of various decision problems regarding query answering in

such logic programs and suggests that any of a number of existing algo
rithms and heuristics known for solving satisfiability become applicable for
computing answer sets. Moreover, known tractable classes for satisfiability
lead to the identification of new tractable subsets of logic programs. As an

example we introduce several new tractable subsets of logic programs which
correspond to tractable subsets of constraints satisfaction problems (CSPs).

Aside from the computational ramifications, our translation provides an

alternative and, we believe, clearer representation of stable model semantics,

expressed in the familiar language of propositional logic. This facilitates
evaluation and comparison of various semantic proposals and allows investi
gation of their expressive power. In particular, it highlights useful similarities
between stable model semantics and Clark's predicate completion.

Our translation does not apply to the full class of EDLPs but only to
a subclass (albeit a large one) of head-cycle-free extended disjunctive logic

programs (HEDLPs). Note that this cl<iss contains any extended disjunction-

free logic program, thus including the majority of logic programs.

The rest of the paper is organized as follows: In Section 2 we review the

definition of HEDLPs and their stable model semantics and present some

new characterizations of answer sets for such programs. Section 3 shows
how an HEDLP can be mapped into a propositional theory and discusses

the properties of our mapping. Section 4 illustrates four outcomes of the
translation concerning the expressiveness of the language, its complexity, its
tractability, and its relationship to Clark's predicate completion. In Section
5 we explain the relevance of our work to Reiter's default logic, in Section 6
we mention relevant work by others, and in Section 7 we provide concluding

remarks. Most of the proofs appear in the Appendix.

2 Extended Disjunctive Logic Programs

Extended disjunctive logic programs (EDLPs) are disjunctive logic programs

with two types of negation: negation by default and classical negation. They
were introduced by Gelfond and Lifschitz [GL91], who defined an EDLP <ls
a set of rules of the form

•^11 •• •I ^k+l1•-M̂ k+m> i ^ot Lk^rn+n (1)

where each Li is a literal and not is a negation-by-default operator. The

symbol '|' is used instead of 'V' to distinguish it from the classical V used
in classical logic. A literal appears positive in the body of a rule if it is not
preceded by the not operator. A literal appears negative in the body of a
rule if it is preceded by the not operator.^

Example 2.1 Suppose we know that a baby called Adi was born. We also
know that a baby, if there is no reason to believe that it is abnormal, is normal
and that normal babies are either boys or girls. This information could be
encoded in a disjunctive logic program as follows:

^Note that positive (negative) literal and a literal that appears positive (negative) m a
body of a rule denote two different things (see Example 2.1).

Baby(x), not Abnormal(x)

-NormaLbaby(x).

The literal Abnormal(x) appears negative in the body of the second rule. The

literal NormaLbaby(x) appears positive in the body of the third rule.

Gelfoncl and Lifschitz have generalized stable model semantics so that it can

handle EDLPs. We next review this semantics with a minor modification:

while Gelfond and Lifschitz's definition allows inconsistent answer sets, ours

does not. Given a disjunctive logic program 11, the set of answer sets of 11

under this modified semantics will be identical to the set of consistent answer

sets under Gelfond and Lifschitz's original semantics. With slight changes
the results in this paper all apply to their semantics as well.

First, Gelfond and Lifschitz define an answer set of an EDLP 11 without

variables and without the not operator. Let C stand for the set of grounded

literals in the language of 11. A context of £, or simply "context", is any
subset of C.

An answer set of 11 is anv minimal^ context S such that

1. for each rule Li\...\Lk*—Lk+i,.... Lk+m in 11, if Lk+\,Lk+m is in 5,
then for some i = 1,..., k Li is in 5, and

2. S does not contain a pair of complementary literals.^D

Remark 2.2 The definition of an answer set for this simplified subclass of
EDLPs can be viewed as an extension of the definition of an S-model due
to Rajastkar and Minker [MR90, Section 3.4], the difference being that S-
models include also clauses and are not required to be minimal.

Suppose n is a variable-free EDLP. For any context 5 of £, Gelfond and
Lifschitz define 11'̂ to be the EDLP obtained from 11 by deleting

1. all formulas of the form not L where L ^ S from the body of each rule
and

^Minimality is defined in terms of set inclusion.
^Under Gelfond and Lifschitz's semantics, this item would be "If S contains a pair of

complementary literals, then S = C\

2. each rule that has in its body a formula not L for some L £ S.

Note that 11^ has no not , so its answer sets were defined in the previous
step. If 5 happens to be one of them, then we say that S is an answer set of
n. To apply the above definition to an EDLP with variables, we first have

to replace each rule with its grounded instances.
Consider, for example, the grounded version of the program fl above:

Baby(Adi) *—

Normal-baby(Adi) *—

Boy(Adi) | Girl(Adi)

•Baby{Adi), not Abnormal(Adi)

—Normal_baby(Adi).

Weclaim that the context S = {Baby{Adi), NormalJ)ahy{Adi),Girl{Adi)}
is an answer set. Indeed, is

Baby(Adi) ^—

NormaLbaby(Adi) *-

Boy(Adi) | Girl(Adi^
•Baby (Adi)

—Normal.baby(Adi),

and 5 is a minimal set satisfying the conditions set above for programs
without the not operator. Note that 11 has two answer sets; the context
{Baby{Adi), Norm.alJ)aby{Adi), Boy(Adi)} is the other answer set of 0.

We will assume from now on that all programs are grounded and that their
dependency graphs have no infinitely decreasing chains'*. The dependency
graph of an EDLP 0, 6'n, is a directed graph where each literal is a node
and where there is an edge from L to L' iff there is a rule in which L appears
positive in the body and L' appears in the head^. An EDLP is acyclic iff
its dependency graph has no directed cycles. An EDLP is head-cycle free
(that is, an HEDLP) iff its dependency graph does not contain directed
cycles that go through two literals that belong to the head of the same rule.
Clearly, every acyclic EDLP is an HEDLP. We will also assume, without

''More formally: For a directed graph G, let G denote the graph obtained by revers
ing the direction of every arc in G. We say that G heis an infinitely decreasing chain
iff there is a node p in G such that there is an infinite acyclic directed path which
starts at p. For example, the dependency graph of the grounded version of the program
{QifiA)), P{x)-—P(/(x))} has an infinitely decreasing chain.

^Note that our dependency graph ignores the literals that appear negative in the body
of the rule.

losing expressive power, that a literal appears only once in the head of any
rule in the program.

We next present new characterizations of answer sets. The declarative
nature of these characterizations allows for their specification in propositional

logic in such a way that queries about answer sets can be expressed in terms
of propositional satisfiability.

We first define when a rule is satisfied by a context and when a literal

has a proof w.r.t. a program 0 and a context 5.
A context S satisfies the body of a rule 8 iff each literal that appears

positive in the body of <5 is in 5 and each literal that appears negative in
the body of S is not in S. A context S satisfies a rule iff either it does not
satisfy its body or it satisfies its body and at least one literal that appears
in its head belongs to S.

A proof of a literal is a secjuence of rules that can be used to derive the
literal from the program. Formally, a literal L has a proof w.r.t. a context S
and a program fl iff there is a sequence of rules ...,6^ from 11 such that

1. for each rule Si, one and only one of the literals that appear in its head
belongs to S (this literal will be denoted /i5(^»))i

2. L = hs{Sn),

3. the body of each Si is satisfied by 5, and

4. has an empty body and, for each i > 1, each literal that appears
positive in the body of Si is equal to hs(Sj) for some 1 < j < i.

Note that the above definition of a proof is an extension of the definition
of a default proof that was introduced by Reiter [ReiSO, Section 4]. The
following theorem clarifies the concept of answer sets:

Theorem 2.3 A context S is an answer set of an HEDLP 11 iff

1. S satisfies each rule in 0,

2. for each literal L in S, there is a proof of L w.r.t IT and S, and

3. S does not contain a pair of complementary literals. •

Remark 2.4 The above theorem will not necessarily hold for programs hav
ing head cycles. Consider, for example, the program

P\Q^

P^Q

Q^P.

The set {P, (J} is an answer set hut it violates condition 2 of the theorem,
since neither P nor Q has a proof w.r.t. the answer set and the program.

Remark 2.5 One might think that the requirement for a proof can be re
placed with a requirement for minimality; in other words, that the following
claim follows quite immediately from Theorem 2.3:

"/4 context S is an answer set of an HEDLP W iff S is a minimal context

such that

1. S satisfies each rule in FI,

2. for each literal L in S, there is a rule ^ in 11 such that

(a) the body of 6 is satisfied by 5,

(b) L appears in the head of S, and

(c) all the literals other than L in the head of 6 are not in 5,

3. S does not contain a pair of complementary literals."

However, the following example by Brewka and Konolige [BK] demon
strates that this is not the case:

Example 2,6 (minimality cannot replace the requirement for a proof)
Consider the logic program

ai—a

bi—not a.

The contexts {a} and [b] are both minimal sets satisfying conditions 1-3
of the claim above, but only {6} is an answer set of this program.

So is there an easy way to verify that each literal has a proof? It turns
out that for an acyclic EDLP the task is easier:

Theorem 2.7 A context S is an answer set of an acyclic EDLP 11 iff

1. S satisfies each rule in IT,

2. for each literal L in S, there is a rule S in 11 such that

(a) the body of 6 is satisfied by S,

(b) L appears in the head of 6, and

(c) all the literals other than L in the head of S are not in S,

3. S does not contain a pair of complementary literals. •

To identify an answer set when 11 is cyclic, we need to assign indexes to

literals that share a cycle in the dependency graph.

Theorem 2.8 A context S is an answer set of an HEDLP 11 iff

1. S satisfies each rule in 0,

2. there is a function f : C such that, for each literal L in S, there
is a rule 8 in W such that

(a) the body of 8 is satisfied by S,

(b) L appears in the head of 8,

(c) all literals in the head of 8 other than L are not in S, and,

(d) for each literal L' that appears positive in the body of 8, f(L') <
fW.

3. S does not contain a pair of complementary literals. •

While the rest of the paper refers only to finite grounded logic programs
(i.e., propositional logic programs), we would like to emphasize that Theo

rems 2.3-2.8 are valid for infinite grounded logic programs as well.

The above characterizations of answer sets are very useful. In addition to

giving us alternative definitions of an answer set, they facilitate a polynomial
time compilationof any finite® grounded HEDLP into a propositional theory,
such that there is a one-to-one correspondence between answer sets of the

former and models of the latter. The merits of this compilation will be

illustrated in the sequel.

3 Compiling Disjunctive Logic Programs into

a Propositional Theory

Each answer set of a given logic program represents a possible world compat
ible with the information expressed in the program. Hence, given an EDLP

n, the following queries might come up:

Existence: Does 11 have an answer set? If so, find one or all of them.

Set-Membership: Given a context V, is V contained in some answer set
of n?

Set-Entailment: Given a context V, is V contained in every answer set of

n?

Disjunctive-Entailment: Given a context V, is it true that for each answer
set 5 of n there is at least one literal in V that belongs to S? (This

amounts to asking whether the logic program IT implies the disjunction
of the literals in V.)

In this section we will show algorithms that translate a finite HEDLP H
into a propositional theory 7n such that the above queries can be expressed
as satisfiability problems on Tx\.

The propositional theory 7n is built upon a new set of symbols £n in
which there is a new symbol II for each literal L in C. Formally,

®The translation we provide is also appropriate for the infinite case where each cycle
in the dependency graph is finite and each literal appears in the head of a finite number
of rules.

G C].

Intuitively, each It stands for the claim "The literal L is /n the answer set",
and each valuation of C\\ represents a context, which is the set of all literals L
such that 11 is assigned true in the valuation. What we are looking for, then,
is a theory over the set Cn such that each model of the theory represents a
context that is an answer set of fl.

Consider algorithm translate-1 below, which translates an HEDLP 11 into
a propositional theory Tn-

translate-l(n)

1. For each body-free rule Li\...\Lk*— in 11, add Ic,^ V... V into 7n.

2. For each rule

Li\...\Lk* ^fc+l 1•••1 noi Lk+m+l 1"-I ^k+m+n (2)

with no empty body add

+i A... AiLk+m ^ ^ ^ V ... V Ii^

into Tfi.

3. For a given L ^ C, let Sl be the set of formulas of the form

a ... A A A ... A a ^/l, a ... A A
A ... A

where there is a rule (2) in fl in which L appears in the head as Lj.

For each Z in £ such that the rule " is not in 11 add to Tn the

formula Ii,—•[Vags^o] (note that if 5/, = 0 we add Ii—>false to Tn).

4. For each two complementary literals T, L' in £, add ->Il V to Tn.
•

The reader has probably noticed that the propositional theory Tu, pro
duced by the above algorithm, simply states the conditions of Theorem 2.7

in propositional logic: The first and second steps of algorithm translate-1

express condition 1 of the theorem, the third step expresses condition 2, and
the last step describes condition 3. Hence:

Theorem 3.1 Procedure translate-1 transforms an acyclic EDLP 11 into a

propositional theory Tn such that 0 is a model for Tn iff {L\0{li,) = true} is
an answer set for 11. •

What if our program is cyclic? Can we find a theory such that each of
its models corresponds to an answer set? Theorem 2.8 suggests that we can
do so by assigning indexes to the literals.

When we deal with finite logic programs, the fact that each literal is

assigned an index in the range l...n for some n and the requirement that
an index of one literal will be lower than the index of another literal can

be expressed in propositional logic. Let stand for "L is associated with
one and only one integer between 1 and n", and let [#Li < j^L2\ stand for
"The number associated with L\ is less than the number associated with L2".

These notations are shortcuts for formulas in propositional logic that express

these assertions (see Appendix).

The size of the formulas and [#L\ < #^^2] is polynomial in the range
of the indexes we need. It is clear that we need indexes only for literals that

reside on cycles in the dependency graph. Furthermore, since we will never
have to solve cyclicity between two literals that do not share a cycle, the

range of the index variables is bounded by the maximum number of literals
that share a common cycle. In fact, we can show that the index variable's
range can be bounded further by the maximal length of an acyclic path in
any strongly connected component in G'n (the dependency graph of 11).

The strongly connected components of a directed graph are a partition
of its set of nodes such that, for each subset C in the partition and for

each x^y ^ there are directed paths from x to y and from y to 1 in G.
The strongly connected components can be identified in linear time [Tar72].
Thus, once again we realize that if the HEDLP is acyclic, we do not need
any indexing.

The above ideas are summarized in the following theorem, which is a

restricted version of Theorem 2.8 for the class of finite HEDLPs.

Theorem 3.2 Let U be a finite HEDLP and lei r be the length of the longest

acyclic directed path in any component of Gn. A context S is an answer set
of an HEDLP 0 iff

1. S satisfies each rule in 0,

2. there is a function f : C >-* such that, for each literal L in S,
there is a rule 6 in 11 such that

(a) the body of S is satisfied by S,

(b) L appears in the head of 6,

(c) all literals other than L in the head of 6 are not in S, and,

(d) for each literal U that appears positive in the body of6 and shares
a cycle with L in the dependency graph ofU, f{L') < f{L),

3. S does not contain a pair of complementary literals. •

Procedure translate-2 expresses the conditions of Theorem 3.2 in proposi-

tional logic. Its input is any finite HEDLP H, and its output is a propositional
theory Tn whose models correspond to the answer sets of 11. 7n is built over
the extended set of symbols Cu' = ^nU{[^ = ^11^ € 1 < i < r}, where
r is the size of the longest acyclic path in any component of Gn- Steps 1,
2, and 4 of translate'2 are identical to steps 1, 2, and 4 of translate-1^ so we
will show only step 3.

translate-2(n)-step 3

3. Identify the strongly connected components of Gn- For each literal L that
appears in a component of size > 1, add f^L to Tn-

For a given L ^ C, let Sl be the set of all formulas of the form

A[#Lfc+i < #L] A... A[#Lk+r < #^]

such that there is a rule in 0

L\|... 1•••1 ^k+mi not Lfc+m+l i not Lk.^.m+Ti

in which L appears in the head as Lj and L*+i,£fc+r (r < m) are in L's
component.

For each L '\n C such that the rule —" is not in IT, add to Tn the

formula II—l-hat if 5l = 0 we add II—•false to 7n). •
Note that if translate-2 gets as an input an acyclic HEDLP it will behave

exactly the same as translait-L thus it is a generalization of iranslatt'L The

following proposition states that the algorithm's time complexity and the
size of the resulting prepositional theory are both polynomial:

Proposition 3.3 Let 0 be an HEDLP. Let |n| be the number of rules in IT, n
be the size of C. and r the length of the longest acyclic path in any component
of 6'n. Algorithm translate-2 rxins in time 0(|n|7i^r^) and produces 0(n +
in|) sentences of size 0(in|nr^).

Proof: Let rn be the maximal number of literals in a rule and t the maximal
number of rules with a certain literal L in the head. Steps 1 and 2 of algorithm

translate-2 take 0(|n|m) time and produce 0(|n|) sentences of size 0(m).
In step 3, for each literal L, St includes at most t formulas of size O(mr^)
(remember that we can express inequality in a prepositional sentence of size
0(r^)). Since \C\ = 7i, step 3 takes O(nimr^) time and produces 0{n) sen
tences of size 0(t7nr^). Step 4 takes 0{n) time and produces 0{n) sentences
of size 0(2). So the entire algorithm takes 0{ntmr'^ H- |n|m) < 0(|n|n^r^)
time and produces 0{n -I- |n|) sentences of size 0(<m7'̂) < 0(|n|7ir^). •

The following theorems summarize the properties of our transformation.
In all of them, Tn is the set of sentences resulting from translating a given

HEDLP n using translate-2 (or translate-1 when the program is acyclic).

Theorem 3.4 Let fl be an HEDLP. //Tn is satisfiable and if 9 is a model

for Tn , then {L\6(Il) = true} is an answer set for 0. •

Theorem 3.5 If S is an answer set for an HEDLP IT, then there is a model

0 for Tn such that 9{Il) —true iff L G S. •

Corollary 3.6 An HEDLP 11 has an answer set iffTn is satisfiable. •

Corollary 3.7 A context V is contained in some answer set of an HEDLP
n iff there is a model for Tn that satisfies the set {/lIT 6 CD

Corollary 3.8 A literal L is in every answer set of an HEDLP IT iff every
model for Tn satisfies Ii. •

Corollary 3.9 Given a context V, each answer set S of an HEDLP IT con
tains at least one literal from V iff every model forTn satisfies

The above theorems suggest that we can first translate a given HEDLP 11
to Tn and then answer queries as follows: To test whether 11 has an answer
set, we test satisfiability of 7n; to see whether a set V of literals is a member
in some answer set, we test satisfiability of TnUi^tlL € V}; to see whether
V is included in every answer set, we test whether 7n ^ and to
check whether fl implies the disjunction V ... V Lr, we check whether
Tn 1= {^L^vh}-

Example 3.10 Consider again the program 11 from the previous section
("Ba" stands for "Baby(Adi)'\ "Bo" stands for "Boy(Adi)", and each of
the other literals is represented by its initial):

N*—Ba^ not A

Bo\G^N.

The theory Tn, prodticed by algorithm translate-2 (and also by algorithm
translate-1, since this program is acyclic), is:

((following step 1)

/bo
(following step 2)

Isa A -"Ia In *Ibo V Ig
(following step 3)

In—*lBa A -'Ia, Ibo—*In a ^Ig, Ig—A ^Ibo, ^Ia
(no sentences will be produced in step 4 since there are no complementary
literals in C)

This theory has exactly two models (we mention only the atoms to which
the model assigns truej;

•/. which corresponds to the answer set { Bahij(Adi), Nor-
maLbaby(Adi), Giid(Adi) }, and

2. {/sai ^Bo}i which corresponds to the answer set { Baby(Adi), Nor-
maLbaby(Adi), Boy(Adi) }. •

4 Outcomes of Our Translation

4.1 NP-completeness

It has been shown that there is a close relationship between default theories
and logic programs interpreted by stable model semantics [BF87, GL91]. This
observation allows techniques and complexity results obtained for default
logic to be applied to logic programming, and vice versa. For example, the
complexity results obtained by Kautz and Selman [KS91] and Stillman [Sti90]
for default logic show that the satisfiability problem is polynomially reducible
to deciding answer set existence and membership in a subset of extended
logic programs" and that entailment in propositional logic is polynomially
reducible to entailment for a subset of extended logic programs. These results

establish the NP-hardness of the existence and membership problems and the
co-NP-hardness of the entailment problem for the class HEDLPs.

In view of these results, the polynomial transformation to satisfiability
that we have presented in the last section implies the following:

Corollary 4.1 The existence problemfor the class HEDLPs is NP-complete.

Corollary 4.2 The membership problemfor the class HEDLPs is NP-complete.

Corollary 4.3 The entailment problem for the class HEDLPs is co-NP-
complete.

Note that the above results extend the results of Marek and Truszczyiiski

[MT91a, Section 6], who showed that the existence problem for the class of
normal finite propositional logic programs is NP-complete.

^We remind the reader that the class of extended logic programs (ELPs) includes all
programs that do not allow disjunction in the heads of rules and therefore the cletss ELPs
are a subset of the class HEDLPs.

Until recently, the question of whether stable model semantics for the class
of a//extended disjunctive logic programs (the class EDLPs) can beexpressed
in prepositional logic has been regarded as an open problem. However, Eiter
and Gottlob [EG92] have shown that the existence and set-membership prob
lems for the class EDLPs is complete and that set entailment for this class
is Hj complete. Therefore, Eiter and Gottlob conclude:

Corollary 4.4 [EG92] Unless Sj = NP (respectively, Hf = coNP), stable
model semantics offinite propositional EDLPs (or even EDLPs with no type
of negation) cannot be expressed in propositional logic in polynomial time.

4.2 Tractability

The results obtained in the last subsection suggest that in general the decision
problems posed in the beginning of Section 3 are NP-hard. Our mapping of
HEDLPs into propositional theories suggests a new dimension along which
tractable classes can be identified. Since our transformation is tractable, any

subset of HEDLPs that is mapped into a tractable subset of satisfiability is
tractable as well.

Among other possibilities, we can apply techniques developed in the con
straints satisfaction literature (fora survey, see [Dec92]) to solve satisfiability
and to identify tractable classes.

A constraint satisfaction problem (CSP) consists of a set of n variables
Xi,..., Xn, their respective domain values ..., Rn, and a set of constraints

A constraint C*,(A',, X^J is a subset of the Cartesian product
Ri^ X... X Ri^ that specifies which values of the variables are compatible
with each other. A solution is an assignment of a value to each variable that
satisfies all the constraints, and the tasks are to determine whether a solution

exists, to find one or all solutions, and so on.

The satisfiability of a propositional theory can be regarded as a CSP. The
set of variables is the set of propositional symbols, the domain ofeach variable
is the set {true, false}, and each constraint is the truth table associated with
one sentence of the theory.

Example 4.5 The thecry {{AV B),[By C \/ D) A{AW D)] is a CSP where
the variables are the symbols A,B,C,D, their respective domains are the
set {true,false), and there are three constraints, one for each clause. The

Figure 1: Constraint graph

constraint associated xoith the clause AV B is given by

C(A,B)= {(true, false), (true, true), (false, true)}.

Some constraint satisfaction techniques exploit the structure of the CSP

through its constraint graph. In a constraint graph of a CSP, variables are
represented by nodes and arcs connect any two nodes residing in the same
constraint. Similarly, the constraint graph of a prepositional theory asso

ciates a node with a prepositional symbol and arcs connect nodes appearing

in the same prepositional sentence.

Example 4.6 Consider the theory Tu produced in Example 3.10. The con
straint graph of this problem is shown in Figure 1. In this graph each variable
II is represented by L. Note that -<Icj and Ig o.re represented by the same
node, G.

Notice that a constraint graph is an abstraction of a formula. Namely,

it indicates that some relationship between the connected variables must be
enforced but it says nothing about the exact structure of the formula. Con
sequently, many different theories can be associated with the same constraint
graph. For instance, the theory {(Isa V />i V //v) A (Ibo y In ^ ^g)} would

also have the constraint graph in Figure 1. The value of the graph is in
highlighting common dependency features between theories through graph
connectivity and in allowing algorithms that exploit graph properties to find
a solution to the CSP problem. An extreme, but useful case is when the
constraint graph is a tree (no cycles). In this case, we can find whether there
is a solution in time 0[nk^) where k is the maximal domain size and n is the
number of variables [DP88]. The efficiency by which a tree problem can be
solved serves as the basis for identifying many topologically based tractable
classes of CSPs.

It was shown that various other graph parameters are indicators of the
complexity of solving CSPs. These include the clique width, the size of the
cycle-cutset, the depth of a depth-first-search spanning tree of the graph,
and the size of the non-separable components [Fre85, DP88, Dec90]. It can
be shown that the worst-case complexity of solving CSPs is polynomially
bounded by any one of these parameters. (For definitions and summary see
[Dec92]).

While determining the minimum value of most of these parameters (e.g.,
the minimum size of a cycle-cutset in a graph) is NP-hard, a reasonable
bound can be recognized polynomially using efficient graph algorithms. Con
sequently, these parameters can be used for assessing tractability ahead of
time.

In this paper we choose to demonstrate the effectiveness of graph-based
methods through two algorithms: one known as tree-clustering [DP89] and
the other as cycle-cutset decomposition [Dec90]. Thealgorithms use different
approaches for extending the class of tree-like problems.

The following two subsections briefly describe the algorithms and quote
relevant results. To avoid duplicating existing literature, we give the intuition
and flavor of the algorithms and refer the reader to the relevant articles for
details.

4.3 Tree-clustering

Ifmany queries are to be processed over thesame set ofconstraints, it may be
advisable to invest effort and memory space in restructuring the problem in
order to facilitate more efficient query answering routines. Tree-clustering is
such a restructuring technique. It guarantees that a large number of queries
can be answered swiftly, either by sequential backtrack-free procedures or by

distributed constraint propagation methods. The general idea is to utilize
the merit of tree topologies in non-tree CSPs by forming clusters of variables
such that the interactions between the clusters in the constraint graph are
tree-structured and then to solve the problem by the efficient tree algorithm.
This amounts to:

1. clustering, namely, deciding which variables should be grouped to
gether,

2. solving cluster, that is, finding and listing the internally consistent val
ues in each cluster, and

3. solving the tree, namely, processing each cluster as singleton variables
in a tree.

The first step is performed by a linear graph algorithm; the second step

requires solving.(by some brute-force algorithm) the subproblems defined by

each cluster. This step is worst-case exponential in the size of the resulting
clusters. The two steps together produce a tree-like CSP that can now be

solved linearly by the tree algorithm.
It can be shown that the most costly aspect of the three steps is gener

ating and keeping all the solutions of each cluster (step 2). Consequently,

the structuring process in tree-clustering is equipped with heuristics for gen
erating clusters that are as small possible. Finding the optimal clustering
scheme is known to be NP-hard [ACP87J, but good tractable approxima
tions are available.

Step 1 works by embedding the constraint graph of the problem within a
chordal graph, because the maximal cliques of a chordal graph interact in a

tree-like fashion. It can be shown that the size of the clusters generated in
this way can be bounded by the clique width of the graph.

Definition 4.7 (clique width) A chord of a cycle is an arc connecting two
nonadjacent nodes in the cycle. A graph is chordal iff every cycle of length

at least 4 has a chord. The clique width of a graph G is the minimum size

of a maximal clique in any chordal graph that em.beds G®.

®A graph Gf embeds graph G iff G C Gi when we view graphs as sets of nodes and

Example 4.8 The graph in Figure 1 is already chordal, so its clique width

is equal to the size of its maximal clique, which is 3.

It was shown that a CSP whose constraint graph has clique width of size

q can be embedded in a tree of cliques of maximum size q. Therefore, the
complexity of tree-clustering depends on the clique width of the constraint
graph of the problem;

Theorem 4.9 [DP89] The complexity of tree-clustering is 0{pnk''), where
p is the size of the constraints given as input, n is the number of variables,
q is the size of the clique width, and k the maximal number of values each
variable can assume.

For a prepositional theory T, this means that if the clique width of its
constraint graph is q, then we can decide T's satisfiability and find one of its
models (if there is one) in time 0(|T|n2''), where |T| is the size of the theory.

We will next show how these results apply to our class of logic programs.

We will characterize the tractability of HEDLPs as a function of the topol
ogy of their interaction graphs. The interaction graph of an HEDLP 11 will
be defined so as to coincide with the constraint graph of its corresponding
propositional theory Tn-

Definition 4,10 (interaction graph) The interaction graph of an HEDLP
n is an undirected graph where each literal in the language of XI is associated
with a node and for every literal L, the set of all literals that appear in rules
that have L in their heads are connected as a clique.

Lemma 4.11 The interaction graph of an HEDLP 11 is identical to the con
straint graph of its propositional theory Tn-

Proof: Immediate.

Example 4.12 The interaction graph of the logic program fl from Example

3.10 is shown in Figure 1. Note that it has exactly the same structure as the
constraint graph o/Tn.

In the following theorems, |n| stands for the number of rules in 11 and r
stands for the number of literals along the longest acyclic directed path in
any component of the dependency graph. Note that if the theory is acyclic,
r = 1.

Theorem 4,13 For an HEDLP whose interaction graph has a clique width

q, existence, membership, and entailment can be decided in 0(n''(2r)'"*'^)
steps if n> |n| and in 0(|n|''(2r)'''*'^) steps if |n| > n. •

Proof: We answer the above queries in two stages. We first translate the logic
program 11 into a prepositional theory Tn and then, using Corollaries 3.6-3.8,
answer the above queries by solving satisfiability of a theory that is about the
same size as Tu and has the same constraint graph. By Proposition 3.3, the

translation stage takes 0(|n|7i^r^) time and the size of 7n is 0(|n|nr^(|ni +
n)). For the next stage of solving satisfiability, we will consider two cases:

Case n is acyclic: In this case, the interaction graph has exactly the same

topology as the constraint graph of Tn, and hence, from Theorem 4.9,

we can determine whether Tn is satisfiable and can find a model for

Tn (if there is one) in time 0(|Tn|n2'). Consequently, the overall
complexity of answering these queries when the theory is acyclic is

0(|n|n^ + |Tn|n-).

Case n is cyclic: In this case, we will solve satisfiability by representing

the problem as a general CSP. Each literal will represent a variable,
as before, but this time the domain of each variable will be a pair

(f,m), where t can assume the value true or false and m is a num
ber in the range I,...,r (intuitively, a variable having a value (f,m)

has truth value t and index m). So the domain of each variable is of

size < 2r. The sentences of Tn represent the set of constraints. The

interaction graph of IT has the same topology as the constraint graph
of its CSP. Note that the fact that the domains are larger is not re

flected in the constraint graph. Again, from Theorem 4.9, this problem
can be solved in time 0{\Tn\nr''). So the overall complexity of an
swering these queries for cyclic theories is 0(|n|u^r^ + |Tn|n(2r)') <
0(|n|V(2r)'^+2 ^ |n|ri3(2r)^+2j_ •

We believe, however, that tree-clustering is especially useful for programs

whose interaction graphs have a repetitive structure. Programs for temporal

Stn ttn

Figure 2: Constraint graph for Example 4.9

reasoning, where the temporal persistence principle causes the knowledge
base to have a repetitive structure, are a good example. We next demonstrate
the usefulness of tree-clustering for answering queries on such programs.

Example 4.14 Suppose f park my car in the parking lot at time ti. If it was
not removed from the lot by being stolen or towed between time ti and I
expect my car to be there during any time ti between ti and t^. This can be
expressed in the following propositional logic program, where we have n rules
of the form

parked{ti+i)*—parked{ti), not moved(ti)

moved(ti)*—stolen{ti)

moved(11) *— towed-away{ti)

The interaction graph of this program is shown in Figure 2. We can
see that this graph is chordal and its clique width is 3. Thus, as n, the
number of time intervals, increases, the complexity of answering queries about
coherence, membership, and entailment using the tree-clustering algorithm
increases polynomially.

4.4 Cycle-cutset decomposition

The cycle-cutset scheme is, as the name suggests, a decomposition method
based on identifying a cycle-cutset of a graph, that is, a set of nodes that, once
removed, would render the constraint graph cycle-free. This method exploits
the fact that variable instantiation changes the effective connectivity of the
constraint graph [Dec90].

When the group of instantiated variables constitutes a cycle-cutset, the
remaining network is cycle-free and can be solved by the tree algorithm. In

most practical cases, it would take more than a single variable to cut all
the cycles in the graph. Thus, a general way of solving a problem whose

constraint graph contains cycles is to find a consistent instantiation of the

variables in a cycle-cutset and solve the remaining problem by the tree algo

rithm. If a solution to the restricted problem is found, then a solution to the

entire problem is at hand. If not, another instantiation of the cycle-cutset
variables should be considered until a solution is found. Thus the complexity

of the cycle-cutset algorithm is exponentially related to the size of its cycle-
cutset. It has been shown [Dec90] that a CSP whose constraint graph has a
cycle-cutset of size c can be solved in time Consequently, if the
cycle-cutset of the constraint graph of the prepositional theory T is of size
c, we can decide its satisfiability and find a model for the theory (if there is
one) in time 0(\T\n2^).

Example 4.15 If we remove the node N from the graph in Figure 1, we

are left with a cycle-free graph. So the cycle-cutset of this constraint graph
is of size I, and so this problem belongs to a class of problems for which
cycle-cutset decomposition is efficient.

The next theorem extends this idea to the interaction graph of an HEDLP.

We omit the proof since it is similar to the proof of Theorem 4.13.

Theorem 4.16 For an HEDLP (D, W) whose interaction graph has a cycle-

cutset of cardinality c, existence, membership, and entailment can be decided
in Oin^i'lry*"^) steps if n > |n| and in 0(|ni''(2r)'^'*"') steps |n| > n.

4.5 Expressiveness

Are disjunctive rules really more expressive than nondisjunctive rules? Can
we find a nondisjunctive theory for each disjunctive theory such that they
have the same answer sets/extensions? This question has been raised by Gel-
fond et al. [GPLT91]. They consider translating a disjunctive logic program
n into a nondisjunctive program 11' by replacing each rule of the form (1)
(see page 3 above) with k new rules:

Li * Llc.^1, Lk+Tn^ T^ot Lk-\'m+\ 1"M '̂ C>t Z/jt.|-m+n lUOt //2, ..., UOt Lk,

Lk* •••1 Lk-^mi Lk+tn+l ^•••1 Lk+m+n^ L\^ ..., fiot Lk—\>

Gelfoncl tt ai show that each extension of IT' is also an extension of 11, but

not vice versa. They gave an example where fl has an extension while IT does
not. So, in general, 11' will not be equivalent to 11. We can show, however,
that equivalence does hold for HEDLPs.

Theorem 4.17 Let 11 be an HEDLP. S is an answer set for 11 iff it is an

answer set for 11'. •

The reader can verify the above theorem by observing that our translation
will yield the same prepositional theory for both 11 and 11'. The theorem
implies that under stable model semantics no expressive power is gained
by introducing disjunction unless we deal with a special case of recursive
disjunctive logic programs, namely, disjunctive logic programs that use rules
that are not head-cycle-free.

4.6 Relation to Clark's predicate completion

Clark [ClaTS] made one of the first attempts to give meaning to logic pro
grams with negated atoms in a rule's body ("normal programs"). He shows
how each normal program 11 can be associated with a first-order theory

COMP(Yl), called its completion. His idea is that when a programmer writes
a program 11, the programmer actually has in mind COMP{Tl)., and thus all
queries about the program should be evaluated with respect to COMP{ll).
So a formula Q is implied by the program iff COMP{U) \= Q.

For the comparison between Clark's work and ours, we consider only

normal propositional programs, that is, a set of rules of the form

Q<—Pu-.-. Pn.notRi,...,notRrn (3)

where Q, Pi,...,P„, and are atoms.

Given a propositional logic program 11, COMP{U.) is obtained in two
steps:

Step 1: Replace each rule of the form (3) with the rule

Q<—Pi A ... A F„ A-'Ri A ... A -^Rm- (4)

Step 2: For each symbol Q, let Support(Q) denote the set of all clauses with
Q in the head. Suppose Support(Q) is the set

Q*—Bodyi (5)

Qi—Bodyk. (9)

Replace it with a single sentence.

Qi vBodyi V ... V Bodyk, (10)

Note two special cases: If —" in Support(Q), simply replace Support(Q)
by Q. If Support((5) is empty, replace it with -«Q.

Example 4.18 Consider the following program IT;

P*—Q,notR (11)

P^V (12)

R^S fl3)

The completion o/II is the following propositional theory:

P<—>[QA^R]VV

Ri—^5

There are interesting similarities between COMP{Tl) and the translation we
provide for the same logic program. If we take the program in the previous
example and translate it using algorithm translate-f we get that Tn is the
following theory (note that 11 is acyclic according to our definitions):

/g A—>Ip (21)

Is-^Ir (22)

Iv—^Ip (23)

Ip—^IqA-'IpVlv (24)

!r—Is (25)

^Is.-lQA-^-L\Le{P.Q.R,S.V}] (26)

{II a /.L-^false|L e {P, Q, P, 5, K}}. (27)

Combining sentences (21), (23), and (24) and sentences (22) and (25) and
replacing each symbol of the form /l, where L is positive, with L, we get the
following equivalent theory (compare to (15)-(19)):

vK

R*—*S

V

-"5

-"Q

{^U\Le{P.Q.R.S,V}}

{iA/.L^false|i G {P,Q,R,S\V]}.

It is easy to see that each model for the above theory is a model of the

completion of the program and that each model of the completion of the
program can be extended to be a model for this theory. The above example
can easily be generalized to a proof of the following theorem, which was also
proved independently by Pages [Fag92]:

Theorem 4.19 Let U be a normal acyclic propositional logic program. Then

M is a model for C0MP{1\) iff {Ip\P € M] is a modelfor Tn- D

Proof: (sketch) Let 11 be an acyclic normal logic program, C the language of
n, and T'n the theory obtained from Tn by replacing each occurrence of the
atom /p, where P is an atom in C with the symbol P. It is easy to see that

the set of models of T'n projected on C is equivalent to the set of models of
COMPiU). •

Corollary 4.20 Let n be an acyclic normal prepositional logic program. 11
has a stable model iff COMP(Y\) is consistent. Furthermore, M is a model

for COAIP{U.) iff M is an answer set for FI. •

Proof: Follows from the above theorem and Theorems 3.4 and 3.5. •

Corollary 4.21 Let n be an acyclic normal propositional logic program. An
atom P is in the intersection of all the answer sets ofU (as defined by stable
model semantics) iff COMP{Yl) [=/'.•

Corollary 4.22 Let 11 be an acyclic normal propositional logic program. An
atom P does not belong to any of the answer sets ofU. (as defined by stable
model semantics) iff COMP(\\] |= -'P. •

It is already known that each stable model for a normal logic program is a

model of its completion [MSS9] and that if an atom is implied by the com
pletion of a locally stratified normal program, then it belongs to its (unique)

answer set [ABWS8, Prz89]. We believe that the above observations are new
because they identify the class of acyclic normal propositional logic programs

as a class for which stable model semantics (under "skeptical reasoning"®) is
equivalent to Clark's predicate completion.

It is well known that Clark's predicate completion has problems handling
positive recursion, while stable model semantics handles it in an intuitive

manner. The translation that we provide explains this difference: stable

model semantics distinguishes between cyclic and acyclic programs, while
Clark's predicate completion is the same for both types.

5 Relation to Default Logic

While stable model semantics for nondisjunctive logic programs is very closely
related to Reiter's default logic [ReiSO], it does not agree with default logic
when disjunctive logic programs are under consideration. In this section we
will discuss the difference between the way default logic handles disjunc
tive information and the way stable model semantics handles disjunction

in logic programs. We will also briefly review a generalization of default

®"Skeptical reasoning" means that a program entails an atom iff the atom belongs to
all of the program's answer sets.

theories called disjunctive default theories, originally presented in Gelfond
et al. [GPLT9I), and show that the results developed in this paper apply to
this class as well. We will consider only default theories that are defined over

a propositional language, since this is sufficient for our case.
Let C be a propositional language. Reiter defines a default theory as a

pair [D, W) , where D is a set of defaults and W is a set of well-formed
formulas in C. A default is a rule of the form

Q :

where q,/?i,and 7 are formulas in C. The intuition behind a default
can be "If a is believed and there is no reason to believe that one of the /?i

is false, then 7 can be believed".
The set of defaults, D, induces an extension on W. Intuitively, an ex

tension is a maximal set of formulas that can be deduced from W using the

defaults in D. An extension of a default theory corresponds to an answer set

of a logic program. Let E' denote the logical closure of E in C. We use the
following definition of an extension ([ReiSO], Theorem 2.1):

Definition 5.1 Let E Q C be a set of formulas, and let {D, W) be a default
theory. Define

1. Eq = W and,

2. fort > 0, £^1+1 = E'yj {7r'̂ 'V''̂ " ^ ^ wherea GEi and ^
E}.

E is an extension for {D,W) iff E = U^o^« some ordering (note the
appearance of E in the formula for EiJ^\). •

It turns out that Reiter's default logic has some difficulties when dealing
with disjunctive information. This has motivated Gelfond et al. [GPLT91]
to propose a generalization that improves the way default logic handles dis
junctive information. They define a disjunctive default theory as a set of
disjunctive defaults. A disjunctive default is an expression of the form

(28)
7l --nm

where a,/?i,and 71,...,7^ are formulas in £. Gelfond et al define
an extension for a disjunctive default theory D to be one of the minimal
deductively closed set of sentences E' satisfying the condition^^ that, for any
default (2S) from Z), if a € E' and ->^1,i E, then for some 1 < i < m,

7i € E'.
Let us now consider the subset of disjunctive default theories that we

call disjunctive default programs. A disjunctive default program is a set of
defaults of the form

Z/fc-fi A... ALk+m ' Lie+m+n /9Q\
LA:.\L, '

in which each Li is a literal or the constant true and n > 0. Each such

disjunctive default program D can be associated with a disjunctive logic
program fl/) by replacing each default of the form (29) with the rule

Ll [...ILff* Lii.^ \ <••• 1Lk+rni UOt Lk.^.m+n^

where L is the literal complementary to L. Similarly, each disjunctive logic
program IT can be associated with a disjunctive default program Dn by re
placing each rule of the form

Li Lk+\, Lk+mi U,ot LkJfm+\ »•••» U.ot (30)

with the default

Z/fe+i A ... A Lk+

Li\...\Lk

According to Gelfond et al. . we have the following theorem:

Theorem 5.2 [GPLT91] Let D be a disjunctive default program. E' is an
extension of D iff E is an answer set o/IId-

Let n 6e a disjunctive logic program. E is an answer set of 11 iff E* is
an extension of Dn-

This theorem implies that all the techniques and complexity results es
tablished in this paper with respect to disjunctive logic programs also apply
to disjunctive default programs.

^''Note the appearance of E in the condition.

6 Related Work

Elkan has shown [EIk90] that stable models of normal logic programs can be
represented as models of propositional logic. Our results extend his work to a

more expressive class of logic programs and provide an explicit propositional

theory characterizing those models. We have also shown how the propo
sitional characterization clarifies the semantical difference between various

formalisms and how it can be used to transfer computational techniques

from propositional satisfiability to logic programs.
An approach similar to ours was developed independently by Marek and

Truszczynski [MT91b] in the context of autoepistemic logic. They have
shown how questions of membership in expansions of an autoepistemic the
ory can be reduced to propositional provability. In this paper we provide
an explicit algorithms for processing queries on stable models of disjunc
tive logic programs, together with complexity guarantees. We believe that
similar results could be obtained for autoepistemic logic using Marek and
Truszczynski's analysis.

Computationally, the most relevant work is that of Bell et al. and Sub-
rahmanian et al. [BNNS9I, SNV92], which implements linear and integer
programming techniques in order to compute stable models (among other
nonmonotonic logics). However, because their mapping of logic programs
into linear integer programs is not "perfect" — not every solution of the set
of constraints corresponds to a stable model^^— it is difficult to assess the
merit of their approach relative to ours in terms of both complexity and se
mantics. We do note that in order to find whether an atom belongs to all

answer sets of a given logic program, they have to generate all the answer
sets, while because we solve this problem using classical deduction, we may
not need to generate all answer sets.

7 Conclusion

This paper provides several characterizations of answer sets for head-cycle-
free extended disjunctive logic programs (HEDLPs) according to stable model
semantics. It shows that any grounded HEDLP can be mapped in polynomial
time into a propositional theory such that models of the latter and answer

similar observation and the term "perfect" was given to us by Mirek Truszczynski.

sets of the former coincide. This allows techniciues developed for solving
satisfiability problems to be applied to logic programming problems. It also
enables an evaluation of the expressive power of EDLPs, identification of
their tractable subsets, and discovery of useful similarities between stable

model semantics and Clark's predicate completion.
We have also shown the relevance of our work to the work done on dis

junctive default theories [GPLT91]. One of the possible drawbacks of stable
model semantics is that it entails multiple answer sets. The approach pro
posed in this paper suggests that in order to compute whether a literal be
longs to one or all answer sets we do not need to compute or count those sets.
Thus, multiplicity of answer sets may not in itself be a severe computational
obstacle to the practicality of disjunctive logic programming.

We are currently investigating extensions of our work to a class of un

grounded logic programs.

Acknowledgments

This work was supported in part by grants NSF IRI-88-21444 and AFOSR

90 0136 and by an IBM Graduate Fellowship to the first author and grant
NSF IRI-91573636 to the second author. The authors thank Michael Gel-

fond, Vladimir Lifschitz, .Jack Minker, Stott Parker, Teodor Przymusinski,
Mirek Truszczyriski, and Carlo Zaniolo for helpful discussions on the rela

tions between logic programming and default reasoning. Michael Gelfond
and Vladimir Lifschitz pointed out to us the difference between the use of

disjunction in default logic and in logic programs and drew our attention
to the close connection between our translation and Clark's predicate com
pletion. We also thank Judea Pearl and Halina Przymusinska for valuable

comments on earlier drafts of this paper.

References

[ABW88] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declar
ative knowledge. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programs, pages 89-148. Morgan Kaufmann,
1988.

[ACP87] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity
of finding embeddings in a k-tree. SIAM J. Algebraic Discrete

Method, S(2):277-2S4, 1987.

[BED91] Rachel Ben-Eliyahu and Rina Dechter. Default logic, preposi
tional logic and constraints. In AAAl-Ol: Proceedings of the 9th

national conference on artificial intelligence, pages 379-385, Ana

heim, CA, USA, July 1991.

[BF87]

[BED92] Rachel Ben-Eliyahu and Rina Dechter. Inference in inheritance
networks using prepositional logic and constraints networks tech
niques. In A[-92: Proceedings of the 9th Canadian conference on
AI, pages 183-189, Vancouver, British Columbia, Canada, May
1992.

[BF87] N. Bidoit and C. Froidevaux. Minimalism subsumes default logic
and circumscription in stratified logic programming. In LICS-87:
Proceedings of the IEEE symposium on logic in computer science,

pages 89-97, Ithaca, NY, USA, June 1987.

[BK] Gerhard Brewka and Kurt Konolige. Personal communication,
May 1992.

[BNNS91] C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmanian. Computa
tion and implementation of non-monotonic deductive databases.
Technical Report CS-TR-2801, University of Maryland, 1991.

[Cla78l Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors. Logic and Databases, pages 293-322. Plenum Press, New
York, 1978.

[Dec90] Rina Dechter. Enhancement schemes for constraint processing:
Backjumping, learning, and cutset decomposition. Artificial In
telligence, 41:273-312, 1990.

[Dec92] Rina Dechter. Constraint networks. In Stuart C. Shapiro, editor,
Encyclopedia of Artificial Intelligence, pages 276-285. John Wiley,
2nd edition, 1992.

Rina Dechter and Judea Pearl. Network-based heuristics for

constraint satisfaction problems. Artificial Intelligence, 34:1-38,
1988.

Rina Dechter and .Judea Pearl. Tree clustering for constraint net

works. Artificial Intelligence, 38:353-366, 1989.

Thomas Eiter and Georg Gottlob. Complexity results for disjunc

tive logic programming and application to nonmonotonic logics.
Technical Report CD-TR-92/41, Inst. fuer Informations systeme,
TU-Wien, A-1040 Wien, Austria, 1992.

Charles Elkan. A rational reconstruction of nonmonotonic truth

maintenance systems. Artificial Intelligence, 43:219-234, 1990.

Shimon Even. Graph Algorithms. Computer Science Press, 1979.

Francois Fages. Consistency of Clark's completion and existence
of stable models. Methods of Logic in Computer Science, 2, April
1992.

Kit Fine. The justification of negation as failure. Logic, Method

ology and Philosophy of Science, 8:263-301, 1989.

E.C. Freuder. A sufficient condition for backtrack-bounded search.

Journal of the ACM, 32(4):755-761, 1985.

Michael Gelfond and Vladimir Lifschitz. Classical negation in

logic programs and disjunctive databases. New Generation Com
puting, 9:.365-385, 1991.

Michael Gelfond, Halina Przymusinska, Vladimir Lifschitz, and
Miroslaw Truszczyriski. Disjunctive defaults. In KR-91: Proceed
ings of the 2nd international conference on principles of knowledge
representation and reasoning, pages 230-237, Cambridge, MA,

USA, 1991.

Henry A. Kautz and Bart Selman. Hard problems for simple
default logics. Artificial Intelligence, 49:243-279, 1991.

Jack Minker and Arcot Rajasekar. A fixpoint semantics for dis
junctive logic programs. Journal of Logic Programming^ 9:45-74,
1990.

Wiktor Marek and V.S. Subrahmanian. The relationship between

logic program semantics and non-monotonic reasoning. In Logic
Programming: Proceedings of the 6th international conference^
pages 600-617, Lisbon, Portugal, June 1989. MIT Press.

Wiktor Marek and Miroslaw Truszczyhski. Autoepistemic logic.
Jouimal of the ACM, 38:588-619, 1991.

Wiktor Marek and Miroslaw Truszczynski. Computing intersec

tion of autoepistemic expansions. In Logic programming and non
monotonic reasoning: Proceedings of the 1st international work
shop, pages 37-50, Washington, DC, USA, July 1991.

Teodor Przymusinski. On the declarative and procedural seman
tics of logic programs. Journal of Automated Reasoning, 5:167-
205, 1989.

Raymond Reiter. A logic for default recisoning. Artificial Intelli
gence, 13:81-1.32, 1980.

V.S. Subrahmanian, Dana Nau, and Carlo Vago. WFS + branch

and bound = stable models. Technical Report CS-TR-2935, Uni

versity of Maryland, July 1992.

Jonathan Stillman. It's not my default: The complexity of mem
bership problems in restricted prepositional default logics. In
AAAl-90: Proceedings of the 8th national conference on artificial
intelligence, pages 571-578, Boston, MA, USA, 1990.

Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1:146-160, 1972.

Appendix

A Expressing Indexes in Propositional Logic

Suppose we are given a set of symbols L to each of which we want to ctssign
an index variable within the range 1 —m.

We define a new set of symbols, L' = {P, P = 1,P = 2,P = m\P € L],
where P = i {or i = denotes a propositional letter that intuitively
means "P will get index z". For each P in £n, let Np be the following set of
sentences:

P = lVP = 2V,..VP = m

P = 1—>h(P = 2) A-(P = 3) A... A-(P = m)]

P = 2—>h(P = 3) A-(P = 4) A... A-(P = m)]

p = —.-(P = m).

The set Np simply states that p must be assigned one and only one
number. We will sometimes denote the theory Np by #P.

For each P and Q in Cu, let [#P < which intuitively means "The
number of P is less than the number of Q", denote the disjunction of the
following set of sentences:

P = lA(3 = 2,P = lAg = 3,..., P = 1 A g = m

P = 2Ag = 3,...,P = 2Ag = m

P = m —lAQ = m.

Thus, for each symbol P to which we want to assign an index, we add
Np to the theory, and then we can use the notation [i^P < #Q1 to express
the order between indexes.

B Proofs

Some useful definitions and lemmas

Lemma B.l Lei H be an EDLP. If S is an answer set ofU, then there

is no proper subset of S that is also an answer set ofTl.

Proof: Suppose conversely that S' C S and that both 5 and S' are
answer sets of 0. We will show that S' satisfies each rule in II"^, which is
a contradiction to the minimality of 5. This is done by the observation

that since S' C S\ C 0'̂ . •

Definition B.2 (superstructure) [Eve79]Let Ciy...,Cm be the strongly
connected components of a directed graph G. The superstructure of G,
Gs, is defined as follows:

1. The set of all vertexes of Gs is the set

2. There is an edge from Ci to Cj iff x and y are vertexes in G, x
belongs to Ci, y belongs to Cj, and there is an edge from x to y in
G.

Lemma B.3 Let 11 6e a positive^^ HEDLP and let S be a context sat
isfying all the rules in 11. Suppose that there is a context E C S and a
set of rules A such that the following conditions hold:

1. A is the set of all rules from 0 not satisfied by E.

2. For each rule in A there are at least two different literals in its

head that belong to S.

Then S is not minimal, i.e., there is a proper subset of S which satisfies
all the rules in 0.

program is called positive if the not operator is not used in the program.

Proof: Let 0 be a positive HEDLP and let 5 be a context satisfying
all the rules in fl. Assume that there is a context E Q S that satisfies

conditions 1-2 of the lemma. We will show that there is a proper subset
of S which satisfies all the rules in 0.

Let A C n be the set of all rules not satisfied by E and suppose that
for each rule in A there are at least two different literals in its head

that belong to 5. Let H be the set of all literals in 5 that appear in

the head of some rule from A. Let G be the directed graph defined as
follows:

1. There is a node in the graph for each literal in H and there are
no other nodes.

2. There is an edge from L\ to L2 iff there is a directed path from
Li to L2 in 6*n (the dependency graph of FI).

Let Gs be the superstructure of G. If Gs is empty then H is empty

and so A must be empty too, which means that E satisfies all the rules
in n. Otherwise, Gs must have a source (note that we assume that

the dependency graph has no infinitely decreasing chains and hence,
even though Gs might be infinite, it must have a source). Let F be
the set of all literals that appear in a source of Gs- Note that for every

p,q ^ F there is a positive cycle between p and q in the dependency
graph of n. Consider the context S', defined as follows:

5o =

'5't+i = 5iU{p|p € S —F, there is a rule 6 in 11 such that the body of 6
is satisfied by 5'̂ and p is in the head of 5},

Clearly, S' is a proper subset of S. It is also easy to see that for every
literal p in S' —E, there must be a path in the dependency graph of
n from some literal in H —F to p. Let S be an arbitrary rule in 11.
We will show that S' satisfies 6. The proof will go by induction on the
minimum i such that the body of 6 is satisfied by 5,-.

case 2 = 0 In this case the body of 6 is satisfied by E. If E satisfies
6, then clearly S' satisfies ^ as well. If E does not satisfy then

6 G A, which means that there are at least two different literals,
say p and in the head of S which belong to 5. It can't be that
both p and q belong to F because 11 is head-cycle-free. So assume
VVLG that p e S - F. So p must be in Si, which means that S'
satisfies 6.

case i > 0 Suppose that the body of some rule 6 is satisfied by Si.
Since 5 satisfies S, there must be some literal q in the head of 6
which belongs to 5. We will show that q belongs to 5 - F. Since
i is a minimum, there must be a literal p in the body of 6 such
that p ^ Si-i- So p must be in S' - E and therefore, as we have
observed above, there must be a path in the dependency graph
from some literal in // - F to p, and so there is a path in the
dependency graph from some literal m H —F to q. So it can't be
that q is in F, because F is a source in Gs-

Lemma B.4 Let 11 be a positive HEDLP and let S he an answer set
o/n, then each L e S has a proof w.r.t. S and 11.

Proof: Consider the context E defined as follows:

Eo= {L\LeS,6 = Li\...\Lk^ € H, Z. = hs(6)}.

E,+i = FiU m LiE,,L = hs{S), 6= Li\...\Lk<—L^+i,L^+m, for
a\\ k < i < k m Li e Ei],

F = IJi<ooFi.

Clearly, each literal in F has a proof w.r.t. E and 11. We will prove
that S = E.

Clearly, ECS. Assume conversely that E C S. Consider the set
A of all rules from 11 that are not satisfied by E. By the way it was
constructed, E satisfies all the rules such that there is only one literal
in the rule's head that belongs to S. So each rule in A must have at
least two literals in its head that belong to S. By Lemma B.3, S is not
minimal, which is a contradiction to S being an answer set of 11. O

Lemma B.5 Let FI be an HEDLP and let S be an answer set ofXl,
then each L ^ S has a proof w.r.t. S and Fl.

Let n be an HEDLP and let S be an answer set of 11. Since S is an

answer set of and 0^ does not contain not , we know by Lemma B.4
that, given L G 5, L has a proof w.r.t. 5 and H^. For each
6i = Li\...\Lk*—Ljfc+i,Lk+m in the proof, there is a rule <5- in 11 such

that 6,- — Lk+i•,•••<, Lk+mt^k+m+i 1••'iLk+m+nt 3>nd,
for each A: + m + 1 < j < /: + m + n, Lj is not in 5. So 6J, is a
proof of L w.r.t. IT and 5. •

Proof of Theorem 2.3 Let 11 be an HEDLP and let S be one of its answer

sets. Clearly S satisfies conditions 1 and 3. By Lemma B.5, S satisfies

condition 2 as well.

Now, suppose S satisfies conditions 1-3 of the theorem. We will show

that it is an answer set of IT. It is enough to show that 5 is an answer
set of H'^. S satisfies all the rules from 0"^ since it satisfies all the rules

from n. To show that 5 is minimal, it is enough to show that for each
A C 5, there is a rule in that will not be satisfied by 5 —A. Let A
be an arbitrary nonempty subset of 5, and let L € A be such that L's
proof length is minimal w.r.t. the proofs of all the literals in A. Let S

be the last rule in the proof of L. By minimality of L's proof, all the
literals in the body of 6 must belong to S —A, and so 6 is not satisfied
by S-A. D

Proof of Theorem 2.7 Suppose 11 is acyclic and W is a context satisfying
conditions 1-3 of the theorem. We will show that W is an answer set.

By Theorem 2.3, it is enough to show that each L € S has a proof.

We will build the "proof graph" G as follows: There is a node in G for

each literal in 5. For each L ^ S, let 5 be a rule from IT that satisfies

condition 2 for L. We draw an edge to L from each literal that appears
in the body of 6 without the not operator. Since IT is acyclic, G is
acyclic, so it induces a partial order on its nodes. It is easy to see
that we can prove that each L has a proof by induction on that partial
order. •

Proof of Theorem 2.8 Suppose 5 is a context satisfying the conditions of
the theorem with respect to a given HEDLP IT. We will show that

5 is an answer set of 0. By Theorem 2.3, it is enough to show that
each Z, € 5 has a proof w.r.t S and 0. If S is empty, the claim clearly
holds. Otherwise we can prove the claim by induction of the index of

L{f{L)).

Suppose 5 is an answer set of an HEDLP 0. By Theorem 2.3, it must

satisfy conditions 1 and 3. It is left to show that it satisfies condition 2.
Let / be a function that cissigns to each literal L the minimal number
of rules used in any proof of L w.r.t. 11 and S. It is easy to see that
/ and the last rule in any minimal proof of L satisfy subconditions
(a)-(d) in condition 2 w.r.t. L. •

Proof of Theorem 3.2 Suppose 5 is a context satisfying the conditions of
the theorem with respect to a given HEDLP H. We will show that S
is an answer set of 11. By Theorem 2.3, it is enough to show that each
L € S has a proof w.r.t S and H. We will define a total ordering on
the literals in C and prove it by induction on that ordering.

Let Ci,..., Cm be the strongly connected components of G'n- Following
[Eve79], we define G*, the superstructure of Gn, as follows:

V = {Cu...,Cm}.
E* = {(G,-, Cj)\ i ^ j, there is an edge from L to L' in Gn,

L 6 Gi, and L' G Cj}.

Clearly, G" is acyclic.

Let Gi,..., Cm be the topological ordering of the components of Gn in
duced by G*. Let -< be any total ordering on the literals of C satisfying
the following:

• If // G G,-, L' G Cj, and i < j, then L<L'.

• If T and V are in the same component and f{L) < f(L'), then
L^V.

We will proceed by showing that for each T if L G 5 then there is a

proof <5i,...,6j of T in S such that for all i G {l,...,j} if L' appears
positive in the body of <5, then

We prove this by induction on the place of L in the ordering.

Case '^L —1: Since L € 5", by condition 2 there must be a rule <5 in 11
such that

1. the body of 6 is satisfied by 5,

2. L appears in the head of 6,

3. all literals in the head of 6 other than L are not in 5, and

4. for each literal L' that appears positive in the body of 6 and shares
a cycle with L in the dependency graph of IT, f{L') < f{L).

Since = 1, there must be no positive literal in the body of S. So it

is easy to see that 6 is a proof of L w.r.t S and 0.

Case'&Z/ > 1 is done in a similar way, since we realize that all the literals
that appear positive in the rule 6 that satisfies the above conditions for
L must have a lower place in the ordering and therefore have a proof
by the induction hypothesis.

To prove the other direction, suppose S is an answer set of an HEDLP
n. By Theorem 2.3, it must satisfy conditions 1 and 3. It is left to
show that it satisfies condition 2.

First we show how we assign a number to each literal:

• By Theorem 2.3, each L in S has a proof w.r.t. S and 11. We first
build Gy the "proof graph" of 5, as follows:

1. If all literals that are true in 5 are in G', then exit.

2. Pick L E S such that L ^ G.

3. Let he a minimal proof of L in S.

4. For each Si do the following in the order :

If hs{Si) is not already a node in G, add it as a node and add
an edge to hs{Si) from each literal that appears positive in
the body of Sy.

5. Goto step 1.

• We claim that G is acyclic because each proof is acyclic and be
cause there are no arrows from literals introduced in one proof to

literals introduced in a previous proof.

Let Li,...,Ln be the topological ordering induced on the literals
in S by G.

Based on this ordering, we will give each Li a number {if Li) as
follows:

If there is a j < i such that Lj and Li are in the same component
in Gn (the dependency graph of 11) and there is a path from Lj
to Li in the proof graph, then let r be a maximal such j. Assign

#L. = ifLr + l.

If there is no such j, then = 0.

The following proposition indicates that for each literal L we will get
that ifL<r, where r is the length of the longest acyclic path in any
component of G'n-

Proposition B.6 If in the proof graph there is a directed path with k
nodes from some component C in Gu(h > 0), then there is a directed
acyclic path of length > k —I in that component with those k nodes
along that path.

Proof: Given an arbitrary component C in Gn and a path in the proof
graph, the proof goes by induction on the number of nodes from G
along the path. •

Now we want to show that S satisfies condition 2 of the theorem. Let

L 6 5, and let 6 be the last rule in the proof of L that wcls used when
the proof graph was constructed. If there is a L' that appears positive
in the body of 6 that is in a same component as L, it is assigned a lower
number by our numbering method. So condition 2 is satisfied. •

uc IRVINE UBRARV
AUG 2 2 1994

