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Abstract— We present a novel method for the localization of a
legged robot on known terrain using only proprioceptive sensors
such as joint encoders and an inertial measurement unit. In
contrast to other proprioceptive pose estimation techniques, this
method allows for global localization (i.e., localization with large
initial uncertainty) without the use of exteroceptive sensors.
This is made possible by establishing a measurement model
based on the feasibility of putative poses on known terrain given
observed joint angles and attitude measurements. Results are
shown that demonstrate that the method performs better than
dead-reckoning, and is also able to perform global localization
from large initial uncertainty.

I. INTRODUCTION

The problem of localization using visual features has been

widely studied in recent years. A typical approach is to use

a known map of the environment and update pose online

using a combination of odometry and observation of known

features in the scene. In another approach, the process of

localization and choosing the right set of features is carried

out simultaneously giving rise to the approach known as

SLAM. In all this work, localization relies heavily on the

use of an exteroceptive sensor, such as a camera, GPS unit

or laser scanner. Proprioceptive sensors, such as joint en-

coders and angular rate gyros provide odometry information

while accelerometers can be used (at rest) to determine

the direction of gravity. Very little work has addressed the

problem of localization in known environments using only

proprioceptive sensing.

In this work, we will address the problem of localization of

a quadruped robot using only proprioceptive sensing. A good

analogy to motivate and explain this concept is that of human

motion in a dark but familiar room. Initially, humans have

no sense of where they are in the room but taking a couple

of steps and encountering, for example, a familiar feature

like a step or rise instantly localizes us in the room. There is

still an element of uncertainty in the estimate of position

in the room, for example, it may be difficult to localize

along the length of the step. However, even the limited pose

information gleaned from this data is often enough to make

meaningful decisions. This technique, that we will henceforth

refer to as proprioceptive localization, can also prove very

useful in situations where the primary external sensors of a

robot fail.

We are specifically motivated by the application of this

technique to legged robots. Legged robots can sense rich

ground features and, if appropriate sensors are available, also
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Fig. 1. Illustration of how proprioception might be used to distinguish valid
poses from invalid ones. Fig. 1(a) illustrates a body pose that is consistent
with proprioception, given the assumption of static stability; the zero pitch
of the body is consistent with all legs being extended on a flat surface.
Fig. 1(b) illustrates a body pose that is inconsistent with proprioception
and the given terrain; since the front legs have nothing to rest on in that
configuration, we would expect the robot to be pitched forward were it in
a statically stable pose, as in Fig. 1(c).

actively probe the environment. Although the set of features

is not as rich or unique as visual features, the technique

provides sufficient information to localize the robot even with

reasonable uncertainity in its initial position. Internal sensors

(gyroscopes and accelerometers) provide the necessary local

information to determine the local pose of the robot, i.e. its

roll, pitch and height above the ground. Internal joint sensors

provide joint angles for the legs. Fig. 1 briefly illustrates how

this data might be used in a localization strategy.

The method we present in this paper could be used to

provide robustness to failure of a primary exteroceptive

sensor like a camera or GPS system. While the method may

not provide enough information to localize the robot very

accurately in such a situation, it may still provide enough

information to move the robot to a safer location.

This paper is organized as follows. In Section II, we look

at related work in other areas of research. In Section III,

we present the robot and associated hardware used for this

effort. In Section IV, we present the gait controller used

to make this robot walk over different types of terrain. In

Section V, we present details of the particle filter used

for localization. In Section VI, we present details of the

experimental procedure and results from the experiments. We

conclude with a discussion of the results in Section VII.

II. RELATED WORK

Existing research in localization for legged robots might

be divided into approaches that are based primarily on

exteroception and those that are primarily based on proprio-

ception. Methods in the former category have primarily been



Fig. 2. The LittleDog robot (with retroreflective markers) on a terrain
board.

explored in visually structured environments with vision-

based localization approaches. Often times these approaches

do not take particular advantage of the structure provided by

legged locomotion (such as in [1]). Hoffman et. al. describe

a legged robot localization system that uses both vision and

proprioceptive data [2]. In this case, proprioception is used

to improve the motion model such as to more accurately

update uncertainty predictions from odometry. However, pro-

prioceptive data by itself is insufficient to localize the robot

in this scheme. The critical difference in our work is that our

method allows for global localization from proprioception;

i.e., localization uncertainty can decrease in time given the

observations.

Lin et. al. demonstrate a form of proprioceptive pose

estimation for a hexapedal robot in [3]. Their robot is

equipped with a leg pose sensor and an inertial measurement

unit. A Kalman filter is used to fuse these measurements,

and different process models are considered for different

phases of the gait. Again, in contrast to our method, Lin’s

model does not allow for global localization based only on

proprioceptive data and terrain information.

Another closely related line of research relates to local-

ization for robotic assembly, where the goal is to physically

assemble parts with fine precision in the presence of uncer-

tainty. Chhatpar ([4]) describes a method for localization in

such a scenario using particle filtering. Similar to our method,

Chhatpar’s method relies on computing likelihoods of contact

configurations in order to localize an object, given a prede-

fined map of possible contact configurations. Our method

differs in that we consider how a similar technique applies

to legged locomotion, and how the localization problem is

aided by the particular characteristics of legged locomotion.

III. EXPERIMENTAL HARDWARE

In this work, we use a quadruped robot called LITTLEDOG

(Figure 2) manufactured by Boston Dynamics Inc. The

robot has four legs with three joints in each leg. The robot

can be powered by onboard batteries or by an external

power system. Communication is through a wireless 802.11a

connection with a host computer. Onboard sensing includes

an accelerometer and gyroscopes. Each foot also has a single

axis force sensor at the bottom.

Our experimental setup includes a VICON motion capture

system. The system consists of 6 high speed cameras operat-

ing at approximately 100 Hz. A set of reflective markers on

the body of the robot allow the system to track the position

and orientation of the robot. Terrain boards measuring 60

cm by 60 cm are used for testing the robot. The terrain

boards are accurately scanned, providing an elevation map

of each board. The boards are also registered with respect to

a local coordinate system marked out by reflective markers.

The reflective markers register the terrain board accurately in

the global coordinate system defined by the motion capture

system.

IV. GAIT CONTROL

In this section, we present details of the gait for the robot.

It is important to mention that this controller is executed with

feedback provided by the motion capture system. The motion

capture system provides information about the complete pose

of the robot itself while internal sensors provide information

about the joint angles of the robot. The data from the

motion capture system was used only for control and not

in the estimation process. The experimental procedure for

collecting and analysing data from the trials will be described

in more detail in Section VI. It should be noted that the focus

of this work was on validating the localization procedure and

not on the gait control procedure. Hence, we will present the

gait control technique only in brief.

The controller implements a statically stable gait with no

more than one foot off the ground at any point of time.

Figure 3 shows the phasing of the legs for walking. There are

two separate parts to the motion of the robot, the motion of

the body itself and the motion of individual legs through the

air. Our implementation requires the body to stay stationary

while a leg is swinging. The gait can be easily adapted to

achieve different types of walking (crawl, trot) using just a

few parameters. Splines are used to specify smoother motion

profiles for the robot body and leg motion. Zero velocity

boundary conditions are used to specify smooth touchdowns.

The controller follows the following algorithm:

1) Choose next foot to lift based on phasing sequence

(FL,HR,FR,HL).

2) Choose foothold for next foot by choosing a nominal

foot position (based on current velocity). Check quality

of foothold based on local flatness of area around point

chosen, quality of next support triangle and kinematic

feasiblity.

3) Execute foot motion - motion executed is spline based

with zero velocity conditions at beginning and end of

rise, fall and swing.

4) Execute body motion - body is moved to centroid of

next triangle of support. Checks are performed on the

kinematic feasibility of the motion and only a kinemat-

ically feasible motion is executed while ensuring that

a sufficent stability margin is achieved for foot pickup.

5) Return to Step 1.

The duty cycle for the motion is thus 0.875 since each leg

spends only 1/8 of each whole cycle off the ground. The legs

are phased 0.25 apart. The net motion of the robot in a run

is shown in Figure 4. The markers in the figure represent the
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Fig. 3. Phasing diagram for gait. The shaded areas represent parts of the
gait cycle when the feet are on the ground. The feet are labeled as FL (front
left), FR (front right), HL (hind left) and HR (hind right).

Fig. 4. A trial run for the robot over rough terrain.

position of the center of mass of the robot at the end of each

footfall. Also visible is the lateral oscillation of the robot’s

body, effected in order to achieve a good margin of stability.

V. PARTICLE FILTERING

Particle filtering [5] has emerged as the estimation method

of choice for many difficult problems in robotics due to its

flexibility and ease of use. We employ a particle filter in this

work as our localization method for these reasons and others

that will be made apparent in this section. We will briefly

review particle filtering methods here; for a more detailed

description of these methods, the reader is advised to consult

one of many instructive references on the subject, such as [6]

or [7].

A. Preliminaries

Our ultimate goal is to obtain an estimate of the six-

degree-of-freedom pose of the robot body with respect

to a global coordinate frame, given prioprioceptive sensor

measurements and prior knowledge of the dynamics of the

legged robot. This problem can be expressed in a Bayesian

setting via the following probabilistic equation:

p(xt|z0:t) = αp(zt|xt)

∫

dxt−1p(xt|xt−1)p(xt−1|z0:t−1)

(1)

This expresses that we wish to obtain a probability dis-

tribution over the pose at the current time (xt) given all

previous measurements z0:t. This distribution is a function

of the measurement likelihood function p(zt|xt), the sys-

tem dynamics p(xt|xt−1), and the prior pose distribution

p(xt−1|z0:t−1). The normalization factor α can be computed

from the constraint that
∫

dxtp(xt|z0:t) = 1.

The general difficulty in computing Eq. 1 follows from the

intractability of the integration and the computation of the

normalization factor. Unless strong restrictions are placed on

the system (i.e., linearity), approximations must generally be

used. Particle filtering approximates the posterior distribution

by a weighted sum of point mass distributions (known as

particles). The following is an informal description of how

the method works. Substituting the point mass approximation

into Eq. 1 yields the following, where the superscript i refers

to the ith particle, and the wi are weights associated with the

particles.

p(xt|z0:t) = . . .

∫

dxt−1

∑

i

p(xt|xt−1)w
i

t−1δ(xt−1 − xi

t−1)

=
∑

i

wi

t−1p(zt|xt)p(xt|x
i

t−1) (2)

Here the properties of the Dirac delta function δ(·) have

been used to perform the integration. The resulting mix-

ture distribution in Eq. 2 can be sampled to yield another

point mass distribution for the posterior. The most common

method simply samples xt from the dynamics distribution,

p(xt|x
i
t−1), since a closed-form distribution for the right

hand side of Eq. 2 might not exist. This yields

p(xt|z0:t) =
∑

i

wi

t−1p(zt|x
i

t)δ(xt − xi

t) (3)

where xi
t is a sample from p(xt|x

i
t−1). This sampled

posterior distribution can then be used as the prior at the

next time instant, yielding an efficient recursive inference

procedure.

B. Particle filtering for proprioceptive localization

One drawback of this sort of particle filter is the curse

of dimensionality; the volume of the state space grows

exponentially with the dimension, making it generally very

difficult to apply particle filters with state spaces of more

than a few dimensions. It is therefore crucial to choose a

minimal representation of the state if a particle filter is to be

applied.

We exploit several features of legged locomotion over

rough terrain in order to find this minimal parameterization

of the state. Again, we are ultimately interested in the 6-

DOF pose of the robot body. The first assumption we make

is that the robot is using a statically stable gait, such as

that previously described. This is a reasonable assumption to

make for a robot with unknown pose attempting to traverse

rough terrain, since this represents the “safest” class of

gaits. This assumption allows us to neglect dynamic effects

for which we might have to maintain linear and angular

velocities and accelerations as part of the state. Although

unwanted dynamic effects are still possible regardless, we

expect them to be small enough to characterize as noise in

an otherwise static gait.

The previous assumption leaves us with a six-dimensional

state consisting of the 6-DOF body pose. However, it can

be reduced to just three given the fact that not all poses



are realizable at all positions given the assumption of static

stability, and given known terrain and leg poses. For example,

any pose with more than three legs off the ground is unrealiz-

able, as is any pose that requires legs to penetrate the terrain.

This inefficiency is resolved by choosing a three-dimensional

state vector consisting of two-dimensional translation parallel

to the ground (pt) and a one-dimensional yaw angle θt. We

reasonably assume height, pitch, and roll can be estimated via

other means; the precise rationalization for this assumption is

made more clear when the measurement model is described

later in this section. The complete state vector is therefore

given by xt = [pT
t θt]

T .

Our dynamics model is specified by the desired, com-

manded movement that induces the motion of the robot’s

center of mass; we refer to this as “odometry” in analogy to

the case of wheeled robots. Due to the nature of the static

gait used, odometry updates are only specified at certain

time instants. These instants correspond to the periods of

quadruple support, where all feet are stationary and the center

of mass is moving to the new support triangle centroid; at

all other instants of time, the center of mass is stationary.

Assuming that the robot wishes to reach a point pt + ∆p
with yaw angle θt+∆θ (equivalently, xt+∆x), the dynamics

model for the periods of motion is simply

p(xt+1|xt) = N (xt+1;xt + ∆x,Σod) (4)

The notation N (x;µ,Σ) indicates a Gaussian distribution

in x with mean µ and covariance Σ. This indicates that

in order to sample from the motion model, we sample

a Gaussian distribution with mean equal to the expected

destination and covariance Σod set according to the amount

of uncertainty in the movement.

C. Formulation of measurement likelihood function

The observations in our model consist of measurements

from “proprioceptors:” in our case, accelerometers, angular

rate gyros, and joint encoders. Assuming that gravity is

the dominant force on the robot body, the roll and pitch

of the robot can be recovered fairly accurately by fusing

and filtering the accelerometer and gyro readings with a

method such as that presented in [8]. We can therefore

transform the inertial observations into observations of roll

and pitch, which will be much more useful in formulating a

measurement likelihood function.

The measurement likelihood function is then based on the

feasibility of a particular pose given the terrain and filtered

state, and observations of roll, pitch, and joint angles of the

robot. The more infeasible the conjunction of all these things,

the less likely the observations are given the state, and vice-

versa. We therefore need to specify a distribution over the

feasibility of overconstrained configurations specified by all

these variables. Figure 5 illustrates how this is accomplished.

Measurements are taken when three feet are thought to be

on the ground and one in the air (swing phase), according

to the known phase of the gait. Applying the discussed

constraints on translational coordinates, body Euler angles,

(a)

ERROR_FR

ERROR_HR

ERROR_HL = 0

SWING LEG

(b)

Fig. 5. An illustration of the measurement model for the system. The robot
is “skewered” on an axis through the position of the particle, with yaw angle
fixed from the particle as well. Roll and pitch are recovered from inertial
readings and are fixed as well. Feasibility of the pose is then expressed in
terms of the sum of distances of stance feet from the ground after grounding
one of the stance feet.

and joint angles yields only one free degree of freedom—the

height of the robot in the global workspace. Thus, the robot

can be considered to be moving vertically up and down along

a prismatic actuator that acts only in that direction as shown

in Figure 5(a). Since the feet in contact with the ground

are known at any point of time, we move the robot down

along this actuator until one of the feet in contact touch the

ground. This is illustrated in Figure 5(b) where the hind left,

hind right and front right feet are supposed to be in contact

with the ground.

However, for the given pose, moving the robot down the

prismatic actuator grounds the hind left foot first. At this

point errFR, errHL and errHR define the errors in the

positions of the front right, hind left and hind right feet

respectively with errHL = 0. These errors can be used as a

measure of the feasibility of this pose. If the pose were fully

feasible, all these errors would be zero.

Now, the likelihood function is defined for the particular

case in Figure 5(b) as a zero-mean Gaussian on the error with

an appropriate covariance Σz that captures the uncertainty

due to inertial and encoder error:

zt =
√

err2
FR

+ err2
HR

(5)

p(zt|xt) = N (zt; 0,Σz) (6)

Given this measurement model, the particle filtering algo-

rithm is briefly summarized in Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we will present experimental results for

the technique described in this paper. We will first present

the experimental procedure used to carry out the trials.

As noted earlier, the trials are carried out with the motion

capture system being used to provide feedback for the

position and orientation of the body. Thus, the controller has

full knowledge of the terrain and the position of the body.

All the data from a trial is logged. The system has the ability

to playback trials using the logged data. All our localization

experiments are carried out offline using the proprioceptive

data from the log. It should be noted that the localization

could just as easily be performed online without the use of

motion capture data; however, this was not possible here due



for i = 1 to N = number of particles do
x0 ∼ p(x0) // draw poses from initial distribution

end

while zt = new accelerometer, ∆xt = new odometry do

for i = 1 to N do
// randomized deviation from nominal motion

x̃i
t ∼ N (0,Σod)

// apply motion model

xi
t ← xi

t−1 + ∆xt + x̃i
t

// update particle weights with measurement

wi
t ← wi

t−1p(zt|x
i
t)

// p(zt|xt) represents the measurement

likelihood function

// resample if necessary
end

end

Algorithm 1: Particle filtering for proprioceptive local-

ization

to LittleDog’s lack of adequate touchdown sensors. Without

these sensors, the controller must rely on motion capture data

to detect touchdown.

The trial starts with the motion capture system turned on

and the robot placed at the starting point on the terrain.

The trial is then run and the robot proceeds to walk from

the starting position to the goal position. Data from all the

sensors on the robot, the motion capture system and data

corresponding to the odometry is continuously logged as the

robot completes the task. The localization algorithm is then

run offline using the logs.

The measurement model requires knowing positions when

three feet are on the ground and also knowing which foot is

off the ground. Since the cycle time of the gait is fixed, this is

easy to determine (under the assumption of a statically stable

gait). There may be cases where the dynamics of the motion

result in the use of spurious data from the logs where a

different foot is off the ground. However, such data could be

looked at as a noisy measurement which should get filtered

out by subsequent observations.

Figure 6 shows snapshots from one offline estimation trial

run. The initial position and orientation of the particles is

chosen randomly around the starting position of the robot.

All the particles have equal weights in the beginning.

Figure 7 plots the actual, filtered and odometry based

state of the robot during the trial. The filtered state was

calculated as a weighted mean of the state of all the particles.

The odometry estimate was calculated separately using only

odometry information. The actual position of the robot is

obtained from the motion capture system. In Figure 7, x and

y represent the position of the robot in a global coordinate

system while the yaw represents the yaw of the body of the

robot in the global coordinate frame.

Table I shows estimation error statistics from multiple

trials with varying terrain configurations. Data from these

trials demonstrates a marked improvement in localization

performance over dead reckoning, with the improvement

INITIAL POSE

DISTRIBUTION

TRUE

POSE

TERRAIN

(a) (b)

(c) (d)

ODOMETRY

(e) (f)

Fig. 6. Visualization of experiment with localization from offline data.
Fig. 6(a) shows the initial, highly uncertain pose distribution. Each particle
is represented by a semi-opaque “stick figure” robot. The true pose is
represented by a solid black robot, as is the odometry estimate. Upon
approaching the step (Fig. 6(b)), particles that have already passed the step
are eliminated. Note the lateral ambiguity present as the robot approaches
the second terrain board (Fig. 6(d)). The ambiguity begins to be resolved
as the robot steps over the more informative terrain. The final distribution
estimate is consistent with the true final pose, whereas the estimate from
odometry is significantly off (Fig. 6(e)).

averaging 45% over the course of a trial.

A. Discussion

The results demonstrate that the use of this technique for

localization is feasible. The technique works best when the

terrain is uneven since this helps in resolving the ambiguity

in the pose of the robot. Flat terrain is featureless and our

technique is incapable of localizing the robot when walking

over such terrain. As seen in Figure 7(a), when a step is

detected the x position of the robot converges to the x value.

However, there is still an ambiguity in the y position of the

robot and the yaw of the robot (reflected by the spread of

the particles along the length of the step in Figure 6(c)).

As the robot moves over rougher terrain, its pose estimate

gets better since there are now richer features available to

get observations from. Our experimental results also suggest

that coarser terrain features, such as simple steps, result in

better estimation performance than finer features such as

small crevices.
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Fig. 7. Plots of actual, filtered and odometry based position (x, y) and
yaw of the robot. Note exaggerated scale for plot of y-position.

It is possible that the pose of the robot could converge to

a different trajectory where the terrain features are spatially

and temporally similar to the actual trajectory of the robot.

If the terrain features are sufficiently rich, as is the case

with the terrain boards used for our trials, the possibility

of this happening will be lower. However, on flat terrain,

the uncertainty in the estimate will grow with time since

there are no features available to correct the estimate and

the estimate will be no better that one computed using only

odometry information.

VII. CONCLUSIONS AND FUTURE WORK

We have studied the novel problem of global localization

for a quadrupedal robot using only proprioceptive sensors,

assuming known terrain. We have demonstrated a solution to

this problem that is informed by the particular characteristics

of legged locomotion over rough terrain. Specifically, this

is accomplished using particle filtering with a minimal state

representation and a novel measurement model that combines

proprioception with terrain information. Our results show

that the method is able to perform global localization. A

significant improvement was also observed relative to dead-

reckoning.

The proprioceptive localization problem contains many

Trial Mean distance Mean distance Improvement
error (filter) error (odometry) (percent)

1 0.099 0.177 43
2 0.108 0.259 58
3 0.157 0.214 26
4 0.115 0.242 52
5 0.123 0.223 44
6 0.131 0.264 51
7 0.131 0.209 37
8 0.177 0.360 51
Average 0.122 0.227 45

TABLE I

ESTIMATION PERFORMANCE OVER SEVERAL TRIALS VARYING TERRAIN

interesting issues that we have not yet been able to fully

explore. One such avenue for further research is the ac-

tive localization problem [9], which was also investigated

in Chhatpar’s work [4]. In active localization, the robot

chooses to perform the actions that are expected to minimize

localization uncertainty. In this setting, the resulting behavior

would be much like the earlier example of the person in

a dark room; the robot would “grope around” in order to

orient itself. This might greatly aid the performance of any

navigational tasks in situations with high initial uncertainty.

Another future avenue of research is the SLAM problem.

In a realistic setting, it is expected that the map would

not be given a-priori. Existing SLAM algorithms might be

used to simulaneously build the map and localize the robot.

Additionally, the problem contains interesting structure that

could be used to help the process. For example, if there is

some notion as to the general expected shape of the terrain,

this could be used as a prior to aid the mapping process. We

have yet to fully investigate these interesting aspects.
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