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PROPRE: PROjection and PREdiction for multimodal correlations

learning. An application to pedestrians visual data discrimination.

Mathieu Lefort and Alexander Gepperth

Abstract— PROPRE is a generic and modular unsupervised
neural learning paradigm that extracts meaningful concepts of
multimodal data flows based on predictability across modalities.
It consists on the combination of three modules. First, a
topological projection of each data flow on a self-organizing
map. Second, a decentralized prediction of each projection
activity from each others map activities. Third, a predictability
measure that compares predicted and real activities. This
measure is used to modulate the projection learning so that
to favor the mapping of predictable stimuli across modalities.
In this article, we use Kohonen map for the projection module,
linear regression for the prediction one and we propose multiple
generic predictability measures. We illustrate the properties
and performances of PROPRE paradigm on a challenging
supervised classification task of visual pedestrian data. The
modulation of the projection learning by the predictability mea-
sure improves significantly classification performances of the
system independently of the measure used. Moreover, PROPRE
provides a combination of interesting functional properties,
such as a dynamical adaptation to input statistic variations,
that is rarely available in other machine learning algorithms.

I. INTRODUCTION

In order to interact with its environment, an autonomous

agent needs to have a structured perception of its internal

and external states. According to sensory-motor theories,

sensory-motor regularities are one key point for structuring

the agent’s interaction [1]. Hence, autonomous and progres-

sive construction of sensory-motor representations is cur-

rently an active research field in developmental robotics [2],

[3], [4]. To tackle this complex problem, we propose to take

inspiration from biological agents that are already able to

interact with their environment in a structured way. Thus, our

model is based on bio-inspired computational and learning

paradigms.

Any biological agent observes its internal state and the

one of its surrounding environment through multiple sensors.

To obtain a consistent perception, this agent needs to merge

and extract information from these multiple data flows. As

a single event can induce sensory changes in multiple chan-

nels, multimodal co-occurrence detection is essential and is

also consistent with sensory-motor theories. For example,

in humans, consistent multimodal stimuli improve learning

and detection of events compared to monomodal stimuli or

inconsistent multimodal stimuli [5], [6], [7].

At a macroscopic point of view, the cortex can be de-

scribed as a set of multiple cortical areas which are defined
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by their functional processing as for example visual areas

(V1, V2, MT, ...) or motor areas. In spite of their functional

specialization, cortical areas seem to have generic layered

architecture [8] and data processing [9], [10]. Especially, self-

organization (i.e. close neurons of a cortical area are sensible

to close stimuli) is a widely spread computational paradigm

that is mainly observed in low level sensory areas [11], [12],

[13].

In this article, we propose a paradigm for multiple data

flows fusion by multimodal correlation learning. This prob-

lem was already addressed in other studies with various

approaches as for example maximum covariance analysis by

principal component analysis [14], combination of sensory-

motor anticipations [15] or mutually constrained modal self-

organizations [16] among others. The originality of our

work lies mainly in its biological inspiration to provide a

generic neural implementation with an emphasis on prefer-

ential mapping of predictable stimuli across modalities with

separated modal processing. This focus on predictability is

motivated by a conceptual work postulating that even though

perceptual representations can be diverse depending on their

level of abstraction, their relevance depends on their ability

to predict other quantities [17]. Another important aspect

of our work is that our model was tested on a challenging

applicative task using real world data and provides combined

functional properties such as online and incremental learning

that classical machine learning techniques usually miss.

PROPRE consists on the combination of projection and

prediction (PROPRE stands for PROjection-PREdiction).

Each modal data flow is projected onto a low-dimensional

manifold by a self-organizing map. Based on each modal

projection, predictions of all other projections are computed.

A correct prediction can only be obtained if corresponding

modal stimuli are correlated. A predictability measure, that

defines the ability of a projection to predict the other ones,

modulates this projection learning so that, at the system level,

mapping of predictable multimodal stimuli is favored.

We previously studied the PROPRE paradigm with artifi-

cial multimodal data related to basic robotic behaviors [18],

[19]. Targeting its use on a real developmental robotic

platform, in this article we apply it to a challenging visual

discrimination task of namely real-world pedestrian pose

classification [20], [21] (see figure 1). Moreover, we illustrate

the importance of the modulation mechanism by proposing

various predictability measures and using simple bio-inspired

projection and prediction algorithms.

In the next section, we introduce the generic PROPRE

paradigm and its application to the pedestrian classification



Fig. 1. Examples of pedestrian visual data used in the classification task.

task. The task protocol and obtained results illustrating the

multiple PROPRE functional properties such as robustness

and flexibility are presented in section III.

II. PROPRE

A. Main paradigms

PROPRE is a modular and generic neural paradigm for

multiple modal data merging that is based on the coupling

of projection and prediction (see figure 2). The projection

step uses the self-organizing map paradigm (SOM) to obtain

a dedicated topological projection of each modal input space

(see section II-B). It provides a low dimensional spatial

representation of all current stimulus. Each modal projection

is used to predict projected representations of all other

data flows (see section II-C). Such a prediction can only

be accurate if the corresponding modal stimuli - and a

fortiori their low level representations - are correlated. A

predictability measure quantifies the quality of the prediction

that indirectly reflects the correlation between the multimodal

stimuli (see section II-D). This predictive measure is used to

modulate the projection learning so that to favor the mapping

of stimuli correlated across modalities.

3- predictability measure
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Fig. 2. PROPRE architecture is composed of three interacting modules.
First, a projection module that provides a low dimensional representation
of each modal stimulus. Second, a prediction of each modal representation
by the other ones. Third, a predictability measure that quantifies the ability
of a stimulus to predict the other ones and modulates the corresponding
projection learning.

For the pedestrian discrimination task addressed in this

article (see section III-A for details), we used PROPRE on

a multimodal flow composed of visual data (representing

the detected pedestrian) and category data (representing the

potential danger of the pedestrian). The aim of the task is

to transfer the knowledge contained in the category data

flow to the visual one for the system to be able to visually

recognize potentially dangerous pedestrians. In this context,

the category is considered as an already processed stream for

the model (that may be resulting of computation and learning

of another part of a larger system). Thus, this data flow is

neither processed in the projection nor in the prediction steps

leading to the removal of the dedicated maps in the PROPRE

architecture (see figure 3).
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Fig. 3. Architecture of PROPRE applied to the pedestrian visual data
classification task. For this task, the category flow is considered as a
reference data flow so that it is not projected and the projection (S) of
the visual data tries to predict (P ) directly the category stimulus (C).

From a computational point of view, the reception of each

multimodal stimulus in the model leads to one transmission

and one learning step so that the model provides online learn-

ing (i.e. the stimulus is represented and learned at the same

time). Technically speaking, the transmission stage consists

on the evaluation of each module activity (equations 1.a-b-c

in figure 3). Then the learning stage updates the weights

of the plastic connections linking the modules (equations

2.a-b). The used equations are detailed in the three next

sections describing respectively each of the three modules

of PROPRE.

B. Projection

For the projection step, we use a slightly modified version

of the classical Kohonen self-organizing map [22] in which

we include the modulation by the predictability measure.

Kohonen maps provide some interesting properties, such as

quantization that is related to the mapping of the input space

statistic [23]. Thus, by modulating learning, we influence the

received input statistics so that the predictable stimuli space

will be preferentially mapped and represented.

In practice, S is a discrete bi-dimensional square grid of

neurons that receives the visual data flow V (see figure 2).

Let wSV(x, t) be (wSV (x, y, t))y with wSV (x, y, t) the

weight from the unit at position y in V to the unit at position

x in S at time t. With these notations, the activity of S at

position x at time t is computed as

S(x, t) = (wSV(x∗, t).V(t))e
−||x−x

∗||2
2

σ
2 (1.a)

with x∗ the winning unit defined as the unit whose matching

between its weights and the input stimulus, computed as

wSV(x∗, t).V(t)1, is the highest (i.e. wSV(x∗, t).V(t) =



max
x

wSV(x, t).V(t)) with V(t) the current stimulus. σ is

the variance of the Gaussian neighborhood radius and || · ||2
is an euclidean distance.

The incoming weights of the unit at position x in S at

time t are updated as following:

∆wSV(x, t) = ηλ(t)S(x, t)(V(t)−wSV(x, t)) (2.a)

λ(t) =

{

1 if Pr(t) ≥ θ

0 otherwise

with η the constant learning rate, Pr(t) the predictability

measure (see section II-D) and θ the predictability threshold.

This equation is the one of Kohonen map in which we

introduce the modulation by λ(t). Thus, only predictable

stimuli (i.e. that have their predictability measure overcoming

the threshold) are learned by the system.

C. Prediction

The projection activity of S is used to provide a prediction

in P of the current category stimulus of the data flow C.

Thus, size of P map is defined by the one of C. The activity

in P at position x at time t is computed as a weighted sum

of the S activity:

P (x, t) =
∑

y

wPS(x, y, t)S(y, t) (1.b)

with wPS(x, y, t) the weight from the unit at position y in

S to the unit at position x in P .

The weights of the connection between S and P are

learned with a classical linear regression algorithm [24] that

minimizes the mean square error between the prediction P(t)
and the current category stimulus C(t). The update equation

is:

∆wPS(x, y, t) = η′S(y, t)(C(x, t)− P (x, t)) (2.b)

with η′ the constant learning rate.

D. Predictability measure

The predictability measure aims to quantify the quality of a

prediction with respect to a projection so that to modulate the

projection learning step to consider preferentially predictable

stimuli (see sections II-A and II-B). In this article, we want to

illustrate that the introduction of this modulation mechanism

increases the performance of the system even associated with

non tuned classical projection and prediction algorithms. For

that purpose, we propose multiple generic measures that

do not assume anything about the structure of processed

multimodal data flow.

In the case of our architecture applied to the pedestrian

pose classification task, the predictability measure quantifies

the quality of the category prediction P(t) with respect to the

real category C(t) (see figure 3). C(t) encodes the category

as a spatial coding (see section III-A) which is consistent

1In practice, we normalize the weights wSV(x, t) and the input V(t)
so that the opposite of the dot product is directly related to the euclidean
distance between the two values that is classically used as matching function
in Kohonen map.

with the coding provided by the projection step, so that

measures proposed in this article can be easily adapted to

the generic PROPRE architecture.

In practice, let define Xc as {x|C(x) 6= 0} when C

represents the c category. The four proposed measures are

the following with c∗ the current category represented by

C(t):

• Pr1(t) =

∑

x∈X
c
∗

P (x, t)

max
c

∑

x∈Xc

P (x, t)
that represents if the pre-

diction of the real category is maximal,

• Pr2(t) =

∑

x∈X
c
∗

P (x, t)

∑

c

∑

x∈Xc

P (x, t)
that corresponds to the

proportion of the predictive activity representing the true

category comparing to the total predictive activity,

• Pr3(t) =





∑

x∈X
c
∗

P (x, t)





2

∑

c

∑

x∈Xc

P (x, t)
that combines the

strength of the prediction representing the true category

with its proportion comparing to all predictions,

• Pr4(t) = −||P(t) − C(t)||2 that is the opposite of

the euclidean distance between the prediction and the

stimulus2.

III. EXPERIMENTS

A. Pedestrian classification task

We used data taken from the Daimler monocular pedes-

trian detection benchmark [20] to which we manually as-

signed one of four possible orientations (left, right, front

and back) as in [21]. For each experiment, we associate to

each orientation one of two categories, one that represents

the potential danger of this pedestrian orientation, the other

the absence of danger. In absence of specific mention, by

default, in our experiments the pedestrian left orientation

was associated to a potential danger whereas the other

orientations are considered as not dangerous. This category

is represented by the spatial position of a Gaussian in a 7x32

vector (see figure 4) that feeds the category data flow C (see

figure 3). For the visual data flow, we use high dimensional

data that corresponds either to the 32x64 pixel image of the

pedestrian or to a preprocessed 18x42 vector corresponding

to the HOG features of the image (see figure ??). To compute

HOG features, we use a cell size of 8x8 pixels, a block size

of 16x16 pixels, a border of 0 pixels, and a window size of

32x64 pixels in the terms of [25].

For each experiment, the data set composed of 12684

samples was randomly split in a learning and an evaluation

2According to our generic definition of the modulation signal for the
projection learning (see section II-B), predictability measure has to be an
increasing function of the quality of the prediction, so that we take the
opposite of the distance.



image hog features category potential danger

image hog features category no danger

a) pedestrian
left orientation

b) pedestrian
right orientation

Fig. 4. Examples of stimuli used in the experiments with a) (respectively
b)) a pedestrian with a left (respectively right) orientation. In this example,
left oriented pedestrians are considered as potentially dangerous contrary to
the ones with right orientation.

data set composed respectively of 90% and 10% of the data.

This split aims to clearly illustrate the ability of our paradigm

to generalize its knowledge to unknown stimuli but is not

mandatory for PROPRE as it provides online learning. At

each time step, during typically 300,000 time steps, a multi-

modal stimulus randomly picked up in the learning data set

is presented to the model. Then, classification performance

of the system is evaluated by presenting all visual stimuli of

the evaluation data set and comparing its true category with

the predicted one defined by the maximal prediction in P .

By the way, in order to reduce convergence time of the

system in simulation, we made some adjustments to the

projection equations presented in section II-B that do not

qualitatively modify obtained results. First, the variance of

the Gaussian and the learning rate are initially set to high

values (so that the projection quickly maps the input space)

and decrease to low non zero constant values that guarantee

continuous learning which are respectively set to 1.0 and

0.01 in all our experiments. Second, λ(t) is fixed to 1 for

some time steps (20,000 in our experiments) at the beginning

of the simulation so that projection and prediction quickly

learn and predictability measure becomes relevant.

B. Classification performances

1) Influence of the predictability measure: In order to

test the influence of the modulation mechanism introduced

in our PROPRE paradigm, we tested our model over ten

experiments without modulation (i.e. ∀t, λ(t) = 1 in equation

2.a) or with one of the four predictability measures proposed

in section II-C. We present in figure 5 (respectively on

figure 6) the results obtained for each measure with a 10×10
(respectively 30 × 30) projection map and HOG features

(respectively pixel images) as visual input.

In the case of HOG features visual input (figure 5), we

observe that the average classification performance with the

use of a predictability measure is significantly higher than

the one obtained without modulation. More importantly,

this improvement is quite similar whatever predictability

Fig. 5. Average and standard deviation of classification performance for
each pedestrian orientation of the system receiving HOG features visual
input in a 10× 10 projection map depending on the predictability measure
used. No modulation means that ∀t, λ(t) = 1 in equation 2.a.

measure used (around +7%). This reinforces our main idea of

introducing a modulation mechanism to guide the projection

towards the mapping of predictable stimuli in order to

improve system performance.

Moreover, the improvement of performance is particularly

important for the left and right orientations which are the

hardest ones to classify. Indeed, left and right orientations are

visually similar but belong to different categories, contrary

to front and back orientations that are visually similar and

have the same category.

Fig. 6. Average and standard deviation of classification performance for
each pedestrian orientation of the system receiving pixel images visual input
in a 30× 30 projection map depending on the predictability measure used.
No modulation means that ∀t, λ(t) = 1 in equation 2.a.

With the use of pixel images as input, the problem is much

more difficult compared to the preprocessed HOG features

as the input space dimension is higher and the dimensions

are less relevant (most of the pixels do not provide any



information about the pedestrian orientation as the ones of

the background for example). This difficulty is illustrated by

the drop of average classification performance provided by

the reference SVM (support vector machine) algorithm [24]

from 95.95% with HOG features to 76% with pixel images.

In this case, the modulation mechanism still provides an

increase of average performance but only by around 1%

(figure 6). However, it has to be noticed the most significant

improvement of left orientation classification which reflects

the functional consequence of the modulation mechanism.

Indeed, thanks to the modulation mechanism, PROPRE al-

gorithm maps the mostly predictive stimuli, independently of

their category, whereas the original Kohonen algorithm maps

the mostly presented stimuli, in this case the non dangerous

ones. Thus, achieved PROPRE performances tend to be more

diverse.

2) Influence of the predictability threshold: In order to

study the dependency of system performance on the pre-

dictability threshold, we tested PROPRE with hog features

as visual input, a 10×10 projection map, Pr1 as predictability

measure and ten different thresholds. Obtained results over

ten experiments for each setup are presented on figure 7. Re-

sults provided by the use of the other proposed predictability

measures are qualitatively similar.

Fig. 7. Average and standard deviation of classification performance for
each pedestrian orientation of the system receiving HOG features visual
inputs in a 10 × 10 projection map depending on the threshold used with
the Pr1 predictability measure. No modulation means that ∀t, λ(t) = 1 in
equation 2.a.

At one extreme, θ = 0 means that every stimulus will be

learned by the system. This configuration is equivalent to the

no modulation case. At the other extreme, if θ = 1, the sys-

tem will only map stimuli that are correctly classified every

time i.e. that the maximal prediction always corresponds to

the true category. We can do two mains observations from

figure 7 about the influence of the predictability threshold on

the system performance.

First, significant improvement of the average performance is

obtained for a large range of thresholds (for θ between 0.5

and 1 here). Thus, the model do not need a precise tuning

of this parameter for the modulation to be efficient.

Second, even if stimuli are completely predictable in our

setup, the increase of the predictability threshold (that im-

poses the system to be more selective) leads to a decrease

of the average performance at some point (the shift occurs

around θ = 0.8 in this case). Thus, the threshold has

to be chosen so that the system favors the mapping of

clearly predictable stimuli but in the same time accepts

some classification errors for the learned stimuli. This last

point should be particularly relevant with noisy inputs as for

example in real robotic tasks.

3) Influence of the SOM size: PROPRE’s capacity of

representation and consequently of prediction is limited by

the size of the SOM. We illustrate in figure 8 the influence of

this parameter on the system performance. Results presented

are the average over ten experiments for each size, using

HOG features as input and Pr1 for the predictability measure

associated to a 0.7 threshold. Once again, similar results are

obtained with other predictability measures proposed.

Fig. 8. Average and standard deviation of classification performance for
each pedestrian orientation of the system receiving HOG features visual
inputs with Pr1 as predictability measure and a 0.7 threshold depending on
the size of the projection map P . No modulation means that ∀t, λ(t) = 1
in equation 2.a. SVM performance are also represented for comparison.

As expected, classification performance increases with the

size of the projection map. This increase is mainly obtained

by better classification of left oriented pedestrians, which

are one the hardest orientation to discriminate as previously

mentioned. PROPRE performance reaches 94.78% in average

with a 50 × 50 projection map which is very close to the

95.95% classification performance obtained with SVM that

is the reference supervised linear classification algorithm.

Moreover, preliminary results with higher projection map

sizes (up to 80× 80) seem to indicate that average PROPRE

performance can slightly increase by 2% and then overcome

SVM one. By the way, the increase of classification perfor-

mance induced by the modulation is confirmed for each of

the tested projection map size.



Fig. 9. Each line corresponds to the system results obtained for the corresponding stage in the input scenario (please refer to text for details). Left column:
Average and standard deviation of classification performance for each pedestrian orientation of the system with a 10 × 10 projection map and Pr1 as
predictability measure with a 0.7 threshold. No modulation means that ∀t, λ(t) = 1 in equation 2.a. Right column: Average activity in the projection map
for each pedestrian orientation at the end of the stage when using the modulation mechanism.



C. Plasticity

We showed in the previous section that PROPRE classifi-

cation performance can be very close to the one provided

by the reference SVM algorithm if we use a sufficiently

width projection map. Moreover, contrary to SVM, PROPRE

learning is incremental as based on the combination of

Kohonen map and online prediction learning. In order to

illustrate this plasticity property, we tested PROPRE with

HOG features as input, a 10 × 10 projection map, Pr1 for

the predictability measure associated to a 0.7 threshold and

changing input statistic over time (no external cue is provided

to the model to signal the change in the inputs). Learning and

evaluation data sets are evolving according to the following

protocol that changes visual and category inputs (each stage

last 200,000 time steps):

• in the first stage, the four pedestrians orientations are

used and only the left orientation is considered as

potentially dangerous (as in the experiments presented

in previous sections),

• in the second stage, the back oriented pedestrians are

removed from the datasets,

• in the third stage, the right oriented pedestrians are now

categorized as potentially dangerous,

• in the fourth stage, back oriented pedestrians are rein-

troduced in the dataset and considered as previously as

not dangerous,

• in the fifth stage, right orientation was again considered

as not dangerous so that the fifth and first datasets are

the same.

Classification performance over ten experiments and an ex-

ample of obtained self-organization in P are presented in

figure 9.

PROPRE achieves good classification performance with

the five input statistics (close to 88% in average) confirming

the plasticity of our system. Once again, performances are

increased at each stage with the use of the modulation. By the

way, we can notice that the performance for the first and fifth

stage, that correspond to the same input statistic, are very

similar in average, even if the distribution of performance

over orientations has changed because of the learning history

of the system.

Interestingly, we can observe that the orientation mapping

provided by the projection map is quite stable over the

different input statistics. It slightly spreads (respectively

shrinks) when a visual pedestrian orientation is removed

(respectively added) during stage 2 (respectively stage 4)

or changes when the category of a pedestrian orientation

is modified during stages 3 and 5. This behavior is very

interesting as it reveals that the performance of the system

for previously learned stimuli that are stable over time is not

substantially modified by changes in other parts of the input

space. Thus, PROPRE provides an interesting compromise

between plasticity and stability.

IV. CONCLUSION AND PERSPECTIVES

PROPRE is a bio-inspired unsupervised learning paradigm

for multimodal data merging that consists on the combination

of projection and prediction. Each modal data flow is pro-

jected on a dedicated low dimensional self-organizing map

that is used to predict all other modalities projections. The

originality of PROPRE consists on the use of a predictability

measure, that quantifies the ability of a projection to predict

the other ones, to influence the corresponding projection

learning. Thus, projections tend to map preferentially stimuli

correlated across modalities.

In previous articles [18], [19], PROPRE was already

applied on artificial data representative of a robotic task. In

this article, targeting the use of PROPRE on real robotic

platform, we illustrate multiple of its functional properties

when applied to real visual pedestrian data on a challenging

supervised classification task. This task consists on the visual

classification of pedestrians with four possible orientations in

a dangerous or not dangerous category.

PROPRE architecture is generic so that it can be applied on

any multimodal flow. Here, we tested it with pixel images or

preprocessed HOG features as visual inputs. In both cases,

the modulation mechanism improves average classification

performance especially for the left oriented pedestrians which

are among the hardest ones of the protocol to classify.

Moreover, this modulation tends to spread the classification

performance over the different pedestrian orientations so that

PROPRE abilities are more diverse.

PROPRE performance depends directly on the size of

projection maps that determines the width of the input space

that can be projected and then predicted. Thus, by increasing

the size of the projection map, PROPRE performance can be

easily improved and tends to be equivalent to the one of the

reference SVM classification algorithm.

Thanks to its combination of a modified version of Ko-

honen map and continuous predictive learning, PROPRE

provides an incremental learning of the input space. Thus,

it is able to dynamically adapt to shrink or spread of the

multimodal input space and to changes in the multimodal cor-

relations between stimuli. Moreover, this plasticity does not

significantly influence performance over non variable learned

part of the input space. Such a compromise between stability

and plasticity can be interesting for robotic applications.

All these properties were obtained with the four new pre-

dictability measures proposed in this article that are designed

to be applicable to the computation of any multimodal data

flow. This independence to precise predictability measure

validates our main claim of modulating projection learning

towards predictable stimuli across modalities to improve sys-

tem performance. Moreover, the performance is quite stable

over a large range of predictability thresholds, facilitating the

parametrization of the model.

Based on these promising results, we plan to test the scal-

ability of the proposed predictability measures by applying

PROPRE on real multimodal data as for example visual and

laser data for pedestrian classification. Moreover, in order



to reduce parametrization of the model to simplify its use

in large scale robotic applications, we want to introduce a

sliding predictability threshold. Preliminary results on this

last point are promising.
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