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Abstract

Background: Despite a plethora of functional genomic efforts, the function of many genes in
sequenced genomes remains unknown. The increasing amount of microarray data for many species
allows employing the guilt-by-association principle to predict function on a large scale: genes
exhibiting similar expression patterns are more likely to participate in shared biological processes.

Results: We developed Prosecutor, an application that enables researchers to rapidly infer gene
function based on available gene expression data and functional annotations. Our parameter-free
functional prediction method uses a sensitive algorithm to achieve a high association rate of linking
genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional
biological information such as genomic context and known regulatory mechanisms that are specific
for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources
to validate putative functions suggested by Prosecutor. We supply the complete results of our
analysis for | | prokaryotic organisms on a dedicated website.

Conclusion: The Prosecutor software and supplementary datasets available at http:/
www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify
the putative functions of their genes of interest. A de novo analysis allows new organisms to be
studied.

Background method has proven to be successful in many cases, consid-
One of the central challenges in computational biology is ~ erable numbers of genes (20-50%) in current genome
the prediction of gene function [1]. The inference of gene  annotations still are of unknown function. Complemen-
function typically starts with DNA sequence analysis  tary approaches are therefore required to characterize the
based on ortholog information [2-5]. Although this  function of these genes.
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Since the start of the DNA microarray era, the "guilt-by-
association" (GBA) methodology has been used to infer
gene function [6-9]. This concept is based on the assump-
tion that genes involved in similar cellular functions are
likely to display correlated expression behavior [10-12].
In addition, this correlated behavior might identify com-
mon regulatory mechanisms.

Ultimately, to understand the function of a new gene, one
should exploit all available experimental data sources
(e.g., transcriptomics, proteomics, protein-protein inter-
actions and metabolomics) [13,14] or even by the joint
efforts of many scientists in a community annotation
[15]. Previous work on gene function prediction has
mainly been focused on higher organisms using multiple
high-throughput data sources [16-18]. On the other hand,
genome organizational principles that are unique for
prokaryotes supply valuable additional information
about gene function.

However, it is expected that the GBA method is particu-
larly powerful for prokaryotes, due to their tight coupling
of transcription and translation [19]. In addition, for
many prokaryotes, the available gene expression datasets
greatly outnumber other experimental data sources.

To improve the analysis of the predictions, Prosecutor
provides additional information for each annotated gene,
most notably in its genomic context, which is particularly
useful for operons. The occurrence of adjacent divergent
co-expressed genes is also highlighted since these are
expected to be co-regulated [20]. Finally, putative new
members of transcriptional modules are examined for the
presence of the same regulatory motif that is already
known for the module.

Our Prosecutor software imposes no constraints on the
biological annotations used; it generates hypotheses
based on large variety of annotation sources e.g., Gene
Ontology, metabolic pathways, UniProt keywords, etc.
This is in contrast to most other methods [11,12,16-
18,21-24] which, with few exceptions [8,10], are focused
on coupling genes to Gene Ontology sources only.

We discuss some of the functional assignments obtained
by Prosecutor, as well as a number of mining capabilities
provided by the software. We find that the increasing vari-
ety of experimental conditions used in DNA microarray
experiments has greatly improved the ability to identify
the function of unknown genes using GBA principles.

Results and discussion

Prosecutor software

Prosecutor is a standalone application developed in Java
and shares its functional database structure with the FIVA

http://www.biomedcentral.com/1471-2164/9/495

software [25]. It features an iterative implementation of
the GBA method which is based on iterative Group Anal-
ysis algorithm (iGA) [26]. Several characteristics of the
software analysis modules are described below.

The Iterative Guilt-By-Association (iGBA) method

The iGBA method requires DNA microarray datasets and
functional categories from annotation sources to infer
putative gene functions. The rationale for our approach is
the GBA principle, i.e., genes that are functionally
involved in, or linked to, the same function will in general
show higher expression correlations than genes that are
not functionally related. The prediction algorithm of Pros-
ecutor calculates the significance of association for all
pairs of genes and functional categories. For n genes,
expression profiles from DNA microarrays (Fig. 1A) are
used to create an n x n correlation matrix M (Fig. 1B). Each
row j of this matrix represents the (Pearson or Spearman)
expression correlation between gene g;and all other genes.
To annotate each gene g;, we sort all other genes by their
correlation with gene g;, and subject the resulting sorted
gene list to iGA (Fig. 1C). This results in a list of functional
categories that are over-represented among the genes that
are highly correlated with gene g;, with associated p-val-
ues. The iGA algorithm works iteratively and therefore
does not require a fixed cutoff of the sorted correlation
list, no minimum correlation has to be defined. Instead,
iGA determines the appropriate cutoff that yields the low-
est p-value for each individual analysis of a gene to a func-
tional category. As a consequence, the function
assignment by iGA is very sensitive [26] compared to
methods which use a predefined correlation cut-off.

Performance of functional categories

Receiver Operating Characteristic curves

The performance on well-annotated genes was assessed to
evaluate the sensitivity of the iGBA method. This evalua-
tion has to be specific for each functional category,
because for some of them we expect that all members
show close correlation, while others are so general that
their members will not correlate and iGBA is expected to
fail. The category specific evaluation of expression coher-
ence is done as follows: Our iGBA algorithm yields a p-
value for every pair of gene-functional category pair (Fig.
1C). This p-value is indicative of the confidence of the
assignment of a gene to a functional category. For each
category we sort the gene list by p-values and examine the
positions of the p-values of its known members in this
sorted list. We are then able to calculate an "expression
coherence value" for each functional category by plotting
the true and false positive rates on Receiver Operating
Characteristic (ROC) curves (Fig. 1D) [27]. The corre-
sponding Area Under the ROC Curve (AUC) is a quantita-
tive measure of the expression coherence of the genes of a
functional category. A functional category in which all
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Figure |
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1. DNA microarrays are used to calculate
a correlation matrix for all genes

2. Expression correlations from each row
in the correlation matrix are sorted.

3. Sorted correlations are examined for
enrichment of functional categories
using iGA.
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4. For each category we sort the gene
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Flowchart of Prosecutor. Flowchart of the functional prediction process in Prosecutor. First, the expression profiles from
DNA microarrays (|A) are used to create a correlation matrix (1B). For every gene, the correlations with the remaining genes
are retrieved from the correlation matrix and sorted (I1B2). The sorted gene list is used to perform an iterative Group Analysis
for every functional category (IB3). The resulting p-value is indicative for the prediction of a gene as a member of a functional
category (1C). At this step, the regular iGBA process ends. However, to also assess the reliability of each prediction, the fol-
lowing steps are added. The complete list of p-values for every functional category is sorted (1 C4), after which the positions of
the members of the functional category are determined (I C5). These positions are used to create ROC curves (ID; see
Results section for more information concerning ROC curves). The corresponding Area Under the ROC Curve (AUC) is then
used as a measure of expression coherence value of a functional category.
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known members show strong co-expression will have an
AUC close to 1.0, whereas a randomly predicting func-
tional category (i.e., a category that does not show coex-
pression of its members) would yield AUC values around
0.5. Using the AUC measure, we are now able to select the
most promising functional categories for further analysis.

Parameter free approach

Various methods have been developed that specifically
employ data from microarrays studies [21-24]. Some of
these methods are designed for temporal gene expression
profiles [23,24] or calculate a functional enrichment for
each dataset [22]. Other approaches require preprocessing
of the annotation data, e.g., generating a set of validated
and highly unlikely associations (see [28] for more infor-
mation) used for training of the prediction model [21].
Our Prosecutor application improves on previous meth-
ods by providing a parameter free approach for the infer-
ral of gene function. No trusted set of functional
associations between proteins is required since Prosecutor
treats every functional category individually, thereby cir-
cumventing preselection toward particular processes.

Additional layers of information

The strength of Prosecutor comes also from its additional
prokaryote-specific layers of information combined with
a convenient visualization of the functional predictions.
This prioritizing of the results allows for the rapid identi-
fication of the most promising function predictions.

Genomic context analysis

The function predictions generated by Prosecutor are pro-
vided for individual genes. Genes co-transcribed to a poly-
cistronic messenger RNA are known as operons whose
members typically share biological function. Predictions
for genes of which other member(s) of the same operon
were already linked to the predicted function are high-
lighted in the visualization of the results. The same proce-
dure is applied to divergent genes which share the same
upstream region (Fig. 2B). This layer of information that
is based on the genomic context of genes provides addi-
tional, and in some case cases vital, information concern-
ing putative function predictions.

Regulatory mechanism analysis

Transcriptional modules represent genes that are regu-
lated by a common regulator. The regulatory mechanisms
underlying the co-expression of members of a transcrip-
tional module are used as additional evidence to priori-
tize the Prosecutor results. For some organisms,
functional annotations based on curated knowledge of
transcriptional modules are available [29,30]. Motif
instances from all members of a transcriptional module
are used to create a position specific scoring matrix. This
matrix is used to search for additional hits in the upstream

http://www.biomedcentral.com/1471-2164/9/495

and coding regions from the first gene of the operon as
well as the gene of interest (in case of residing in an
operon). Using this approach, we are able to predict puta-
tive new targets for transcriptional modules that exhibit
significant co-expression with known members of the
transcriptional module and a putative regulatory motif in
their upstream regions (Fig. 2C).

Graph visualization

Functional predictions are represented by Prosecutor as
graphs using the Prefuse toolkit [31] to visualize the gene
redundancy and overlap between the functional catego-
ries of different functional predictions. This method
allows to visually determine the uniqueness of each of the
function predictions. A force-directed layout from the
Prefuse visualization framework is used to position the
different nodes (genes) in the network (Fig. 2D).

Performance compared to random microarray data

The performance of different annotation sources (e.g.,
Gene Ontology terms) was investigated by comparing
AUC results for real and random data using a two-sample
Kolmogorov-Smirnov test. This method was used to com-
pare the distribution of AUC values of our algorithm
based on 305 microarrays from E. coli (Fig. 3A) as com-
pared to results for which the genes were randomized (the
link between expression and annotation is expected to be
lost) (Fig. 3B). The null hypothesis that the true data do
not significantly deviate from the random distribution is
rejected with a p-value of 2e-16. The real data yield signif-
icantly higher AUC values than expected by chance. This
confirms that the coexpression enrichment of many func-
tional categories is predictive of gene function. Additional
analysis of the AUC distribution across the annotation
sources shows that the transcription module annotation
source contains a large number of high scoring functional
categories (i.e., categories exceeding an AUC value of 0.9).
Moreover, we found that applying a Pearson correlation
measure for calculating the correlation matrix outper-
forms Spearman correlations, generating 16% more func-
tional categories with an AUC value of 0.8 or higher (data
not shown).

Prosecutor test-cases

Most genome annotations deposited to GenBank are
rarely if ever updated [32]. As research progresses, knowl-
edge of many previously uncharacterized genes improves.
This annotation gap enables us to analyze results obtained
by Prosecutor by manual literature mining of genes for
which no function was available in the original genome
annotation. For this validation, only functional categories
exhibiting strong predictive properties, with AUC values
higher than 0.7, were taken into account.
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E.coli - Fur motif

Figure 2 (see legend on next page)
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Figure 2 (see previous page)

Schematic overview of the additional information provided by Prosecutor. Various layers of information are sup-
plied for the iGBA results (2A) from Prosecutor. Predicted functional assignments for genes whose operon members are
already linked to the predicted function are indicated in the results (2B). In addition, this protocol is also followed for divergent
genes that share the same upstream region (in this example pps and ydiA). The operon information that is used for the genomic
context analysis is also used to detect known regulatory sequences for transcriptional modules (2C). Lastly, graph visualization
is used to visualize the gene redundancy of the different functional assignments of Prosecutor (2D). Nodes in the graph repre-
sent functional categories and genes. Arrows represent membership of gene nodes to a functional category node as well as the
putative functional prediction of the studied gene. The members of individual categories are placed in colored aggregates. In
addition to the aggregates, a colored square is placed in each gene member of a category. The squares are colored using the
colors of their matching aggregates. Members of different categories can easily be distinguished using the colored squares. An
example of a functional prediction found by Prosecutor for ydiE from E. coli is shown. The expression of this gene was corre-
lated with members of various functional categories involved in the uptake of iron. In addition to the functional association with

the transcriptional module Fur, the upstream region of ydiE also contains a putative Fur DNA binding site.

First test-case: validating results of Prosecutor

The first analysis deals with results obtained from Prose-
cutor for all tested organisms and was based on data from
dual-dye microarrays. Prosecutor predicted a large
number of gene functions for previously unannotated
genes which could be validated using literature informa-
tion (Table 1). The complete results of this analysis is
available on the supplemental website. Analysis of the
results for the model organisms E. coli and B. subtilis was
facilitated by the large diversity of microarray perturba-
tion studies available. A detailed analysis for B. subtilis
revealed that for 25% of the best 160 predictions suffi-
cient literature data was available to positively confirm the
predictions (data not shown).

Second test-case: extending transcriptional modules in E. coli

The second analysis dealt with the detection of putative
new members of existing transcriptional modules in E.
coli (Table 2). We used gene expression data from 305
Aftfymetrix genechips [33] combined with functional
annotations based on curated regulatory network infor-
mation from RegulonDB [30]. The results of Prosecutor
were supplemented with data obtained from the position
specific scoring matrices. These matrices were based on
aligned motif sequences of the known DNA binding sites
from the members of every transcriptional module. We
found that some of the newly identified putative tran-
scriptional module members had been confirmed in the
literature, but are not yet catalogued in RegulonDB. The
remainder of the putative transcriptional module mem-
bers which could not be verified using literature informa-
tion are marked "putative" in Table 2. Due to the
exceptional predictive performance (almost 60% of the
transcriptional modules shows an AUC value above 0.9)
and the additional analysis of the results using known reg-
ulatory mechanisms, we were able to reliably predict a
large number of putative and validated members for tran-
scription modules.

Third test-case: performance of annotation sources for
Saccharomyces cerevisiae

The genome annotation of S. cerevisae is available in Gen-
bank as well as EMBL format, allowing our Prosecutor
software to perform an iGBA analysis. For this third anal-
ysis we used two annotation sources (metabolic pathways
and Gene Ontology). The gene expression data was
obtained from the Stanford microarray database [34]. The
distribution of AUC values of our algorithm (Fig. 4A) is
compared to results for which the genes were randomized
(Fig. 4B) The results based on the real data yield more
large AUC values than expected by chance. The categories
with high AUC values will presumably allow our iGBA
method to assign reliable functional predictions. This
demonstrates that Prosecutor, while being specifically
optimized for prokaryotes, will also be a useful tool for
the general biologist community.

Community resource

The complete results of the annotation efforts from our
software for twelve organisms are available on the supple-
mental website [35]. On this dedicated web-site func-
tional couplings can be mined in three ways: 1) through a
list of the best functional couplings for each functional
category; this allows "browsing" through the most prom-
ising associations, 2) a sorted list of functional categories
and their predictive power (AUC); in case that one is inter-
ested in the genes that are associated with a specific func-
tional category, and 3) a sorted list of genes; allows to
identify to which functional categories a gene of interest is
associated. All data sources used for analysis are available,
allowing researchers studying any of the analyzed organ-
isms to perform a functional analysis for their expression
dataset and/or functional categories.

Conclusion

Prosecutor uses DNA microarray data combined with
functional annotations to infer putative gene functions.
We show that multiple annotation sources are informa-
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Performance of four annotation sources

07

# Metabolic pathways
e M Transcriptional modules
" B UniProt keywords

d Gene Ontology
il Gene Ontology - golden standard

relative
occurrences
0.3
per module

0.2
0.1
a T T T
0.0-01 0.1-0.2 0.2-03 0.3-04 0.4-05 0.5-0.6 0.6-0.7 0.7-08 0.8-08 ae-1.0
AreaUnder the Curve (AUC)
Random performance of four annotation
G sources
M Metabolic pathways
. M Transcriptional modules
M UniProt
0.25
il Gene Ontology
i Gene Ontology - golden standard
relative
occurrences

015
per module

0.1

0.05 5

0.0-0.1 0.1-0.2 0203 0304 04-05 0506 0.6-0.7 0.7-08 0808 05-1.0

AreaUnder the Curve (AUC)

Figure 3 (see legend on next page)
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Figure 3 (see previous page)

Prediction ability of four annotation sources. Histograms of ROC areas (Area Under the Curve) for four annotation
sources for E. coli based on 305 microarrays (3A) compared to randomized results (3B). The real data reveal a large amount of
categories with AUC values larger than 0.8, which are almost absent in randomized results. These categories are the most
promising candidates for which the iGBA approach will enable confident gene assignments functional predictions. Analysis of
the AUC distribution across the annotation sources shows that the "transcription module" annotation source is the most
informative, i.e., contains the largest amount of categories exceeding an AUC value of 0.9 (3A). This is intuitively very convinc-
ing as shared transcriptional regulation is the basis of coexpression. In addition to ROC areas for all GO terms, we have also
analyzed the distribution of ROC areas for the GO annotation source using the "gold standard" [28]. This proposed "gold
standard" (GS) consists of a specific trusted set of biological processes that maps proteins to well-defined functional classes to
evaluate predictions. The authors supply a set of biological processes that is based on selection by a panel of biology experts.
We have included AUC results for the GO annotation for E. coli using the GS. Analysis of the AUC distributions shows that
the distribution of relative occurrences of the GS analysis and the analysis using a fixed member cutoff is comparable.

tive and non-redundant and allow maximizing the use of
all available DNA microarray data. For B. subtilis, we were
able to confirm 40 out of the 160 best functional predic-
tions generated by Prosecutor, using published literature.

ule members. Prosecutor can thus serve as a generic tool
for a genome-wide (re)annotation of gene functions in
prokaryotes. The results of such a re-annotation effort, for
11 widely studied bacterial species, is supplied as a com-

We therefore believe that the other functional assign-  munity resource at the associated website [35].
ments based on our analysis are also likely to be informa-
tive and reliable. Combined with regulatory motif
information for the species B. subtilis and E. coli, Prosecu-
tor allows the identification of new transcriptional mod-
Table I: Confirmed results from Prosecutor
Organism gene functional category rank auc  reference
Campylobacter jejuni Cj0391c Pathway flagellar assembly 2 0.76 [41,42]
Gjl242 GO:0003774 motor activity 3 0.75 [42]
Gl316c GO:0019861 agellum 7 0.72 [43]
Escherichia coli yncE GO:0015343 siderophore-iron transmembrane transporter activity 7 0.96 [44]
ybiX UP:Enterobactin biosynthesis | 0.99 [44]
cho GO:0009432 SOS response 17 0.92 [45]
ybeD GO:0051082 unfolded protein binding | 0.78 [46]
ulaC GO:0019852 L-ascorbic acid metabolic process | 0.76 [47]
yciW GO:0006534 cysteine metabolic process 10 0.82 [48]
Bacillus subtilis ybbG transcriptional module SigM 18 0.81 [49]
ykuO transcriptional module Fur 8 0.75 [50]
yviF GO:0006935 chemotaxis 37 090 [51]
yIxF Pathway Flagellar assembly 7 0.89 [52]
yfnE transcriptional module GerE 52 081 [53]
Streptomyces coelicolor SCBAC28G1.05  PW:Biosynthesis of type Il polyketide back- bone | 0.99 [54]
SCBAC28G1.07  PW:Biosynthesis of type Il polyketide products 8 0.76 [54]
Vibroi cholera VC1688 GO:0006826 iron ion transport 2 0.87 [55]
VCAO0216 GO:0019290 siderophore biosynthetic process 8 0.98 [55]
VCl267 GO:0019290 siderophore biosynthetic process 6 0.98 [55]

Functional predictions identified by Prosecutor for several organisms that are confirmed using literature information. Gene: the gene for which a
validated functional prediction with a functional category (column three) was found. Rank: the position of a gene in the prioritized list based on p-
values. These p-values describe the functional prediction significance for every individual gene with a specific functional category. AUC: the
expression coherence value for a functional category with respect to its own members. Notice the examples of genes for which a particular
annotation is assigned rank |. This means that this gene is more close associated with this functional category then any of the original known
members of the category, indicating a very high confidence in the prediction.
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Table 2: Extending transcriptional modules of E. coli
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transcriptional module gene  prosecutor rank motif rank motif sequence in the intergenic region of literature reference
either the gene or its operon
ArgR Amino acid biosynthesis: art/ 21 8 TGCATAACATTGCG [56]
Arginine. AUC 0.92
aroP 58 39 TGATTTTTAATTCA [57]
artl 131 50 TGCATAATTATTCT [56]
hisL 16 4 TGAATAAACATTCA putative
pyrL 32 6l TGACTTTTAATTCA putative
metH 36 76 TGAATTTTTATTAA putative
ydeS 43 63 TGAATAAATTTTCT putative
stpA 132 21 TGCATTTTTATTCA putative
hisG 141 8 TGAATAAACATTCA putative
his 144 27 TGCATTGAAATGCA putative
hisC 145 13 TGAATAAACATTCA putative
hisA 147 14 TGAATAAACATTCA putative
potF 162 46 TGCATAAAAATTTG putative
CysB Amino acid biosynthesis: sbp 12 0 CGCAAGTTATAGCCAATCTTTTTTTAT  [48,58]
Cysteine AUC 0.91 TCTT
nipA 36 17 CAGACTTTATATTCCACTTTTATTCCT  [48]
TTTT
mmuP 28 40 AACGCGGTATAACAAACCTTCTTTGG  putative
ATGTT
Fur iron regulatory gene AUC 0.84 yncD 74 32 GGGAATGGTAATCATTATT [44]
ybaN 37 5 GAAAATGATAATTGTTATG putative
folE 101 29 GGCAATTACAATAATTATC putative
LexA major regulator of DNA repair yebG 0 21 CTGTATAAAATCACAG [59,60]
AUC 0.87
dinl 2 6 CTGTATAAATAACCAG [61,62]
dinB 6 51 CTGTATACTTTACCAG [63]
dinD 19 0 CTGTATATAAATACAG [45]
yjiw 39 20 CTGATGATATATACAG [45]
ybfE 120 31 CTGATTAAAAACCCAG [45]
sbmC 125 4 CTGTATATAAAAACAG [64]
Met) Amino acid biosynthesis: ybdH 10 6 AGACGTTTAGATGTCT [65]
Methionine AUC 0.88
ybdL 106 0 AGACATCTAAACGTCT [65]
ycbK 198 17 AGTCATCTTGACGTCT [65]
mmuP 14 15 GGATGTTTAGATGTCC putative

Transcriptional module member predictions identified by Prosecutor applied to well-known transcriptional modules for E. coli. Gene: the gene for
which a validated functional prediction with a transcriptional module (column three) was found. Rank: represents the position of a gene in the
sorted list with p-values. These p-values describe the functional prediction significance for every individual gene with a specific functional category.
More significant p-values are matched with lower ranks. AUC: describes the association efficiency for a transcriptional module with respect to its
own members. In addition to the rank information provided by Prosecutor, supplemental motif information is provided. This data is obtained by
applying a position specific scoring matrix (PSSM) to the upstream sequences of all genes in the genome. The PSSM is derived from aggregating all
known consensus target sequences (DNA regulatory binding sites). The additional motif information allows users to concentrate on genes that
exhibit coexpression with a transcriptional module as well as possessing a predicted consensus sequence. This additional evidence contributes to
the confidence in assigning a gene to a particular transcriptional module. Motif rank: based on the results for a PSSM when matched to every
upstream sequence in the genome. For example, based on the PSSM of the regulator LexA, the upstream region of gene dinD contains the best

ranking motif (rank 1).

Methods

Implementation & Availability
Prosecutor was programmed as a multithreaded stan-
dalone application in Java using the Eclipse framework

http://www.eclipse.org/ as a Rich Client Platform (source

code is available upon request). Prosecutor runs on all
Java-supporting operating systems (MS Windows, Linux
and Mac OS). The Prosecutor was developed from a bac-
terial perspective and therefore supports the two major
prokaryotic genome annotation formats (Genbank and
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Figure 4

Prediction ability of two annotation sources for yeast. Histograms of ROC areas (Area Under the Curve) for two
annotation sources (Gene Ontology and metabolic pathways) for S. cerevisae based on 1079 datasets from Stanford microarray
database (4A) compared to randomized results (4B). The real data reveal a large number of categories with AUC values larger
than 0.8, which are almost absent in randomized results. These categories are the most promising candidates for which the
iGBA approach will enable confident gene assignments of functional predictions.
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EMBL). A simplified tabulated genome annotation format
can also be used, enabling organisms for which no Gen-
bank or EMBL file is available to be studied.

Data sources

The basic requirements of an analysis consist of a genome
annotation (i.e., Genbank or EMBL) and a collection of
microarray data. Currently, six different annotation
sources are implemented: (i) transcriptional modules, (ii)
gene ontologies (GO) [36], (iii) metabolic pathways from
the KEGG database [37] (iv) UniProt keywords [38], (V)
InterPro domains [39] and (vi) user-defined categories.

DNA microarray datasets

DNA microarray data used in this study consisted of dual
dye arrays for 11 prokaryotic organisms and yeast from
the KEGG expression database [40] and the Stanford
microarray database [34]. For E. coli, an additional 305
Affymetrix expression arrays were obtained from the M3D
Database [33].

Multiple testing correction

A typical problem in genome-wide statistical analysis is
the occurrence of many false positives (i.e., a functional
prediction that is mistakenly found significant due to
multiple testing). The incidence of false positives is
roughly proportional to the number of tests performed.
Since a typical search in Prosecutor may consist of thou-
sands of tests, the chance of obtaining false positive pre-
dictions is large. We have used a strict Bonferroni multiple
testing correction method to correct the raw p-values from
the iGA results to minimize this problem.
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