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ProQ3: Improved model quality 
assessments using Rosetta energy 
terms
Karolis Uziela1, Nanjiang Shu1,2, Björn Wallner3 & Arne Elofsson1

Quality assessment of protein models using no other information than the structure of the model 
itself has been shown to be useful for structure prediction. Here, we introduce two novel methods, 
ProQRosFA and ProQRosCen, inspired by the state-of-art method ProQ2, but using a completely 
different description of a protein model. ProQ2 uses contacts and other features calculated from a 
model, while the new predictors are based on Rosetta energies: ProQRosFA uses the full-atom energy 
function that takes into account all atoms, while ProQRosCen uses the coarse-grained centroid energy 
function. The two new predictors also include residue conservation and terms corresponding to the 
agreement of a model with predicted secondary structure and surface area, as in ProQ2. We show that 
the performance of these predictors is on par with ProQ2 and significantly better than all other model 
quality assessment programs. Furthermore, we show that combining the input features from all three 
predictors, the resulting predictor ProQ3 performs better than any of the individual methods. ProQ3, 
ProQRosFA and ProQRosCen are freely available both as a webserver and stand-alone programs at 
http://proq3.bioinfo.se/.

Protein Model Quality Assessment (MQA) has a long history in protein structure prediction. Ideally, if we could 
accurately describe the free energy of a protein, this free energy should have a minimum at its native structure. 
Methods to estimate free energies of protein models have been developed for more than 20 years1–3. �ese meth-
ods are focused on identifying the native structure among a set of decoys and therefore not necessarily have a 
good correlation with the relative quality of protein models.

In 2003 we developed ProQ that had a di�erent aim than earlier methods4. Instead of recognising the native struc-
ture, the aim of ProQ is to predict the quality of a protein model. ProQ uses a machine learning approach based on a 
number of features calculated from a protein model. �ese features include agreement with secondary structure, num-
ber and types of atom-atom and residue-residue contacts. One important reason for the good performance of ProQ is 
that each type of contacts, both atom- and residue-based ones, is normalised by the total number of contacts as in Errat5.

In the �rst version of ProQ the model quality was estimated for the entire model. In 2006 we extended ProQ 
so that we estimated the quality of each residue in a protein model, and then we estimated the quality of the entire 
model by simply summing up the quality for each residue6. �is method was shown to be rather successful in 
CASP77 and CASP88.

In comparison to other methods, ProQ performed quite well for almost a decade, but some �ve years ago 
one of us developed the successor, ProQ29. �e most important reason for the improved performance of ProQ2 
was the use of pro�le weights, and features averaged over the entire model even though the prediction was local. 
ProQ2 has since its introduction remained the superior single model based quality assessor in CASP10.

In CASP it has also been shown that the consensus type of quality estimator is clearly superior to the 
single-model predictors. Consensus estimators are based on the Pcons approach that we introduced in CASP511,12. 
In these methods, the quality of a model, or a residue, is estimated by comparing how similar it is to models gen-
erated by other methods. �e idea is that if a protein model is similar to other protein models, it is more likely 
to be correct. �e basis of these methods is a pairwise comparison of a large set of protein models generated for 
each target. Various methods have been developed but the simplest methods such as 3D-Jury13 and Pcons14 are 
still among the best.
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A third group of quality assessors also exist, the so-called quasi-single methods15. �ese methods take a single 
model as an input and compare its similarity with a group of models that were built internally.

It has been clear since CASP7 that quality assessment with consensus methods is superior to any other quality 
assessment method7. However, it has lately been realised that these methods have their limitations10. Consensus 
methods and quasi-single methods appear not to be better than single-model based models at identifying the 
best possible model. In particular, when there is one outstanding model, as the Baker model for target T0806 in 
CASP1116, the consensus-based methods completely fail, but the single model methods succeed10. Furthermore, a 
consensus based quality predictor cannot be used to re�ne a model or be used for sampling. Finally, single-model 
methods can be used in combination with consensus methods to achieve a better performance than either of the 
approaches10. �erefore, the development of improved single-model quality assessors is still needed.

Here we present two novel single-model predictors, ProQRosCen and ProQRosFA, which are based on 
Rosetta energy functions. In addition, we present the third novel predictor ProQ3, which combines training 
features from ProQRosCen, ProQRosFA and ProQ2.

Results and Discussion
In this section, we describe the most important aspects of our method development, which might give some 
insight for others working on the same problem. �erea�er, we move on to benchmark the novel predictors. �e 
more technical details of our method implementation will be covered later in the Methods section.

Method development. ProQ2 is a machine learning method based on Support Vector Machines (SVM) 
that was recently implemented as a scoring function in Rosetta17. ProQ2 uses a variety of input features, includ-
ing atom-atom contacts, residue-residue contacts, surface area accessibilities, predicted and observed secondary 
structure and residue conservation to predict the local residue quality. A general problem when selecting input 
features for machine learning methods is that they should be independent on protein size and other protein spe-
ci�c features, i.e. they need to be normalised in a proper way. In ProQ2 this is done by describing contacts of a 
particular type as fractions of all contacts.

�e new predictors are based on di�erent input features but trained in a similar way as ProQ2. �e input 
features are Rosetta18 energy terms. Rosetta uses two energy functions: one based on all-atoms (“full-atom” 
model) and one that uses a simpli�ed centroid side-chain representation (“centroid” model). In general, the 
all-atom function provided more accurate energies, but the centroid function is useful when an all-atom model 
is not available or when the model is created using a di�erent force �eld, since it is less sensitive to exact atomic 
details. �erefore, we developed two new predictors: one that uses full-atom model (“ProQRosFA”) and one that 
uses centroid model (“ProQRosCen”). In addition, we developed a third predictor that combines ProQRosFA, 
ProQRosCen and ProQ2 (“ProQ3”).

�e new predictors use the same method to train a linear SVM as was used in ProQ2. Here the quality of each 
residue is described using the S-score19,20 and used as a target function. However, the descriptions of the local 
environment surrounding a residue are completely di�erent in the new predictors.

ProQRosFA input features. For the predictor ProQRosFA, we used “talaris2013” weight set that is currently the 
default energy function in Rosetta and consists of 16 energy terms that are summed up to form the total Rosetta 
energy score. First, we examined how well each energy term correlates with the local model quality as measured 
by our target function (S-score) on the CASP11 data set. A stronger correlation between an input feature and the 
target function is more useful for the �nal predictor. Since there are many individual input features, rather than 
showing the correlation for each individual feature, we grouped them into seven groups and show the correlations 
for each group:

•	 Van der Waals: fa_atr, fa_rep, fa_intra_rep
•	 Solvation: fa_sol
•	 Electrostatics: fa_elec
•	 Side-chains: pro_close, dslf_fa13, fa_dun, ref
•	 H-bonds (Hydrogen bonds): hbond_sr_bb, hbond_lr_bb, hbond_bb_sc, hbond_sc
•	 Backbone: rama, omega, p_aa_pp
•	 Total-energy-FA: score

�e last group (Total-energy-FA) is a sum of all energy terms used in the ProQRosFA predictor with weights 
taken from the “talaris2013” function. Note that even though we grouped features here for visualising their per-
formance, they were all used separately when training the �nal SVM.

Figure 1a shows Spearman correlations against our target function (S-score) for each of the seven groups. 
�e correlations for Van der Waals, Electrostatics, Hydrogen bond and Total-energy-FA groups are higher than 
for Solvation, Side-Chains and Backbone. In general, solvation is the main driving force for protein folding but 
here it actually has a negative correlation with model quality, i.e. better models do in general have worse solvation 
energy, highlighting that the problem of quality estimation is di�erent from estimating the free energy of a native 
structure. Anyhow, the Total-energy-FA group including all the features shows the highest correlation even if the 
di�erence to Van der Waals and H-bonds is small.

ProQRosCen input features. Centroid scoring functions have an advantage that they can be used even if the 
exact position of a side chain in the model is not known. �ey are also less sensitive to exact atomic positions that 
make them possible to score models from di�erent methods with a lower risk of high repulsive score from steric 
clashes.
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For the predictor ProQRosCen, we used all energy terms from the standard centroid scoring function  
“cen_std”—vdw, pair, env and cbeta. In addition to that, we included two more centroid energy terms that were 
not part of “cen_std” function—cenpack and rama. �e term Total-energy-Cen is de�ned as the sum of all of the 
above centroid energy terms including cenpack and rama.

�e scoring functions “talaris2013” and “cen_std” include only local energy terms. However, there are also 
potential useful global energy terms that are de�ned for the whole protein model. Here we included six global 
centroid energy terms in our ProQRosCen predictor: rg (radius of gyration of centroids), co (contact order), and 
statistical potential terms for secondary structure formation: hs_pair, ss_pair, sheet, rsigma. For simplicity, we only 
show the correlation for the sum of all of these global energy terms (Global-terms in Fig. 1b).

Most of the full-atom energy groups correlate better than the individual centroid energy terms. Also, we can 
see that the correlation for Total-energy-FA is higher than the correlation of the Total-energy-Cen. Finally, it can 
be noted that the global centroid energy terms are clearly performing better than the local centroid energy terms, 
although these terms predict the same quality (energy) to all residues within a model.

Training an SVM and using averaging windows increases the performance. A straightforward approach to use 
the energy terms for predicting the local quality is to train an SVM using all Rosetta energy terms corresponding 
to that residue. �e correlation of the original Rosetta energy functions with model quality is 0.33/0.22 for the 
full-atom/centroid models respectively (see Fig. 1). However, if all the individual energy terms are used as inputs 
to an SVM the performance increases to 0.38/0.26 (see Fig. 2, Local).

Further, we notice that we can improve the prediction performance by calculating the average energy over 
windows of varying size before training the SVM. Figure 2 shows the impact of window sizes on the prediction 
performance. In general, even a small window provides a substantial improvement, but larger windows result in a 
better performance. If we use a window of 21 residues to average the input energy terms, the correlations increase 
to 0.56 and 0.52 for full-atom and centroid predictors, respectively. However, if we take it to the extreme and use 
a window that covers the entire model, the correlations drop slightly.

Next, we noticed that the combination of several window sizes as input to the SVM provides the best results. 
When we combine all the window sizes, the correlation reaches 0.61 for the full-atom predictor, and 0.56 for the 
centroid predictor. When adding the global centroid terms to the centroid predictor the correlation increases to 
0.62, see Fig. 3b.

Pro�le-based features. �e only type of features that are common between ProQ2, ProQRosFA and ProQRosCen 
are the pro�le-based features: Relative Surface Area accessibility agreement (RSA), Secondary Structure agree-
ment (SS) and Conservation (Cons). We refer to these features as pro�le-based, because they are based on infor-
mation that can be extracted from a sequence pro�le. Two features, RSA and SS, indicate the agreement between 
predicted and observed RSA/SS values (see Methods). �e third feature, conservation, depends only on the 
sequence pro�le and has the same values for all of the protein models from the same target. We refer to these 
features as RSC (RSA, SS, and Cons), see Fig. 3b.

We would like to emphasise that the pro�le-based features are essential in model quality assessment. As we 
can see from Fig. 3a, these features alone without training provide reasonable correlations with the target value. 
When we train an SVM to predict the local quality using only RSA, SS and Cons as an input, we reach correlation 
as high as 0.65. �at is the same correlation as for all other features in ProQ2 excluding RSC (see Fig. 3b) but when 
we combine them, the correlation only increases to 0.72 (Fig. 3a,b). �e correlation for ProQRosFA, ProQRosCen 
and ProQ2 also improves when adding RSC.

In general, we noticed that it is relatively easy to reach a correlation of around 0.60–0.65, but it appears to be 
di�cult to increase it further. �e original ProQ2, ProQRosFA, ProQRosCen and RSC all obtain correlations of 
0.60–0.65. Only by combining the input features from all of the predictors we reach a correlation of 0.70 with-
out RSC and to 0.74 with RSC. Although this improvement is small it is still signi�cant using the Fisher r-to-z 
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Figure 1. Spearman correlations of full-atom (a) and centroid (b) Rosetta energy terms against the target 
function (S-score). All correlations are calculated on the local (residue) level. Total-energy-FA and Total-
energy-Cen are the sums of all local full-atom and centroid energy terms. Global-term is the sum of all global 
centroid energy terms that are not shown in the plot (rg, hs_pair, ss_pair, sheet, rsigma, co). Negative correlations 
(Solvation and Side-Chains) are shown with a positive bar length. Test set: CASP11.
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transform that accounts for the fact that the correlation coe�cient distribution is negatively skewed for larger 
correlation values (> 0.4).

Although our goal was to develop novel predictors that use di�erent input features than ProQ2, we still 
included pro�le-based features into ProQRosFA, ProQRosCen. Similar pro�le-based features are not only used 
in ProQ2, but also in many other model quality assessment methods21–23. We can see that these features are 
important for the predictor’s performance and they almost become de-facto standard in single-model methods. 
�erefore, it was interesting to compare ProQRosFA and ProQRosCen performance with other methods a�er 
including these features.

Benchmark. In this section, we compare the newly developed methods ProQRosFA, ProQRosCen and 
ProQ3 with their predecessor ProQ2 and other publicly available single-model methods: QMEAN23, Qprob22, 
SMOQ24, DOPE25, dDFIRE26 on the CASP11 and CAMEO27 data sets (see Methods). We compare the method 
performance in three categories: local (residue) level correlations, global (protein) level correlations and model 
selection. Two of the methods (Qprob and dDFIRE) provide only the global level predictions, so they are not 
included into the local level evaluation.

Local correlations. All of the new predictors (ProQRosFA, ProQRosCen and ProQ3) are trained on the local 
level, i.e. the quality is estimated for each residue independently. �erefore, the correlation with the target value 
on the local (residue) level is examined �rst.
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ProQRosCen includes both local and global energy terms. Training set: CASP9. Test set: CASP11.
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We evaluated all methods in two categories: �rst the correlation over the whole data set (Fig. 4a) and secondly 
the average correlation calculated for each model in the data set (Fig. 4b). �e �rst category of evaluation shows 
how well methods separate between well- and badly-modelled residues in general while the second shows how 
well methods separate well- and badly-modelled residues within a particular model.

ProQ3 outperforms all other single-model methods on both data sets and in both categories of evaluation. 
�e largest improvement over ProQ2 is found in the CAMEO for whole data set correlation (0.62 vs. 0.56). 
ProQRosFA performs equally or slightly better than the original ProQ2 while ProQRosCen performs slightly 
worse, but still on par with QMEAN. Both QMEAN and DOPE perform equally or worse than any ProQ method 
with the only exception of QMEAN having a higher per model correlation than ProQRosCen in the CAMEO data 
set (0.46 vs. 0.38, Fig. 4b).

All di�erences in local whole data set correlations (Fig. 4a) are signi�cant with P-values < 10−3 according to 
Fisher r-to-z transformation test. All di�erences in mean per model correlations were signi�cant with P-values  
< 10−3 according to Wilcoxon signed-rank test.

Global correlations. Even though ProQRosFA, ProQRosCen and ProQ3 are trained on the local level, they also 
provide global predictions of the quality of a model. �e global predictions are derived from the local predictions, 
by summing up all local predictions for a protein model and then dividing the sum by the target protein length. 
�e target function (S-score) is also local by its nature, but can be converted to global in exactly the same way.

We evaluated all methods again in two categories: the �rst is the correlation over the whole data set (Fig. 5a) 
and the second is the average correlation calculated for each target in the data set (Fig. 5b). �e �rst category 
shows how well a method separates good and bad models in general, while the second shows how well a method 
separates good and bad models for the same target.

ProQ3 again outperforms all other single-model methods on both data sets and in both categories of evalua-
tion. �e largest improvement over the original ProQ2 is in the CAMEO whole data set correlation (0.74 vs. 0.69),  
Fig. 5a. In the whole data set evaluation category, both ProQRosFA and ProQRosCen performance is close to 
ProQ2 and better than the rest of the methods. In the per target evaluation category, ProQ methods still outper-
form all the rest on CASP11 data set, but on CAMEO data set the di�erences are small. �e reason for this is that 
in the CAMEO data set the model quality within a target varies much less (see Table 2).

All di�erences in the global whole data set correlations (Fig. 5a) are signi�cant with P-values < 10−3 accord-
ing to Fisher r-to-z transformation test. Per target correlation di�erences are not signi�cant within ProQ meth-
ods with the only exception of ProQ3 performing signi�cantly better than ProQRosCen on CAMEO data set 
(P-value =  0.011, see Table S1). On the other hand, ProQ3 performs signi�cantly better than all other non-ProQ 
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for the whole data set (b) Average correlations for each model in the data set.
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methods on both data sets with P-values less than 0.05. �e only exception is that the di�erence between ProQ3 
and Dope is not signi�cant on CAMEO per target correlations (P-value =  0.153).

Model selection. An important task of MQA methods is to �nd the best protein model among several possible 
ones. We evaluated the performance of MQA methods in this aspect by calculating the average of �rst ranked 
GDT_TS scores for each method (see Fig. 6).

Interestingly, the original version of ProQ2 performs as well as ProQ3 in model selection. On CASP11 data 
set, they both have the average of �rst ranked GDT_TS score of 51.5 and outperform all other methods. Also here 
the di�erences are small in the CAMEO set due to the small variation in quality between the models.

We analysed the reasons of potential sub-optimal performance of ProQ3 in model selection and found 
that ProQ3 selects Robetta or other Rosetta-derived models more frequently than ProQ2, i.e. ProQ3 tends to 
over-estimate the quality of Rosetta models.

Using ProQ3 to re-rank models in structure prediction. In the CASP experiment, structure prediction groups can 
submit up to �ve models for each target and rank them from best to worst. �e structure prediction groups are 
then evaluated by the sum or average of their �rst-ranked model scores. In CASP1110 concluded that some of the 
structure prediction groups could bene�t from using ProQ2 in ranking their models. Similarly to their analysis, 
we evaluated how the average GDT_TS of the �rst ranked models would have changed for all structure prediction 
groups if they had been using ProQ3 and how this would have a�ected the group ranking (see Table S5).

We found that even the best structure prediction methods, except QUARK, would have benefited from 
using ProQ3. If Zhang-Server had been using ProQ3 to rank its models, it would have been ranked in �rst place  
(see Table 1). Moreover, BAKER_ROSETTASERVER would have jumped from the ��h to the second place.

Free modelling and template-based targets. �e performance of MQA methods o�en di�ers depending on 
whether the data set consists of free modelling or template-based targets. �erefore, we decided to divide CASP11 
targets into free modelling and template-based and evaluate all MQA methods on these data sets (see Tables S2 
and S3). We have used the o�cial CASP11 domain classi�cation28. Targets with all domains classi�ed as free 
modelling domains were classi�ed as free modelling targets, while targets only template-based domains were 
considered template-based and all other targets were excluded from the evaluation.

On free modelling targets, ProQ3 outperforms all methods in global whole data set correlations, local whole 
data set correlations and local per model correlations (see Table S2), while ProQ2, QPROB and DOPE perform 
slightly better than ProQ3 in per target correlations and/or model selection. However, the number of targets in 
free modelling data set is rather small (15) and the mean model quality is very poor (S-score =  0.123), making 
it di�cult to draw any �rm conclusions. On template-based targets ProQ3 outperforms all other methods in all 
evaluation measures (Table S3).
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Original GDT_TS1 ProQ3 GDT_TS1 ProQ2 GDT_TS1 Optimal GDT_TS1

QUARK 51.0 50.7 50.8 53.2

Zhang-Server 50.7 51.5 50.7 53.4

nns 49.7 49.7 49.8 51.7

myprotein-me 49.4 50.0 49.6 52.6

BAKER-ROSETTASERVER 49.2 50.8 50.7 53.2

Table 1.  Average GDT_TS1 for each method before and a�er re-ranking for top 5 prediction groups.
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Conclusion
Here, we presented three novel model quality predictors: ProQRosFA, ProQRosCen and ProQ3. We show that 
these predictors by far outperform the original energy functions in Rosetta. �e improved performance is mainly 
due to two factors: training SVM on individual energy terms and using di�erent window sizes for averaging input 
features. A�er applying both of these strategies, the local (residue-level) correlation increase from 0.33/0.22 to 
0.61/0.56 for ProQRosFA/ProQRosCen respectively.

We also include pro�le-based features: the agreement between predicted and observed RSA and SS values, as 
well as the conservation calculated from the pro�le directly. In the CASP11 data set, these three features alone 
reach a local correlation of 0.65 similar to the performance of the local predictors. By including these features into 
ProQRosFA/ProQRosCen predictors the correlation increase to 0.72/0.71 respectively. �is correlation is on the 
same level as the original ProQ2 (0.72). Combining all three predictors into ProQ3 increases the local correlation 
to 0.74. In an independent set obtained from CAMEO, the correlation increases from 0.56 for ProQ2 to 0.62 for 
ProQ3 indicating the value of ProQ3.

In model quality assessment, the correlations between the predicted and target values can be calculated in 
several di�erent ways: local vs. global, whole data set vs. per target vs. per model and model selection. All of these 
measures take into account di�erent aspects of MQA performance and they are all relevant. We show that ProQ3 
signi�cantly outperforms ProQ2 in all of these di�erent measures. ProQ2 has remained a superior single-model 
QA method since its introduction in 2012 even though several new single-model predictors were introduced 
later10,21,22. �e improvement obtained by ProQ3 overall is small but signi�cant. We also show that several dif-
ferent type of inputs provide similar performance and that the combination of them only provides a marginaly 
improvement. �is might indicate that a radically di�erent approach is needed to signi�cantly enhance the per-
formance of single model quality estimators.

ProQ3, ProQRosFA and ProQRosCen are all available as a webserver and as stand-alone programs (http://
proq3.bioinfo.se/).

Methods
Training and test data sets. �e original ProQ2 was trained on the CASP7 data set with 10 models per 
target selected at random. We noticed that the performance slightly increases when ProQ2 is retrained on the 
CASP9 data set with 30 models per target selected randomly. �erefore, we used the latter as the training data set 
for ProQRosFA, ProQRosCen and ProQ3.

Two data sets were used for testing: CASP11 and CAMEO. Only server models were used in the CASP11 data 
set. All CAMEO models from a time period of one year were used (2014–06–06–2015–05–30). Targets that were 
shorter than 50 residues were �ltered out both from the CASP11 and CAMEO data sets. �e CASP9 data set did 
not have such short targets.

Table 2 shows statistics of the data sets. We can see from the table that the CASP9 and CASP11 data sets have 
more models per target, but the CAMEO data set has more targets and the �nal number of models is in the same 
range in all data sets.

Mean model quality (S-score)) in the CASP9 and CASP11 data sets is similar (0.44 and 0.40), but in the 
CAMEO data set it is considerably higher (0.64). Mean standard deviation of model quality (calculated per target) 
in the CAMEO data set is much smaller (0.09).

Target function. We used the same target function as in ProQ2, the S-score. �e S-score is de�ned as:

=

+

S
d d

1

1 ( / ) (1)
i

i 0
2

where di is the distance for residue i between the native structure and the model in the superposition that maxi-
mizes the sum of Si and d0 is a distance threshold. �e distance threshold was set to 3 Å, as in the original version 
of ProQ2.

Side chain re-sampling and energy minimisation. Protein models can be generated by di�erent meth-
ods that employ di�erent modelling strategies resulting in similar models but vastly di�erent Rosetta energy 
terms. For instance, some of models in our data sets had very large repulsive energy terms (fa_rep) because 
of steric clashes. To account for model generation di�erences, the side-chains of all models were rebuilt using 
the backbone-dependent rotamer library in Rosetta. �is was followed by a short backbone restrained energy 

CASP9 CASP9 random subset CASP11 CAMEO

Number of targets 117 117 83 676

Total number of models 33,440 3,505 15,334 20,206

Total number of residues 6,757,370 712,751 3,665,828 5,027,933

Average number of models per target 286 30 185 30

Average number of residues in a model 202 203 239 249

Mean model quality (S-score) 0.44 0.44 0.40 0.64

Mean per target standard deviation of 
model quality (S-score) 0.14 0.14 0.12 0.09

Table 2.  Training and test data sets.

http://proq3.bioinfo.se/
http://proq3.bioinfo.se/
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minimisation protocol (-ddg:min_cst) using the Rosetta energy function. �is ensured that the Rosetta energy 
terms are minimized. ProQ3 performance is slightly better when side-chain repacking step is included (Table S4). 
Other MQA methods also use a similar side-chain repacking protocol to improve the performance29.

ProQ3 run time. We evaluated ProQ3 run time on the CASP11 data set (Table 3). We ran ProQ3 in two 
modes: with and without side-chain repacking. As we discussed in the previous section, the side-chain repacking 
is necessary to avoid high repulsive energy terms because of steric clashes. However, the repacking step can be 
skipped if one is con�dent that the models have good quality side-chains without steric clashes.

Before running ProQ3, one has to run some external methods to generate pro�le-based features (solvent 
accessibility predictions, secondary structure predictions, residue conservation). �e time to run these scripts 
depends mostly on the time it takes to run Psi-blast for the target sequence. Fortunately, Psi-blast has to be run 
only once per target sequence, because all models from one target shares the same sequence information.

ProQ3 was run using 1 CPU core, while Psi-blast was run using 8 CPU cores. ProQ3 does not support paral-
lelisation, but running di�erent models on di�erent CPU cores is e�cient.

Implementation. We used the per_residue_energies binary in Rosetta (2014 week 5 release) to get per resi-
due energies for local full-atom and centroid energy terms. talaris2013.wts weight �le was used for local full-atom 
scoring function. For local centroid scoring function we de�ned a custom weight �le that included vdw, cenpack, 
pair, rama, env, cbeta energy terms with all weights equal to one.

For global centroid scoring function, Rosetta score binary was used. A custom weight �le included rg, hs_pair, 
ss_pair, sheet, rsigma and co energy terms with all weights equal to one.

SVM predictor works best when the input features are either scaled between − 1 and 1 or between 0 and 130. 
�is is usually achieved by linear scaling of the input features. However, in order to avoid outliers we decided to 
use a sigmoidal function (1/(1 +  ex)) to scale all of the terms between 0 and 1.

A�er the sigmoidal transformation, all of the local full-atom and centroid energy terms were averaged using 
window sizes of 5, 11 and 21 residues. Additionally, the local (single-residue) and the entire-model (averaged over 
the whole protein) energy terms were added to the training.

Global centroid energy terms are de�ned for the whole protein, so they cannot be averaged using di�erent 
window sizes. On the other hand, they depend on the protein size, so they need to be normalised. rg term depends 
on the protein size L by a factor of L0.4 31 by which it was normalised. A�er performing a linear regression on the 
logarithmic scale we found that co depends on the protein size by L0.72 and the other terms by L, so they were 
normalised accordingly.

Profile-based features. �e pro�le-based features, RSA, SS and Cons were implemented the same way as in 
ProQ2. Sequence pro�les were derived using three iterations of PSI-BLAST v.2.2.2632 against Uniref90 (downloaded 
2015–10–02)33 with an E-value inclusion threshold of 10−3. Secondary structure of the protein was calculated using 
STRIDE34 and predicted from the sequence pro�le using PSIPRED35. �e agreement between the prediction and the 
actual secondary structure in the model was calculated over the window of 21 residues and over the entire model. 
Also, the probability of having a particular secondary structure type in every single position was calculated. Relative 
surface area accessibility was calculated by NACCESS36 and predicted from the sequence pro�le by ACCpro37. �e 
RSA agreement was also calculated over the window of 21 residues and over the entire model. �e actual secondary 
structure and relative surface area was not added to ProQRosFA and ProQRosCen predictors, only the agreement 
scores. For residue conservation “information per position” scores were extracted from PSI-BLAST matrix. �e 
conservation for the central residue and two neighbouring residues was included into the SVM training.

SVM training. A linear SVM model was trained using SVMlight package V6.0238. All parameters were kept at 
their default values.

Running other methods. We ran QMEAN, Qprob, SMOQ, DOPE, dDFIRE with default parameters. �e 
global score for DOPE method was derived in the same way as for ProQ methods—by summing up the local 
scores and dividing by the length of the target protein. �e global scores for QMEAN and SMOQ were taken from 
the output as they are provided. Finally, Qprob and dDFIRE only provide the global scores, so they were only 
evaluated in the global evaluation category.

Correlation calculation. We used Spearman rank correlation throughout in this paper.

Other tools. R zoo package39 was used to average values over varying window sizes. �e needle program from 
EMBOSS package40 was used to align model and target sequences.

Total time Time per target Time per model

ProQ3-no-repack 3d 1 h 45 s 52 m 47 s 17 s

ProQ3-repack 15d 15 h 53 m 39 s 4 h 31 m 44 s 1 m 28 s

ProQ3-psiblast 15 h 21 m 29 s 11 m 6 s —

Table 3.  ProQ3 run time on the CASP11 data set. �e number of targets and models are the same as in 
Table 2.
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