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The swimming of a bacterium or a biomimetic nanobot driven by

a rotating helical flagellum is often interpreted using the resistive

force theory developed by Gray and Hancock and by Lighthill, but

this theory has not been tested for a range of physically relevant

parameters. We test resistive force theory in experiments on mac-

roscopic swimmers in a fluid that is highly viscous so the Reynolds

number is small compared to unity, just as for swimming micro-

organisms. The measurements are made for the range of helical

wavelengths λ, radii R, and lengths L relevant to bacterial flagella.

The experiments determine thrust, torque, and drag, thus providing

a complete description of swimming driven by a rotating helix at low

Reynolds number. Complementary numerical simulations are con-

ducted using the resistive force theories, the slender body theories

of Lighthill and Johnson, and the regularized Stokeslet method. The

experimental results differ qualitatively and quantitatively from the

predictions of resistive force theory. The difference is especially large

for λ<6R and/or L> 3λ, parameter ranges common for bacteria. In

contrast, the predictions of Stokeslet and slender body analyses

agree with the laboratory measurements within the experimental

uncertainty (a few percent) for all λ, R, and L. We present code imple-

menting the slender body, regularized Stokeslet, and resistive force

theories; thus readers can readily compute force, torque, and drag

for any bacterium or nanobot driven by a rotating helical flagellum.

hydrodynamic interaction | motility

Gray and Hancock (1955) (1) and Lighthill (1976) (2) devel-
oped resistive force theory to describe swimming at low

Reynolds number. The theory is used to interpret propulsion by
a planar wave in sperm (3), small worms (4), Chlamydomonas
reinhardtii (5), and swimmers in a granular material (6); however,
rather than using the drag coefficients given by ref. 1 or ref. 2, the
coefficients are usually adjusted to fit the observations. The theory
is also used to describe bacterial propulsion by a rotating helical
flagellum (5, 7–12) and nanobots (13–16). The algebraic expres-
sions relating forces and torques to a helical flagellum’s axial ve-
locity and rotation rate (1, 2) are convenient to use but have not
been tested for a wide range of helical parameters. The experi-
ments reported here test resistive force theory for helical flagella.
Also, we compare the laboratory observations to the predictions of
slender body theory (2, 17) and regularized Stokeslet theory (18).
A helical bacterial flagellum can be modeled as a rigid rotating

helix (19) with radius R, pitch λ, length L, pitch angle θ, contour
length Λ ¼ L=cos  θ, and filament radius a (Fig. 1). The pitch is
typically in the range 2R< λ< 11R and the length is in the range
3λ<L< 11λ, as illustrated by the examples in Table 1 (10, 20–23).
For a microorganism driven by a helical flagellum rotating

about its axis, the Reynolds number Re is typically 10−4 − 10−2,
where Re ¼ ρΩR2=μ (Ω is the rotation rate; μ, the dynamic vis-
cosity; and ρ, the fluid density). At low Reynolds number a ro-
tating flagellum exerts an axial thrust F and torque τ related to
the flagellum’s axial velocity U and rotation rate Ω by (24, 25)
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The symmetric 2 × 2 propulsive matrix in Eq. 1 depends only on
the geometry of the flagellum. The elements of the propulsive

matrix can be determined by measuring the axial thrust F and
torque T for a rotating nontranslating flagellum and the axial
drag D on a translating nonrotating flagellum: D ¼ A11   U, F ¼
A12   Ω, and T ¼ A22   Ω.
Other researchers have compared experimental measurements

to resistive force theory and found that it does not accurately
describe the swimming of model spirochetes (i.e., super helices)
(26, 27) and swimming Escherichia coli (9, 28). The present work
specifically examines swimming driven by a rigid helix in a New-
tonian fluid (29) and compares laboratory measurements with pre-
dictions of various models for a wide range of helical parameters.
We measure thrust F, torque T, and drag D for model helical

flagella that are macroscopic (R = 6.5 mm) but swim in a highly
viscous fluid so Re ≈ 10−3. The length, pitch, and radii of the
laboratory helices are varied to cover the range relevant to
microorganisms and nanobots. The laboratory results are com-
pared to the predictions of resistive force theory (1, 2) and to
results from our numerical simulations of the slender body theory
of Lighthill (2) and Johnson (17) and the regularized Stokeslet
method of Cortez et al. (18).

Results

Comparison of Experiment and Resistive Force Theory. Our mea-
surements of thrust, torque, and drag for flagella with different
pitch are presented in Fig. 2. The results presented are dimen-
sionless; for reference, the actual values for λ ¼ 9R are F ¼ 80
mN, T ¼ 6:0 mNm, and D ¼ 66 mN. We also measured thrust,
torque, and drag as a function of helix length (for fixed pitch and
filament radius), as shown in Fig. 3.
The measurements in Figs. 2 and 3 depart both qualitatively

and quantitatively from the resistive force theory predictions of
Gray and Hancock (1) and Lighthill (2), who obtained the force
and torque on a flagellum by integrating the local forces on each
small segment (Fig. 1, Inset). Gray and Hancock’s expressions for
the drag coefficients in the directions normal and tangential to the
segment differ from the coefficients obtained by Lighthill; both
sets of expressions are given in Methods. For both approaches
the predictions for thrust and drag differ significantly from the
measurements, especially for flagella with small pitch (λ< 10R,
Fig. 2) and/or large length (L> 2λ, Fig. 3). On the other hand,
Lighthill’s predictions for torque agree fairly well with the mea-
surements as a function of both helix pitch (Fig. 2) and helix
length (Fig. 3), whereas the Gray and Hancock predictions for
torque are smaller than the measured values.
Resistive force theory fails because it neglects hydrodynamic

interactions between flows induced by different parts of a flagel-
lum; these interactions are long-ranged at low Reynolds number.
As λ decreases, the separation of filament segments in a helical
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flagellum decreases, leading to stronger hydrodynamic interac-
tions. In the limit λ→ 0, a helix becomes a cylinder that produces
zero thrust. The failure of resistive force theory due to hydrody-
namic interactions when helices have small pitch has been reported
previously (26, 27) but not quantified. Neglect of hydrodynamic
interactions also leads to the failure of resistive force theory to
describe the observed length dependence shown in Fig. 3, as
discussed in the next section.

Comparison of Experiment with Stokeslet and Slender Body Theories.

Stokeslet and slender body theories both rely on the linearity of
the Stokes equations for low Reynolds number flow. The solu-
tion at a spatial location r for the fluid velocity and pressure
fields, uðrÞ and pðrÞ, resulting from a point force at the origin,
fδðrÞ, is given by a “Stokeslet” (30)

uðrÞ ¼ f · JðrÞ  and  pðrÞ ¼ f · r

4πjrj3
; [2]

where JðrÞ is the Oseen tensor,

JðrÞ ≡ 1

8πμ

 

I

jrj þ
rrT

jrj3

!

: [3]

The response to a continuous force distribution from an im-
mersed body can be found by superposing Stokeslets (31). Thus,
forces on a flagellum and the resultant flow field can be found by
discretizing a flagellum’s surface and assigning a Stokeslet to
represent the fluid response to each surface element, as shown

schematically in Fig. 4. The total force on the flagellum is found
by integrating over the Stokeslets.
We compute the propulsive matrix elements using a technique

developed by Cortez et al. (18), who used a “regularized” Stokeslet,
which is an approximate point force, fϕ

«
ðrÞ, where the radial

cutoff function ϕ
«
avoids singular, nonintegrable kernels in nu-

merical simulations (Methods). We also compute the propulsive
matrix, using the slender body theory approximation to describe
flagellar swimming, as developed by Lighthill (2) and Johnson
(17). Slender body theory uses Lorentz’s (31) result that the far
field fluid response to a moving sphere can be represented by
a Stokeslet and a source dipole (doublet) of the same strength at
the center of the sphere. In this approach Stokeslets and doublets
are arranged along the axis of the flagellum, and the force per
unit length on a flagellum is obtained by inverting the integral
equation, relating the velocity of the flagellum’s center line and
the strength of the Stokeslets and doublets.
Numerical simulations using the regularized Stokeslet method

(18) and the Lighthill (2) and Johnson (17) formulations of the
slender body theory are described in Methods, and a Matlab ver-
sion of the code (Code S1 in SI Numerical Simulations) can be
used to reproduce the data presented in Figs. 2 and 3. As can be
seen in Figs. 2 and 3, the results from both slender body theory

λ

2a

θ

Fig. 1. Schematic of a helical flagellum with radius R, pitch λ, axial length L,

filament radius a, contour length Λ ¼ L=cos  θ, and pitch angle θ, where

tan  θ ¼ 2πR=λ. Inset shows a filament segment of length ds ¼ dx=cos  θ. The

segment’s tangential unit vector is t̂ðxÞ ¼ ½cos  θ; − sin  θ  sin  ϕ; sin  θ  cos  ϕ�,
where ϕ ¼ 2πx=λ is the phase angle of the helix.

Table 1. Parameters of flagella for several species of bacteria

[the filament radius a is typically 0.01 μm (20)]

Organism (ref.) R, μm λ=R L=λ

Caulobacter crescentus (21)

Wild type 0.13 8.3 6

Escherichia coli (10)

CCW 0.195 ± 0.025 11 2.8

Stopped 0.210 ± 0.025 11 2.7

Rhizobium lupini (22)

Normal 0.250 ± 0.015 5.4 4

Semicoiled 0.385 ± 0.020 2.9 3

Curly 0.135 ± 0.020 9.4 5

Salmonella (23)

Wild type 0.210 ± 0.005 11 4

Curly mutant — — 11

Tumbling mutant 0.145 ± 0.005 7.6 9
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Fig. 2. Thrust, torque, and drag for helical flagella as a function of pitch λ

(relative to the helix radius R) for helix length L ¼ 20R and filament radius

a ¼ R=16: experiment (solid black circles), regularized Stokeslet theory (solid

black lines), slender body theory of Lighthill (2) (solid blue lines), resistive

force theory of Gray and Hancock (1) (green lines), and resistive force theory

of Lighthill (2) (dashed blue lines). The regularized Stokeslet theory and

slender body theory results are very similar so the curves can be difficult to

distinguish; results from the slender body theory of Johnson (17) are es-

sentially the same and so are not plotted.
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and the regularized Stokelets method agree well with the labo-
ratory observations; the difference is within the experimental
uncertainty. The good agreement between measurements and
calculations for the flagella suggests that the stationary motor
housing, unlike with a moving cell body (9), does not interact
strongly with the flagellum.

Long Flagella. By expanding Lighthill’s slender body expressions
(Methods), we obtain scaling relationships for thrust, torque, and
drag in the limit L→∞,

F ¼ −

�

a2

a1a4

�

 
L

lnðL=RÞΩ [4]

T ¼
�

1

a4

�

LΩ [5]

D ¼
�

1

a1

�

L

lnðL=RÞU; [6]

where the constants a1– a4 depend on the flagellum geometry
(expressions are given in Methods).

The logarithmic factor in the expressions for thrust and drag
in the long length limit is absent in resistive force theory, but is
necessary to obtain the length dependence behavior we found.
The predictions of the asymptotic analysis agree within a few
percent with both the Lighthill and Johnson versions of slender
body theory for L=λ > 1,000 (λ ¼ 2:42R). In the limit L→∞,
slender body theory and resistive force theory predict the same
functional dependence, but the proportionality coefficient for re-
sistive force theory is different from that for slender body theory.
Further, our thrust and drag data in the biologically relevant re-
gime L=R< 30 are consistent with L=lnðL=RÞ scaling within the
experimental uncertainty.

Dependence on Filament Radius. We use the slender body theory
and regularized Stokeslet method simulations to examine the
dependence of force, torque, and drag on filament radius, which
was fixed in our experiments at a=R ¼ 0:063. The filament radius
results from slender body theory and the regularized Stokeslet
method agree well for radii relevant to bacterial filaments (a=R<

0:07), as shown in Fig. 5. For larger a=R values, not relevant to
bacteria but possibly relevant to some nanobots, the Stokeslet
simulations predict torque values somewhat larger than pre-
dicted by slender body theory. The results in Fig. 5, like those in
Figs. 2 and 3, can be generated using code provided as Code S1
in SI Numerical Simulations.

Discussion

Our experiments reveal that resistive force theory fails to provide
an accurate description of low Reynolds number swimmers driven
by a rotating helical flagellum for helices with λ< 6R and/or L> 3λ,
which is the range relevant to bacteria. The measured values of
thrust, torque, and drag differ significantly from the predictions
of resistive force theory with either Gray and Hancock’s (1) or
Lighthill’s (2) drag coefficients (Figs. 2 and 3). The measure-
ments were made for values of helical pitch λ and length L that
include the ranges relevant to bacteria.
Hancock (30) pioneered the analysis of swimming microor-

ganisms more than a half century ago. His “slender body model”
yielded predictions in terms of integrals that could not be nu-
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Fig. 3. Thrust, torque, and drag for helical flagella as a function of length

for flagella with the same filament radius a ¼ R=16 and pitch λ ¼ 2:42R:

experiment (solid black circles), regularized Stokeslet theory (solid black

lines), slender body theory of Lighthill (2) (solid blue lines), resistive force

theory of Gray and Hancock (1) (green lines), and resistive force theory of

Lighthill (2) (dashed blue lines). The regularized Stokeslet theory and slender

body theory results are very similar so the curves can be difficult to distin-

guish; results from the slender body theory of Johnson (17) are essentially

the same and so are not plotted.
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Fig. 4. Regularized Stokeslet method of Cortez et al. (18) discretizes the

surface of the flagellum and represents each surface element by a regular-

ized Stokeslet, which approximates a Stokeslet but avoids using delta func-

tion singularities. Slender body theory represents a flagellum using Stokeslets

and doublets arranged along the helical centerline; the combination of a

Stokeslet plus dipole approximates the fluid response to a flagellum segment.

In the simulations, the distance between cross sections is smaller than their

separation in the drawing, and there are 12 regularized Stokeslets per cross

section rather than 6 as drawn (Methods).
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merically evaluated at that time. Then Gray and Hancock (1)
developed “resistive force theory,” which yielded expressions for
thrust, torque, and drag in terms of the normal and tangential
resistance coefficients.
Resistive force theory was subsequently reanalyzed by Light-

hill (2). He computed zero-thrust free swimming speed (equation
57 in his paper) for “an infinitely long flagellum” from his slender
body theory. He then used this computed zero-thrust swimming
speed and expressions for the force distribution as “experimental
data” to calibrate resistive force theory and got “improved” ex-
pressions for drag coefficients. Thus one can use Lighthill’s re-
sistive force theory coefficients to predict the free speed for a
helical flagellum without a cell body, but the theory fails when
the cell body produces significant drag (nonzero thrust) (28).
The primary advantage of resistive force theory has been its

computational simplicity; the results are given in terms of alge-
braic expressions without the necessity of numerical integration.
But numerical integration is now straightforward on desktop
computers. We have developed numerical implementations of
regularized Stokeslet theory and two versions of slender body
theory, which were used to produce the curves in Figs. 2, 3, and
5. These algorithms (Code S1 in SI Numerical Simulations) can
be used by a reader to compute thrust, torque, and drag for any
rotating helix with parameters R, λ, L, and a.
In conclusion, we have shown that slender body theory and reg-

ularized Stokeslet theory predictions are in good accord with
measurements on low Reynolds number swimmers driven by a ro-
tating helix. This work indicates that it should also be straightforward
to apply slender body theory to microscopic undulating swimmers,
whose motion is often interpreted using resistive force theory (3–6).

Methods
System. Experiments were performed in an 80-L tank (520 mm × 495 mm ×

330 mm high) filled with silicone oil (Clearco) of density 970 kg/m3 and dy-

namic viscosity (at 25 °C) μ = 1.0 × 102 kg·m−1
·s−1), about 105 times that of

water. We measured the viscosity of the silicone oil with a cone and plate

viscometer and obtained a value in agreement with that given by the

manufacturer; we used the manufacturer’s values for the temperature co-

efficient of viscosity, 1.00 × 10−6 kg·m−1
·s−1/°C and thermal expansion co-

efficient, 9.4 × 10−4/°C. We measured the oil temperature using a calibrated

thermistor (Barnant Model 600-1075 LogR Thermistor/Datalogger).

Model flagella were constructed from initially straight pieces of type 304

stainless steelweldingwirewithradius0.397mm.Thewirewaswrappedaround

aluminum mandrels with helical V-shaped grooves of varying pitches on rods

with radius 6.4mmand lengths of either 152.5 or 305mm. Inmeasurements of

thedependenceonpitch, thehelical radiuswasR=6.3±0.4mm, the lengthwas

L = 130 ± 5 mm, and pitch was varied in the range 2:2R< λ< 15:3R. In meas-

urements of the dependence on length, the radius was R = 6.6 ± 0.2 mm, the

pitch was λ = 2.42R± 0:02R, and the length was varied in the range

3:3λ< L< 11:2λ. Measurements were made with each flagellum’s axis about

250 mm from the tank walls to minimize boundary effects. The ends of a fla-

gellumwere kept at least 100mm from thewall boundaries and from the free

surface. To examine possible changes of the radius andwavelength of thewire

helices under load, we analyzed videos for different rotation rates and for

different rotation directions, and the change in wavelength and radius was

smaller than the measurement uncertainty.

Thrust Measurements. A block of acrylic (89 mm × 38 mm × 35 mm) housed

a reversible variable-speed motor (Pololu 298:1 Micro Metal Gear Motor)

that rotated a flagellum immersed in the silicone oil (Fig. 6A). A stainless

steel shaft adapter extended through the bearing, connecting the motor

shaft inside the body to the flagellum outside of the body.

Tomeasure the thrust generated by a rotatingflagellum, the swimmerwas

attached to a load cell (Omega LCL-227G), using a 9.5-mm diameter vertical

rod extending from a structure above the tank. This vertical rod was fitted

into two ball bearings (VXB R6 3/8″ × 7/8″ × 7/32″ Full Ceramic Miniature Ball

Bearing) to constrain the swimmer’s movement to one direction. The dis-

tance from the bearings’ center of rotation to the center of an attached

flagellum was 325 mm. The load cell was at the top of the vertical rod, 25.4

mm above the bearings’ center of rotation. With this arrangement, the force

acting on the load cell is about 10 times larger than generated thrust,

thereby increasing the measurement sensitivity. The load cell had a maxi-

mum deflection of 1.27 mm for a full-scale load (2.23 N); therefore the

swimmer could rotate at most 3° at the bottom end of the vertical rod.

The load cell was connected to an amplifier/driver (Omega DP25B-E-A 1/8

DIN Process Meter and Controller) and its output fed into a digital data

acquisition board (National Instruments NIDAQ 6008 USB) that also provided

motor speed control (Pololu TReX Jr Dual Motor Controller DMC02A). We

recorded videos of the flagellum during each 200-s–long recording of load

cell data. Flagellum rotation rates were determined by analyzing the movie

with a Matlab Power Spectral Density function. The composite spectrum

produced by averaging the 103 spectra from the region of the image con-

taining the flagellum had a peak (more than three orders of magnitude

above the noise level) corresponding to the flagellum rotation rate (∼0.50

Hz). For each flagellum, we measured the force for clockwise (CW) and

counterclockwise (CCW) rotation for six or seven rotation speeds in each

direction; the results from CW and CCW rotation differed typically by 2%.

We fitted the data for each rotation direction to a line, and the average

slope of these two lines yielded the force per unit frequency for the fla-

gellum (Fig. 7A).

Torque Measurements. The torque required to rotate a flagellum was mea-

sured with a torque sensor (Magnova MLY Torque Transducer, maximum

torque, ±25 mNm; manufacturer’s stated accuracy, ±1% of full scale). For

torque measurements, the flagellum was mounted to a straight vertical rod

using the 6.35-mm diameter adapter (Fig. 6B). The stepper motor used to

rotate the flagellum gave precise control of rotation rate so no frequency

analysis was required. Again, multiple measurements at different rotation

speeds were made and fit to a line, giving the torque per unit frequency in

each direction; these values were averaged. There is also a background offset

in this measurement. The torque created by rotating the rod and adapter

alone was subtracted from the value measured when a flagellum was at-

tached. Fig. 7B shows that the background value for these data was about

30% of the total signal; the final torque value has an uncertainty of 4%.

DragMeasurements. The drag on a flagellumwasmeasured by translating the

nonrotating flagellum horizontally, as illustrated in Fig. 6C. The flagellum

was mounted on a 9.5-mm diameter vertical rod that had a 6.35-mm di-

ameter adapter mounted perpendicular to the vertical rod into which the

flagellum was mounted. The rod, shaft adapter, and flagellum assembly

were pulled through the fluid for 70 mm, and the drag was measured with

the same load cell as for thrust measurements. Six or seven measurements

were made at different translation velocities in both the flagellum-first and
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Fig. 5. Thrust, torque, and drag of flagella as a function of filament radius

a relative to the helical radius R (for a helix with pitch λ ¼ 6R and length

L ¼ 20R). The black curves are calculations using the regularized Stokeslet

method, the blue curves are Lighthill slender body theory calculations, and

the red curves are Johnson slender body theory calculations. The values cal-

culated for thrust from slender body theory curves cannot be distinguished

from the Stokeslet theory curves. We do not include here results from re-

sistive force theory because they are mostly off the scale of this graph.
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the rod-first directions. Data for each direction were fitted to a line with the

average of the two slopes giving the final drag force per unit velocity. This

result included the drag from the rod and adapter, which was independently

measured (for motion in both directions) and subtracted from the force

measured with the flagellum attached (Fig. 7C). The background was typi-

cally 80% of the total signal, but the uncertainty in the flagellum drag was

still less than 3%.

Experimental Data. Fig. 7 shows typical data used to determine thrust, tor-

que, and drag. The data are linear with respect to the rotation rate or ve-

locity, depending on the measurement. Despite large background values for

the rod and adapter holding the flagellum, the values of torque and drag

determined from the linear fit have uncertainties typically less than 5%.

Numerical Simulations

A program titled Helical Swimming Simulator, provided here as
Code S1 in SI Numerical Simulations, calculates thrust, torque, and
drag for any helical flagellum, using the regularized Stokeslet
method, Lighthill’s formulation of slender body theory, or Johnson’s
version of slender body theory; resistive force theory results are also
provided for comparison. (To permit updates, the code, entitled
“Helical Swimming Simulator,” is also provided on the Matlab File
Exchange, www.mathworks.com/matlabcentral/fileexchange/.) The
program takes as input the parameters for a helical flagellum:
radius R, pitch λ, length L, filament radius a, velocity U, and ro-
tation rate Ω. The helical radius R is used as the unit of length;
thrust, torque, and drag are made dimensionless by dividing by
μΩR2, μΩR3, and μUR, respectively. The following describes the
methods used for each type of calculation.

Resistive Force Theory. Resistive force theory obtains the total
force and torque for motion of a flagellum by integrating the local
forces on each small segment (Fig. 1, Inset). The local forces are
calculated using drag coefficients per unit length in the directions
normal and tangential to the segment, Cn and Ct, respectively.
Resistive force theory predicts that the thrust, torque, and drag
on a flagellum are given by

F ¼ ðΩRÞðCn −CtÞsin  θ  cos  θ
L

cos  θ
; [7]

T ¼
�

ΩR2
��

Cn   cos
2θ þ Ct   sin

2θ
� L

cos  θ
; [8]

D ¼ U
�

Cn   sin
2θ þ Ct   cos

2θ
� L

cos  θ
: [9]

Two sets of drag coefficients are commonly used in the literature,
those by Gray and Hancock (1) and those by Lighthill (2); both
are based on slender body theory, assuming that the effect of

each small filament segment is only locally important. Gray and
Hancock’s drag coefficients are

Ct ¼
2πμ

ln
2λ

a
− 1=2

 and  Cn ¼ 4πμ

ln
2λ

a
þ 1=2

[10]

and Lighthill’s are

Ct ¼
2πμ

ln
0:18λ

a  cos  θ

  and  Cn ¼ 4πμ

ln
0:18λ

a  cos  θ
þ 1=2

: [11]

These drag coefficients are used in Eqs. 7–9 for comparison with
experiments. See Figs. 2 and 3.

Regularized Stokeslet Method. Stokeslet theory includes Dirac
delta functions, which are difficult to evaluate computationally.
Therefore, Cortez et al. (18) use an approximate delta function,
a radially symmetric cutoff function ϕ

«
ðrÞ given by

ϕ
«
ðrÞ ¼ 15«4

8πðr2 þ «
2Þ7=2

; [12]

where r ¼ jrj and « is assumed to be small. This regularization
parameter prevents nonintegrable kernels, but also has a physical
meaning representing surface area over which the force is distrib-
uted. Over 97% of the weight of Eq. 12 is within a radius of one «.
For N regularized point forces fϕ

«
ðrnÞ at locations rn on the

surface of a body in motion, the fluid velocity at any point r is

ujðrÞ ¼
1

8πμ

X

N

n¼1

X

3

i¼1

S«ijðr− rnÞfn;iAn; [13]

where An are quadrature weights, and the regularized Green’s
function S«ij is

S«ijðrÞ ¼
δij
�

r2 þ 2«2
�

þ rirj

ðr2 þ «
2Þ3=2

: [14]

The regularizedGreen’s functionS«ij depends only on the geometry
of the object in motion and the regularization parameter «. Evalu-
ating Eq. 13 at each of the N regularized Stokeslets gives a linear
relation between the velocities and the forces exerted at these points.
For a helical flagellum, we discretize the surface with cross

sections along its length and use 12 regularized Stokeslets on the
perimeter of each circular cross section. We separate adjacent
cross sections by a distance equal to one-half of the filament
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radius. We choose a regularization parameter « to be half of the
grid spacing so adjacent regularized Stokeslets do not overlap
extensively. Fig. 8 shows the effect of varying « and varying grid
spacing in simulations of thrust, torque, and drag for a flagellum
similar to those in the experiments. Using a value of «=Δs ¼ 1=2,
we obtain values for F, T, and D that are nearly the same for all
three grid resolutions. Increasing the grid resolution from Δs ¼
a=2 to Δs ¼ a=3 changes the values by less than 1%, providing
«=Δs ¼ 1=2. However, the values change by about 1.5% for a
20% change in «.
Because the regularized Stokeslet method results depend on

the choice of «, we also simulated flagellar propulsion, using a
new boundary integral method developed by Gonzalez (32) for
solving solid body Stokes flow problems. This numerical method
also discretizes the flagellum surface and assigns Stokeslets to
represent each surface element, and it includes a parallel offset
parameter, which is the distance by which a parallel virtual sur-
face is offset from the flagellum. The flow is solved using a single-

layer potential on the parallel surface and a related double-layer
potential on the flagellum. The two potentials have a unique so-
lution that depends on the no-slip boundary condition of the fla-
gellum. The solution gives the strength of the Stokeslets at the
surface and thus the fluid stresses on the flagellum. The advan-
tage of this formulation is that Gonzalez shows the results are
independent of the choice of parallel offset parameter and so its
choice is based on ease of solvability (32, 33).
We solved Eq. 13 numerically for point forces fj for boundary

conditions specified by ui. Using the computed fj, we determined
the dependence of the thrust, torque, and drag on wavelength,
length, and filament radius, using the methods of both Cortez
et al. (18) and Gonzalez (32) with the same grid resolution in both
studies, Δs ¼ a=2 (i.e., 12 Stokeslets per cross section). There was
less than 0.5% difference between the two methods providing
«=Δs ¼ 1=2 in the regularized Stokeslet simulations. This close
correspondence provides further support for our choice of «.
Other recent studies such as ref. 34 used «=Δs ¼ 7=12 because
it gave results very similar to slender body theory calculations,
whereas ref. 35 used «=Δs ¼ 1=3 because it seemed to give the
best convergence as a function of grid spacing to the analytic
solution for the flow past an ellipsoid. We find that for our ge-
ometry «=Δs ¼ 1=2 gives results that are the most similar to both
slender body theory and to the Gonzalez method, as well as to
the experimental data.

Lighthill Slender Body Theory. Slender body theory represents a
flagellum with an arrangement of Stokeslets and doublets along
the flagellum’s centerline. Because dipolar fields fall off as r−2,
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whereas Stokeslets fall off as r−1, Lighthill (2) reasoned there
should be some intermediate distance q from any given point on
the flagellum where only dipoles within a � q � λ are important
in determining the flow at that point, although all of the Stokeslets
on the centerline must be considered because they are longer
ranged. He showed that the sum of the near- and far-field solutions
for the induced fluid flow on a given segment could be made in-
dependent of q by the choice of dipoles of the form (36, 37)

−
a2f⊥ðsÞ
4μ

; [15]

where f⊥ðsÞ is the component of the Stokeslet strength f in the
plane perpendicular to the flagellum’s centerline at a location
s along the centerline of the flagellum (2). This combination of
a Stokeslet plus a dipole determines the flow induced by each
element of the flagellum. Lighthill showed that the local velocity
of a segment of the helix located at s is related to the force per
unit length (i.e., Stokeslet strength) along the filament fðsÞ by

uðsÞ ¼ f⊥ðsÞ
4πμ

þ
Z

jr0ðs′;sÞj> δ

f
�

s′
�

·Jðr0Þds′; [16]

where δ ¼ a
ffiffiffi

e
p

=2 is the “natural cutoff” (2), r0 is the position
vector from the point s on the centerline relative to the point s′,
and J is given by Eq. 3.
We evaluate Eq. 16 using the rectangular rule of numerical in-

tegration to calculate the thrust, torque, and drag for flagella with
the same parameters as in the experiments. Our numerical
scheme, similar to themethod used in ref. 29, uses the helical phase
φ ≡ ks  cos  θ, where k ¼ 2π=λ, to parameterize spatial locations

rðφÞ ¼ Rðφ  cot  θ; cos  φ; sin  φÞ; [17]

so Eq. 16 becomes

un ¼
�

I− t̂n̂tn þDn

�

· fn

4πμ
þ RΔφ  csc  θ

8πμ

X

m≠n

Iþ r̂nm r̂nm

rnm
· fm

þ O ðΔφÞ; [18]

where n;m ¼ 1; 2; . . . ;N, rnm ¼ rðφnÞ− rðφmÞ is the position vec-
tor between spatial locations, t̂n ¼ ðcos  θ; − sin  θ  sin  φn;  sin  θ 
cos  φnÞ is the tangential unit vector at rn, and Δφ is the mesh
size of the helical phase. Note that the integral in Eq. 16 is
separated into two terms in Eq. 18. The first part of the integral
is represented by the tensor Dn, which is the integral from the
lower bound (natural cutoff) to the size of the grid spacing. Dn is
solved explicitly because this portion of the integral is below the
grid resolution and would otherwise be unresolved. The remain-
der of the integral appears as the second term in Eq. 18.
We now work in a frame rotated with the helical phase to

derive expressions for the velocity components un that are in-
variant along the helix. We use these invariant velocity compo-
nents to create a linear mapping between the velocity and force
per unit length, which can be evaluated for a specified helical
geometry, helical axial velocity U, and rotation rate Ω to give the
thrust, torque, and drag.
The tensorDn is symmetric and is the contribution of the helical

segment centered at r, located at a distance between the cutoff
length δ and the grid size away from rn; i.e., jr− rnj∈ðδ; δ′Þ, where

δ′ ¼ 1

2
RΔφ  csc  θ [19]

and Dn is the expansion of the following integral to the lowest
order of the grid size Δφ,

Dn ¼ 1

2

Z

jr−rnj∈ðδ;δ′Þ
dsðφÞ

 

I

jr− rnj
þ ðr− rnÞðr− rnÞ

jr− rnj3

!

·R   zðφ−φnÞ;

[20]

whereR z, the rotation operator along the axial direction, can be
expressed as

R zðφÞ ¼

0

@

cos  φ − sin  φ 0
sin  φ cos  φ 0
0 0 1

1

A: [21]

For simplicity, we introduce new velocity and force density vec-
tors as

u0n ¼ R zð−φnÞ · u;   f 0n ¼ R zð−φnÞ · fn [22]

so that u0n is invariant along the helical filament. For a rigid helix
that rotates at rate Ω and translates at speed U along its axial
direction, we have

u0n ¼ ð0;ΩR;UÞT [23]

and

X

n

f 0nRΔφ  csc  θ ¼
�

0;
T

R
;Fx

�T

: [24]

Lighthill’s slender body theory can thus be formulated as

u0n ¼
�

I− t̂′̂t′þD0
n

�

· f 0n
4πμ

þRΔφ  csc  θ

8πμ

X

m≠n

R zðφm −φnÞ þR zð−φnÞ· r̂nm r̂nm ·R zð−φnÞ
rnm

· f
0
m

þO ðΔφÞ;
[25]

where t̂′, D0
n are now invariant along the helical filament,

t̂′ ¼ ð0; sin  θ; cos  θÞ [26]

and

D′n ¼
Z

kδ′cos  θ

kδ  cos  θ

dφ
1

φ

2

4Iþ

0

@

0 0 0
0 sin2θ sin  θ cos  θ
0 sin  θ  cos  θ cos2θ

1

A

3

5

¼ ln

�

δ′

δ

�

�

Iþ t̂′̂t′
�

: [27]

Therefore, the linear mapping between the velocity u′ and
force density f′ is given by

0

B

B

B

@

u01
u02
⋯

u0N

1

C

C

C

A

¼G ·

0

B

B

B

@

f 01
f 02
⋯

f 0N

1

C

C

C

A

: [28]
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For prescribed motion of a rigid helix, e.g., u0n ¼ u0 ¼ ð0;ΩR;
UÞT , we have

0

B

B

B

@

f 01
f 02
⋯

f 0N

1

C

C

C

A

¼G −1
·

0

B

B

B

@

u0

u0

⋯

u0

1

C

C

C

A

: [29]

The net axial hydrodynamic force Fx and the net torque T are
thus given by

�

0;
T

R
;Fx

�T

¼
X

N

i¼1

f 0nRΔφ  csc  θ; [30]

allowing us to calculate the thrust, torque, and drag for any
helical flagellum.

Johnson Slender Body Theory. Johnson (17) created a formulation
of slender body theory to model the end effects ignored by
Lighthill. The primary difference between the two formulations
is that Johnson’s slender body is a long slender prolate spheroid
that terminates smoothly. Johnson’s slender body theory gives
the following equations for the velocity of a point on a helical
flagellum in terms of local and nonlocal velocity terms,

uðrÞ ¼ ulocalðrÞ þ unonlocalðrÞ [31]

with

ulocalðrÞ ¼
1

8πμ

h

− ln
�

κ2e
��

Iþ t̂ðrÞ̂tðrÞ
�

þ 2
�

I− t̂ðrÞ̂tðrÞ
�

i

· fð0Þ;

[32]

and

unonlocalðrÞ ¼
Z

J
�

r′− r
�

· f
�

r′
�

dr′−
1

8πμ

Z

Iþ t̂
�

r′
�

t̂
�

r′
�

js− s′j · f
�

r′
�

dr′;

[33]

where κ ¼ a=Λ and Λ is the contour length as defined in Fig.
1. The radius of the cross section vanishes at either end of

the slender body and is given by aðsÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 4s2=Λ2
q

, where

s∈ ½−Λ=2;Λ=2�. The filament radius has an average value of
aπ=4; therefore in our Johnson slender body theory calculations
we set the filament radius to be 4=π times the radius used in the
experiments and other simulations.
We again use the rectangular rule of integration and the same

rotational mapping Eqs. 21–24 to numerically evaluate Eq. 31
to obtain

u0n ¼ 1

8πμ

h

− ln
�

κ2e
��

Iþ t̂′̂t′
�

þ 2
�

I− t̂′̂t′
�

i

· f 0n

þ RΔφ  csc  θ

8πμ

X

m≠n

R xðφm −φnÞ þR xð−φnÞ· r̂nm r̂nm ·R xðφmÞ
rnm

· f 0m

−
1

8πμ

X

m≠n

1

rnm

�

Iþ t̂′̂t′

�

· f
0
n þ O ðΔφÞ [34]

u0n ¼
1

4πμ

h

−K
�

Iþ t̂′̂t′
�

þ
�

I− t̂′̂t′
�

i

· f 0n

þRΔφ  csc  θ

8πμ

X

m≠n

R xðφm −φnÞ þR xð−φnÞ · r̂nm r̂nm ·R xðφmÞ
rnm

· f 0m

þO ðΔφÞ;
[35]

where

K ¼ 1

2

"

X

m≠n

1

rnm
þ ln

�

κ2e
�

#

: [36]

This discretized formulation is very similar to the Lighthill
version (Eq. 25), except that the constant lnðδ′=δÞ in the D′n term
in Eq. 27 is replaced by −K . The net force is solved using the
same numerical strategy as used for the Lighthill formulation,
giving force, torque, and drag.

Asymptotic Theory for a Long Flagellum

In this section we expand Lighthill’s slender body theory to un-
derstand the length dependence shown in Fig. 3. Consider a fla-
gellum parameterized by s as in Eq. 16 with a length L � R and
L � λ. For a sufficiently long helix, end effects are minimal so
each segment is essentially the same. Therefore, the force per
unit length can be written fðsÞ≈ ðfx; − fΩsin  φ; fΩcos  φÞ, where fx
is the force per unit length in the x direction and fΩ is the tan-
gential force per unit length perpendicular to the x direction. The
tangential force per unit length has components in the y and z

directions, depending on the segment’s helical phase φ ≡ ks  cos  θ,
where k ¼ 2π=λ. The associated velocity of the helical filament is
uðsÞ ¼ ðU; −ΩR  sin  φ;ΩR  cos  φÞ so the velocity formulation
from Lighthill’s slender body theory gives, for the x direction and
tangential velocities, respectively,

U ¼ ðfx   sin θ− fΩ   cos θÞsin θ
4πμ

þ
Z

kL=2

kδ  cos θ

csc θ dφ

�

fx

4πμξ
þ fΩ  φ  sin φ  cot θ þ fx  φ

2cot2θ

4πμξ3

�

[37]
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ΩR ¼ ð− fx   sin  θ þ fΩ   cos  θÞcos  θ
4πμ

þ
Z

kL=2

kδ  cos  θ

csc  θ dφ

�

fΩ   cos  φ

4πμξ
þ fΩ   sin

2φþ fx   φ  sin  φ  cot  θ

4πμξ3

�

;

[38]

where ξðφ; θÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4  sin2ðφ=2Þ þ φ2cot2θ
q

, which means ξ→φ  cot θ
as φ → ∞ (i.e., L � R; λ).
One can rewrite Eqs. 37 and 38 as

U ¼
�

fx   sin θ− ðτx=RÞcos θ
�

sin θ

4πμ

þ
Z

φend

φini

csc θ   dφ

	

fx

4πμξ
þ ðτx=RÞφ  sin φ  cot θ þ fx   φ

2cot2θ

4πμξ3




¼ fx

4πμ

"

sin2θ þ
Z

φend

φini

csc θ   dφ

�

1

ξ
þ φ2cot2θ

ξ3

�

#

þ τx

4πμR

"

−cos θ  sin θ þ
Z

φend

φini

csc θ   dφ

�

φ  sin φ  cot θ

ξ3

�

#

[39]

Ω ¼
�

− fx   sin θ þ ðτx=RÞcos θ
�

cos θ

4πμR

þ
Z

φend

φini

csc θ   dφ

	ðτx=RÞcos φ
4πμξR

þ ðτx=RÞsin2φþ fx  φ  sin φ  cot θ

4πμξ3R




¼ fx

4πμR

"

− sin θ  cos θ þ
Z

φend

φini

csc θ   dφ

�

φ  sin φ  cot θ

ξ3

�

#

þ τx

4πμR2

"

cos2θ þ
Z

φend

φini

csc θ   dφ

�

cos φ

ξ
þ sin2φ

ξ3

�

#

;

[40]

where τx ¼ fΩR, φini ¼ kδ  cos θ, and φend ¼ kL=2.
It can be shown that the prefactor of fx in the integrand of

Eq. 39 has an asymptotic OðlnðφendÞÞ ≈ OðlnðL=RÞÞ dependence.
Elsewhere all other prefactors of fx and fΩ in Eqs. 39 and 40

converge for large L. Therefore, the asymptotic form of Eqs. 39
and 40 as L → ∞ is

U ¼ a1lnðL=RÞfx þ a2τx [41]

Ω ¼ a3fx þ a4τx; [42]

where

a1 ¼ lim
φend→∞

1

4πμ  lnðL=RÞ

"

sin2θ þ
Z

φend

φini

csc θ dφ

�

1

ξ
þ φ2cot2θ

ξ3

�

#

[43]

a2 ¼ lim
φend→∞

1

4πμR

"

− sin θ  cos θ þ
Z

φend

φini

csc θ   dφ

�

φ  sin φ  cot θ

ξ3

�

#

[44]

a3 ¼ a2 [45]

a4 ¼ lim
φend→∞

1

4πμR2

"

cos2θ þ
Z

φend

φini

csc θ   dφ

�

cos φ

ξ
þ sin2φ

ξ3

�

#

:

[46]

Expressing F and τ in terms of τ and Ω as L→∞, we have for
the force and torque from Eq. 1

F ¼ A11U þ A12Ω [47]

τ ¼ A12U þ A22Ω; [48]

where A11 ¼ ðsec θ=a1ÞL=lnðL=RÞ, A12 ¼ − ½a2sec θ=ða1a4Þ�L=
lnðL=RÞ, and A22 ¼ sec θ=a4L.
Using Eqs. 47 and 48 and Eqs. 43–46, one can obtain the

following scaling relationships for thrust, torque, and drag in the
limit that L→∞,

F ¼ −
a2sec θ

a1a4

L

lnðL=RÞΩ [49]

T ¼ sec θ

a4
LΩ [50]

D ¼ sec θ

a1

L

lnðL=RÞU; [51]

as given in Eqs. 4–6.
We rescale our slender body theory results and plot them in

Fig. 9 along with the asymptotic predictions of our theory,
showing these scalings are accurate.
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