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Abstract  
Design and optimization of the propulsion system is a crucial task of the ship design. In fact the behaviour of the 

propulsion system is a key aspect of the global behaviour of a ship, mainly if the ship is a naval vessel. 

Simulation techniques can be very effective to predict the propulsion plant behaviour during normal working conditions 

as well as during critical situations. 

Numerical simulation gives the possibility to foresee, at design stage, the behaviour of the ship propulsion plant during 

manoeuvres and gives the designer the possibility to optimise the choice of the system parameters (choice of a suitable 

pitch/r.p.m. combination law, engine governor calibration, scantling of the shaft line) in order to prevent engine and 

mechanical overloads or faults. Moreover by simulation it is possible to study and optimise the machinery control 

system. 

The paper presents a comprehensive approach to simulate the propulsion system behaviour during transients and off 

design conditions to be used for the control system setting and overall ship propulsion plants study.  

The presented approach was successfully used for the design of the new high speed Italian Frigates FREMM class. This 

ships class has a new propulsion plant concept: the COmbined Diesel eLectric And Gas (CODLAG) type, with single 

gear and two shaft lines. 

The application presented in this paper concerns the design of the propulsion control system with a detailed simulation 

of the Gas Turbine Control System (TCS) and of the controllable pitch propeller system. A comparison between 

simulation transients results and reference data is reported in the paper. 
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INTRODUCTION 

 

Some new generation frigates, as the German 

Class F125 or the Italian-French FREMM, 

currently under construction, have only one gas 

turbine which mechanically drives the two 

propeller shafts via a cross-connected gearbox, 

further each shaft has its own electric motor.  

The latest concept of this propulsion technology 

is the CODLAG system, where the electric 

propulsion drives the ship at cruising speeds or 

for silent running, while the gas turbine takes 

over for the maximum speed of about 30 knots. 

The particular gears arrangement of this 

gearbox is able to provide many propulsive 

configurations, according to the several 

requirements of the vessel’s mission profile. An 

increasingly interest, particularly evident in 

naval vessels applications, is currently shown in 

marine propulsion systems that combine 

mechanical drive with electric drive 

components.  

Such systems can offer lower structural born 

noise and vibrations, a reduced number of 

prime movers and a greater flexibility in the 

operating profile of the vessel.  

To achieve flexibility system are rather 

complex and the ship automation system must 

be able to manage and to control all the 

apparatus for all the possible ship’s missions 

and configurations. In particular, the propulsion 

controller (the CPU that controls the propulsion 

system) must be able to handle the propulsion 

machineries for all the required navigation and 

manoeuvring modes, complying with the tight 

response requirements typical of an high speed 

naval vessel, but in a manner to prevent any 

damage to the system or injuries to the persons.  

The propulsion controller design is a major 

issue to obtain the ship desired performance.  

The simulation of the system behaviour is 

becoming a useful tool for the designer, mainly 

when the project deals with new configurations 

where no or little experience exists and/or 

where the complexity of the system is very 

high. Simulation at design stage gives the 

designer insight into the expected performance 

of the system, providing feedback that would 
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otherwise be unavailable until the system is 

installed. This gives the possibility to check a 

number of design alternatives in order to find an 

optimum solution. Furthermore, this design 

approach greatly reduces the need of 

conducting costly and time-consuming full-

scale trials.  

Simulation has been successfully used in 

engineering for many years as a support of the 

design process [1-5]. Marine propulsion system 

simulations can be used for a variety of 

purposes, such as machinery performance 

analysis, ship performance analysis, 

manoeuvring analysis and machinery control 

systems development [5-7]. The authors 

developed a method for the design and test of 

the propulsion control system of the Italian 

aircraft carrier Cavour by simulation [8]. Ad 

hoc simulation models and different simulation 

techniques were developed and used in the 

different phases of the project, from basic 

controller design, to controller development and 

finally to controller tuning by hardware in the 

loop test bed in the factory. The final tuning at 

sea lasted less than half that scheduled and 

during sea trials all the desired performance 

were fulfilled. 

The same design approach has been adopted for 

the propulsion controller of the Italian Navy 

FREMM frigates. The choice is justified by the 

complexity of the propulsion system, by the 

novelty of its configuration and by the positive 

results obtained with the Cavour project.  

Particularly, for what the novelty of the 

configuration is concerned, the presence of a 

powerful gas turbine that simultaneously drives 

two propeller shafts, may lead to significant 

torque unbalances upon the reduction gears 

system, mainly during fast turning circles of the 

ship.  

The paper describes the simulation procedure 

adopted for the development of the propulsion 

controller of this innovative CODLAG 

propulsion system for warships application. 

 

 

CODLAG SYSTEM 

 

Fig.1 shows the general architecture of the 

considered CODLAG system. In the same 

figure, the main propulsion plant control units 

are visualized. 

Two Controllable Pitch Propellers (CPP) are 

driven via a cross connected gearbox by one 

Gas Turbine (GT), a LM 2500 General 

Electric/Avio, 32 MW at 3600 rpm. Two 

Electrical Propulsion Motors (EPM Jeumont, 2 

x 2.2 MW), directly mounted on the two 

shaftlines, can be used for the low speeds of the 

vessel during the silent running or together with 

the gas turbine for the full power. The use of the 

two different kinds of prime movers (EPM 

and/or GT) is ensured by two clutches between 

the gearbox and the two EPM and by another 

clutch between the GT and the gearbox. 

The electric power is supplied by Isotta 

Fraschini Diesel Generators and electric power 

can be produced in GT mode by the two EPM, 

working as Shaft Generators (SG). 

 

 
Fig. 1, CODLAG propulsion scheme and 

propulsion management integrated control 

 

 

The hardware architecture of the CODLAG 

propulsion control system is visualized in fig. 1. 

The Main Controller is connected to the control 

operative units (CPP, EPM, Reduction Gear 

PLC’s and Gas Turbine TCS) by the Remote 

I/O unit. 

 

CODLAG SIMULATOR 

 

The simulator consists of a set of differential 

equations, algebraic equations and tables that 

represent the various elements of the propulsion 

system and manoeuvrability behaviour of the 

ship. The following elements are modelled: 

Remote 

I/O Workstation 
3  Main 

Controller 

TCS 

PLC 

CPP 

G4 

EPM 

PLC 
PLC 

Reduction 

Gear 

PLC 

CPP 
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pitch reduction to avoid shaft overload. The 

torque balance between shaftlines prevents 

gearbox overload.  

The previously described control strategy 

represents the ‘high level’ propulsion control. In 

addition each main subsystem (i.e. the engine, 

the electric motor, the propeller) has its own 

controller (modelled in the machinery & 

governos block) that operates concurrently with 

the ‘high level’ control. 

 
 

FREMM  prop. sys tem  

m ain governor 
+

N P e 

telegraph  

N lpT r 

 

TCS 

 

GT 

N lpT 

Ngg 

Q lpT  

TiT 

N gg r FV pos 

P/D req  

P/D actuator 

P/D eff 

 

Fig. 3 – Propulsion Control scheme in GT mode 
 

 

GAS TURBINE & TCS SIMULATOR 

 

The gas turbine (GT) mathematical model is 

based on the intercomponent volumes method 

[11]. This calculation scheme is based on a 

thermodynamic approach to the gas turbine 

components simulation, as consequence during 

the transients the mass and energy accumulation 

into the GT volumes is considered by means of 

the energy and continuity dynamic equations, 

applied to GT intercomponent volumes. The 

thermodynamic approach for the GT simulation 

model is more important for the TCS simulator 

development, because eventually oversizing 

values in the GT parameters, caused by mass, 

energy and momentum accumulation in the 

quick transients, can be accurately reproduced 

with this GT simulation type. 

A short description of the GT model is reported 

here, while for a more detailed explanation see 

[11]. 

The GT model is structured in a modular 

arrangement. Each module is pertinent to a GT 

component (i.e.: compressor, turbine, 

combustor and so on). 

In the compressor and turbines modules the 

steady state performance maps [12] are used. 

The combustor module is modeled as an 

adiabatic capacity, taking into account the time-

dependent accumulation of mass and energy. 

In the shaft dynamics module the time variation 

of the shaft angular velocity is determined by 

the classic shaft dynamic balance equation. 

 

The Turbine Control System (TCS in fig. 4) 

manages the LM 2500 gas turbine in order to 

obtain the propeller speed value required from 

the telegraph position. The TCS model is 

developed in accordance to [13]. The gas 

turbine load is correlated to the GT gas 

generator speed; the required value of this 

parameter (Ngg r in fig. 4) came from the 

FREMM propulsion controller, the TCS 

manage the fuel valve (FVpos in fig. 4) by a PID 

control scheme. At the same time the TCS 

checks a series of GT parameters (mainly: the 

gas generator and power turbine speeds Ngg and 

NPT respectively, the power turbine shaft torque 

QPT and the intermediate turbine gas 

temperature TIT) in order to not exceed their 

pertinent maximum admissible value. The 

signals generated by all the TCS PID controllers 

are compared, and the minimum signal value is 

adopted for the fuel valve managing. In the 

normal GT work conditions, the minimum PID 

controllers signals value is that of the Ngg 

controller. 

 

 

TCS SETTING 

 

For a preliminary TCS setting a test bench is 

simulated as reported in the SIMULINK 

scheme of fig. 4. 

 

 
 

Fig. 4, Test bench for preliminary TCS setting 

 

In this simulator the originally CODLAG plant 

components: telegraph, main governor, TCS, 

GT and gear are maintained, while the other 

originally ship propulsion plant component 

simulators: propeller and hull, with pertinent 

ship inertia, are substituted with a brake which 

torque law is a quadratic function of the 

propeller shaft speed. 

This test bench is used to compare the transients 

results of the thermodynamic GT model, with 

TELEGRAPH

Np_r

TCS

Ngg_r FV_pos

SHAFT

DYNAMICS

Qbr

QE

NE

MAIN GOVERNOR

Np_e

Np_r
Ngg _r

GT

NE

FV_pos

QE

GEAR

NENp_e

BRAKE

NE Qbr

IX HSMV Naples 25 - 27 May 2011 4



and without TCS governor, with a GT simulator 

model provided by the GT manufacturer 

(AVIO), that include also the TCS system. 

Fig. 5 shows the transient results comparison 

referred to a step telegraph variation between 50 

to 100%. In particular the fig. 5.2 shows that the 

developed TCS maintain the GT turbines 

intermediate temperature (TIT) into its 

corrected maximum value, that is not the case 

of the thermodynamic GT model without TCS. 

 

 
Fig. 5.1 

 
Fig. 5.2 

 
Fig. 5.3 

 
Fig. 5.4 

 
Fig. 5, Telegraph 50 to 100 % step transient test bench 

gas turbine models results comparison 

 

As shows in fig. 5, there is a substantial results 

accordance between the GT thermodynamic 

model with TCS and the AVIO model; an 

analogue results correspondence is observed in 

others acceleration-deceleration transients. Still 

from the same figure, it can be observe the 

influence of the TCS governor on the GT 

thermodynamic simulator results.  

 

 

CODLAG SIMULATOR RESULTS 

 

The CODLAG simulation model, including the 

developed TCS GT governor, is tested with a 

series of ship transient simulations. In Fig. 6 the 

results of a transient generated by a step 

telegraph variation between 50 to 100% are 

presented. 

Despite the criticality of the manoeuvre, all the 

GT and plant data monitored remain into their 

pertinent corrected values intervals. 

 
Fig. 6.1 
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Fig. 6.2 

 
Fig. 6.3 

 
Fig. 6.4 

 
Fig. 6.5 

 
Fig. 6.6 

 
Fig. 6, Telegraph 50 to 100 % step transient CODLAG 

simulator results 

 

 

CONCLUSIONS 

 

A design method for the propulsion control 

system of a high speed naval vessel has been 

presented. The method, developed for the 

Italian Aircraft Carrier Cavour, has been now 

adopted for the design of the propulsion control 

system of the new Italian FREMM frigates. The 

procedure integrates basic knowledge and 

experience of the manufacturer with massive 

use of numerical simulation. The presented 

approach is able to produce great advantages for 

ships where the complexity and versatility of 

the propulsion system requires a wide range of 

operating conditions that are difficult to analyse 

with traditional methods.  
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