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Abstract: Speech recognition has been an active field of research in the last few decades since it
facilitates better human–computer interaction. Native language automatic speech recognition (ASR)
systems are still underdeveloped. Punjabi ASR systems are in their infancy stage because most
research has been conducted only on adult speech systems; however, less work has been performed
on Punjabi children’s ASR systems. This research aimed to build a prosodic feature-based automatic
children speech recognition system using discriminative modeling techniques. The corpus of Punjabi
children’s speech has various runtime challenges, such as acoustic variations with varying speakers’
ages. Efforts were made to implement out-domain data augmentation to overcome such issues
using Tacotron-based text to a speech synthesizer. The prosodic features were extracted from Punjabi
children’s speech corpus, then particular prosodic features were coupled with Mel Frequency Cepstral
Coefficient (MFCC) features before being submitted to an ASR framework. The system modeling
process investigated various approaches, which included Maximum Mutual Information (MMI),
Boosted Maximum Mutual Information (bMMI), and feature-based Maximum Mutual Information
(fMMI). The out-domain data augmentation was performed to enhance the corpus. After that,
prosodic features were also extracted from the extended corpus, and experiments were conducted
on both individual and integrated prosodic-based acoustic features. It was observed that the fMMI
technique exhibited 20% to 25% relative improvement in word error rate compared with MMI and
bMMI techniques. Further, it was enhanced using an augmented dataset and hybrid front-end
features (MFCC + POV + Fo + Voice quality) with a relative improvement of 13% compared with the
earlier baseline system.

Keywords: children Punjabi ASR; discriminative techniques; feature extraction; prosodic features;
data augmentation

1. Introduction

In the past, computers were primarily used for human–machine interaction, and com-
munication was performed through keyboard and mouse. Automatic speech recognition
(ASR) systems were developed to make them entirely usable for humans to communicate
with computers through speech quickly [1]. Real-life applications of ASR systems can be
found in Amazon Alexa and Apple’s Siri [2]. A variety of techniques have been used to
build ASR systems today. In the ASR systems, the accuracy of the words is dependent on a
variety of factors. These attributes include the speaker’s speech style, emotional state, age,
male and female pitch, and the language’s international and regional accent [3].
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A low resource automatic speech recognition (ASR) system is beneficial for future
sustainable native language interface development, emphasizing cultural and social sustain-
ability. The research highlights, which include research questions (RQs) and the outcomes
of the proposed work, are as mentioned below:

RQ1: How to develop an ASR system for a low resource database that makes efficient
use of a native language-based system?

Outcome: This proposed work has contributed to building an ASR system for a native
language (Punjabi) spoken in the northern region of India. The collected corpus helped in
the development of a children’s ASR system.

RQ2: How to reduce the data scarcity issue that occurs due to less availability of
training data?

Outcome: The data scarcity problem was solved by using an artificial data augmenta-
tion approach to enrich the training data while preserving default test data. Synthesized
speech was augmented with an actual speech corpus. The artificial corpus enhancement is
a solution for better computing performance of native language interface systems.

RQ3: How to identify key parameters that generate robust features in developing a
children’s ASR system?

Outcome: This work employed MFCC feature extraction along with prosodic features
to construct an efficient ASR system for children’s Punjabi speech using a Mel filter bank.
The experiments were performed to verify the performance of the hybrid prosodic features
applied on discriminative training models for Punjabi children’s speech to overcome the
variability in children’s speech.

The first step in developing an ASR method is feature extraction, also known as
the front-end technique, followed by acoustic modeling, which involves classification
using language models as feedback [4]. The fundamentals of ASR focus on the treatment
of speech signals as stochastic patterns (after feature extraction) and stochastic pattern
recognition techniques to generate hypothesis word sequences with the same probability as
the input signal [5]. In this machine learning approach, such as the Hidden Markov Model
(HMM) (based on pattern recognition), only reference classes are included in the training
processes, and they are treated separately [6]. Despite these approaches, discriminative
training methods include competing and reference classes. Class boundaries are more
important to consider when optimizing classes. Due to the inherited groups’ sequence
composition, implementing discriminative training to enforce ASR is a challenging problem.
Discriminative approaches boost consistency in execution and analytical comparison [7].

Along with discriminative techniques, improving the efficiency of the ASR systems,
the front end is vital, as feature extraction is a necessary step that requires informative word
parameters [8]. In ASR, various feature-extraction techniques are available [9]. Different
speakers have different spoken utterance styles, or the language can be tonal where the tone
on a syllable can change the meaning of the whole word [10]. Prosodic features are extracted
in addition to Mel Frequency Cepstral Coefficient (MFCC) features to catch pitch and tone-
based features. The hybrid prosody features are voice probability, pitch (F0 gradient),
intensity (energy), and loudness. Researchers have constructed children’s ASR systems
to catch huge acoustic fluctuations. These prosodic features also capture psychological
qualities, speaking style, and inter-speaker variances, whereas traditional feature-extraction
algorithms capture phonetic components of a speech signal. Pitch features are essential in
extracting the tonal aspects of a languages’ characteristics [11].

While ASR systems for international languages are well established, establishing ASR
systems for native languages remains a difficult challenge due to limited resources and a
lack of corpora for these languages. Punjabi is a native language whose ASR system is in the
development phase, and adult speech has been implemented for the Punjabi ASR system.
No data are available for children’s Punjabi speech. The collection of manual data is a time-
consuming and challenging task. Hence, a competent approach for artificial enhancement of
the Punjabi speech corpus should be employed [12]. In-domain augmentation occurs when
the parameters of a speech corpus are altered using pitch modulation or time modulation
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and a new speech corpus is integrated with an existing corpus. The out- domain data
augmentation occurs when speech is generated using a different technique or method and
merged with the existing corpus [13,14]. Tacotron is a text-to-speech (TTS) system that
takes text as input and produces synthesized speech that seems natural. Tacotron can be
used to create a new speech corpus, enabling us to develop an augmented corpus [15].
Tacotron is a single model that manages everything. Tacotron has four parts: the first is a
front end for extracting linguistic parameters, the next is an acoustic prediction model, the
part following is a duration model, and the last is a signal processing vocoder [16].

Our Contribution: Much research has been conducted on English, but only Tamil
and Hindi ASR systems have been developed for national languages. Since the speech
corpus is still in its infancy, native language ASR systems are underdeveloped. Although
Punjabi is one of India’s 22 national languages, and since the people of northern India
speak Punjabi, there is a need for a Punjabi ASR system so that a more significant number
of ASR applications can be available in Punjabi. In recent years, researchers have actively
proposed adult ASR systems. The adult Punjabi speech corpus has been submitted to the
research community. However, the children’s speech data corpus is still in the early stages
of development; implementing and improving the performance of children’s ASR systems
is a difficult task due to the variability in children’s speech. This work has contributed to
the collection of a Punjabi children’s speech corpus to deploy Punjabi ASR for children.
The collection of the speech corpus was carried out at various schools, which is a time-
consuming process, and calculating utterances is a challenging task.

Further, the artificial corpus enhancement was performed using data augmentation
techniques. This work employed MFCC feature extraction with prosodic features to
construct an ASR system for children’s Punjabi speech. The MFCC and prosodic features
were obtained, and the retrieved features were subsequently subjected to discriminative
techniques. In order to satisfy the scarcity of speech corpus, new speech was synthesized
using Tacotron, which was augmented with the children’s Punjabi speech corpus, and
experiments were carried out by extracting prosodic features from the new augmented
corpus.

The state-of-the-art on ASR and discriminative methodology is included in Section 2.
The theoretical history of prosodic features and discriminative strategies is covered in
Section 3. In Section 4, the experimental setup is defined. Section 5 describes the system
overview, followed by the results, discussion, and comparison with the state-of-the-art in
this domain in Section 6. Section 7 finally concludes.

2. Literature Review

In speech recognition, Dreyfus Graf of France represented the output of a six-band
pass filter, and for determining transcription of the input signal, he traced the band filter
output [17]. Later in 1952, the Bell laboratory of the USA constructed the first ASR system.
The system recognized telephonic digits when spoken regularly [16]. In the 1960s, Japanese
laboratories were fully active in speech recognition and constructed vowel recognition,
phoneme recognizer, and digit recognizer systems [18]. The implementations of word
recognition were pushed off the rails in the 1980s, and people started to emphasize machine
learning algorithms. The Defense Advanced Research Project Agency (DARPA) financed
the research on speech interpretation in the United States. Carnegie Mellon University
(CMU) developed a speech recognition technology in 1973 that could identify 1011 vocabu-
lary words in a dataset. Algorithms of numerous forms were formulated and applied, such
as template-based pattern recognition or explicit pattern recognition and later statistical
modeling architectures in the 1980s. HMM models were used to perform rigorous statistical
simulations. HMM has a double stochastic process, which includes several stochastic
processes; hence, the term hidden is used in HMM name. In the 1990s, the HMM technique
became popular.

B.H. Juang and L.R. Rabiner [19] (1991) reviewed the statistical HMM model, and a
consistent statistical framework was provided. The authors highlighted several aspects
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of the general HMM approach. In contrast, it demands further consideration to improve
results in various applications, such as modeling parameters, especially the issue of minimal
classification error, integration of new features and prior linguistic awareness, modeling of
state durations, and their usage in speech recognition. A continuous-based and speaker-
independent ASR system was introduced on SPHINX by Kai-Fu Lee et al. [20]. The authors
utilized the TRIM dataset provided by Texas Instruments, which utilized 80 teaching
speakers and 40 research speakers, with 85 men and 35 women. The authors employed
LPC function extraction and HMM acoustic simulation techniques. Word-based phone
modeling and triphone modeling was performed. This work achieved an accuracy of
71%, 94%, and 96% on grammar, word pair grammar, and bigram grammar, which can be
improved further. Xuedong Huang et al. [21] designed SPHINX-II to cope with speaker
and environment heterogeneity. SPHINX-II extracted speaker-normalized features from
the corpus along with dynamic features. Authors utilized between-word triphone models,
semi-continuous HMM models, and senons, and the overall model achieved better accuracy
than SPHINX.

In [22], feature extraction was performed in three stages: static feature extraction, nor-
malization, and temporal information inclusion. The cepstral unconstrained monophony
test revealed that MFCC outperformed PLP, cepstral mean subtraction. A compara-
tive study of different feature-extraction techniques has been presented by Gupta and
Gupta [23]. The authors presented MFCC, Relative Spectral (RASTA), and Linear Predictive
Coding (LPC), where MFCC outperformed the others. After MFCC feature extraction,
Wang et al. [24] used prosodic details and normalized feature parameters for tone- and
pitch-related features to train a 3-layer feed-forward neural network and introduced the
Parallel Phoneme Recognition followed by Language Modeling (PPRLM) system. The
PPRLM system achieved an 86 percent classification rate. Furthermore, in [25], the authors
used the Gaussian Mixture Model (GMM) for classification and utilized various levels
of speech features, such as phonetic, acoustic, and prosody. The authors presented tonal
and non-tonal classifiers, including pitch extraction, pitch trimming, pitch smoothening,
pitch shifting, and pitch speed measuring. The work was focused on the data collection
problems; Tacotron, a text-to-speech synthesizer, was deployed to reduce data scarcity.
Wang et al. [15] proposed an end-to-end methodology that generated synthetic speech. The
authors represented critical approaches for generic strategies, and the system obtained
a 3.82 Mean Opinion Score (MOS) on a scale of 5. Skerry-Ryan et al. [26] introduced an
expanded Tacotron with latent embedding space of prosody. The output produced by the
Tacotron represented prosodic information such as pitch and loudness. Shen et al. [27]
demonstrated a Tacotron system, a neural model. The authors used a recurrent network
and predicted the Mel spectrogram of a given text. The system scored 4.53 MOS. Tacotron 2
was proposed by Yasuda et al. [28], and it outperformed traditional systems. Self-attention
was added to Tacotron 2, which captured pitch-related dependencies and improved the
audio quality. Later in 2021, Hasija et al. [14] presented the work on the Punjabi ASR
system for children by extending the corpus of children’s speech by pre synthesizing new
speech using a Tacotron text-to-speech model. The original corpus was combined with
pre-synthesized speech, and it was fed into the ASR system, which exhibited a RI of 9%
to 12%.

2.1. Discriminative Techniques Based ASR Systems

Researchers have developed ways to help ASR systems perform better in the recent
past. Povey and Woodland [29] researched discriminative techniques using a large vo-
cabulary dataset. The authors defined and compared Lattice-based Maximum Mutual
Information Estimation (MMIE) training to Frame Discrimination (FD). The effectiveness
of MMIE and Maximum Likelihood Estimation (MLE) were also evaluated, and MMIE
outperformed MLE. Povey and Woodland again [30] conducted a study on the Minimum
Word Error (MWE) and Minimum Phone Error (MPE) criteria for discriminative HMM
training after the publication of MMIE. Further, the authors used I-smoothing and per-
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formed discriminative training. The Switchboard/Call Home telecommunications corpora
were used in the experiments. The proposed method described a relative improvement of
4.8 percent.

Further, Povey et al. [31] proposed a new approach called feature MPE (fMPE), which
applied various functions on a feature to train millions of parameters. The authors imple-
mented fMPE process in various phases, such as generation of high-dimensional features,
an extension of the acoustic context, projection of features, and training of the feature
matrix. The authors proved that it is a unique method for training feature matrixes. In [31],
the authors provided further improvements by releasing a new version of the MMI fea-
ture, which improved accuracy [32] and probability routes with higher phone error owing
to proper transcription enhanced in lattices. Additionally, it led to I-smoothing, which
replaced I-smoothing to the maximum probability estimate to the preceding iteration’s
frequency. These derived features were subjected to Vocal Tract Length Normalization
(VTLN) and feature–space maximum likelihood linear regression (FMLLR), which im-
proved the performance. The authors proved that the enhanced MMI approach produced
more accurate results than the MPE technique.

2.2. Hybrid Front End Approach-Based Discriminative Techniques

In [33], McDermott et al. applied the benefits of discriminative approaches, utilized
the Minimum Classification Error (MCE) discriminative technique on HMM models, and
proved a reduction of 7% to 20% in the error rate. Later, Vesely et al. [34] developed
frame-based cross-entropy and sequence discriminative MMI on DNN models [29]. It
was proved that the system was improved by 8% to 9% compared with prior studies.
In [35], Dua et al. reported their work on heterogeneous feature vectors, wherein the two
feature-extraction approaches (MFCC and PLP) were hybridized, and signal features were
retrieved using the MF-PLP methodology. MMIE and MPE methods were used to train
acoustic models. The authors concluded that MF-PLP combined with MPE outperformed
the other heterogeneous features and discriminative combinations. In [36], Dua et al.
investigated Differential Evaluation (DE) on Gammatone Frequency Cepstral Coefficient
(GFCC) features and used discriminative approaches on acoustic models of datasets. The
outcomes of discriminative approaches in clean and noisy environments were compared
using MFCC and GFCC features. The authors concluded that the DE-based GFCC feature-
extraction method combined with MPE training methodology produced better results in
clean and noisy situations. After successfully using these methods for ASR in the Hindi
language, the researchers were inspired to study discriminative methods on the Punjabi
corpus. In [37], Kaur and Kadyan presented their work on the Punjabi speech corpus
and the implemented BMMI, fMMI, and fBMMI on a corpus, which resulted in a relative
improvement of 26%. The work on discriminative methods for ASR systems is summarized
in Table 1.

The research in this paper aimed at elevating the infancy of children’s Punjabi speech
corpus. A four-hour speech corpus was manually gathered, and artificial methods were
used to enhance the corpus. Later, prosodic features were extracted to improve the sys-
tem’s performance, as MFCC features alone were insufficient for capturing the variety of
variations in children’s speech. Seven prosodic features were retrieved, and their impacts
were investigated using discriminative techniques on a speech corpus. Integrated prosodic
features were tested on a speech corpus afterward, results were analyzed, and performance
was evaluated.
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Table 1. Related work based on discriminative techniques for ASR system.

Author Year Data Set Feature Extraction Discriminative
Technique Results

Povey and
Woodland [29] 2001

North American
Business News
(NAB) corpus,

Telephone
switchboard

dataset

MFCC MMIE, MLE

The authors propose the MMI
approach. A 16.3 percent relative

improvement (RI) in NAB and a 5.5
percent RI in switchboard, indicating

that MMIE outperforms MLE.

Povey and
Woodland [30] 2002

“HubS” from the
Switchboard and

Call Home English
MF-PLP MPE and MWE

I-smoothing was used to make
discriminative approaches more
generic. With a RI of 4.8 percent,

I-smoothened MPE surpassed MLE
and MWE.

Povey et al.
[31] 2005

Conversational
telephone speech,
Broadcast News,
Call center and
Malach corpus

PLP and MFCC fMPE, MPE

fMPE was introduced, which indicated
that MPE objective functions were also

applied to the feature. When
employing fMPE instead of MPE, there

was a 6.5 percent reduction in RI.

McDermott
et al. [33] 2007

Corpus of
Spontaneous

Japanese (CSJ)
dataset was used.
186k utterances in
training data set of

about 230 hours.
130 min speech in
the testing dataset.

MFFC, delta, and
delta-delta feature

extraction

Minimum
Classification
Error (MCE)

The author presented an MCE
framework for discriminative training,

which improved the HMM’s
performance. The ASR system

performed better and showed a 7% to
20% relative reduction in the word

error rate.

Povey et al.
[32] 2008

Arabic Broadcast
news corpus,

conversational
telephone news,

English broadcast
news, TC-STAR

corpuses

Vocal tract length
normalization

(VTLN) +
feature-space

maximum
likelihood linear

regression
(FMLLR)

MMI, BMMI,
fMMI, fBMMI

The MMI function was changed,
resulting in boosted MMI function and

feature space MMI. In addition,
I—smoothening was used. When
compared with MPE, the system

revealed a RI of 0.5% to 0.7%. When
compared with MMI, fMMI

outperformed it.

Vesely et al.
[34] 2013

Switchboard-1
Release 2

(LDC97S62)
training dataset of

300 hours

MFCC, LDA + STC
(semi-tied

covariance),
FMLLR

Frame-based
cross-entropy,

MMI sequence-
discriminative

training of DNNs

The authors proposed a DNN–HMM
hybrid system that uses a sequence

discriminative method and
frame-based entropy and achieved an

8% to 9% relative improvement.

Dua et al. [35] 2017 Hindi speech
corpus

MFCC, PLP,
MF-PLP MMI and MPE

The RI of 25.9% was obtained using the
MF-PLP feature-extraction approach

and the MPE discriminative
methodology.

Dua et al. [36] 2018 Hindi speech
corpus GFCC MMI, MLE, and

MPE

The accuracy rate of MPE with DE
optimized GFCC features was 86.9% in

a clean environment and 86.2% in a
noisy environment, according to a

differential equation (DE) optimization
on GFCC features.

Kaur and
Kadyan [37] 2020 Children Punjabi

speech corpus MFCC BMMI, fMMI,
and fBMMI

With a RI of 26% from baseline results,
the fBMMI discriminative approach

outperformed both BMMI and fMMI.
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3. Theoretical Background
3.1. Prosodic Features

The MFCC features alone are not enough to extract all the informatics parameters from
the input signal. The performance of the features can be affected by speaking variability
and accent tone. Prosodic features were paired with MFCC features to address this problem,
resulting in increased system robustness and ASR device accuracy. Extraction of robust and
extra feature details at the syllable level helped determine the tonality of a given syllable.
These features were long-term characteristics of utterances that aided in presenting various
context-related details about that utterance. Various prosodic features have been extracted
in the past to address an ASR system’s low efficiency. The prosodic features are F0, voicing
probability, intensity, loudness, voice quality, harmonic-to-noise ratio (HNR), F0 raw, and
F0 envelope [11]. An autocorrelation technique extracts pitch predictions from the input
speech signal [38]. Fundamental frequency (F0) is the cue of the pitch. It is possible by
calculating the similarity of two corresponding waveforms. The uniformity of waveforms
is determined by comparing them at various time intervals. The F0 raw is captured using
the autocorrelation function. The autocorrelation function for infinite discrete function x[n]
is computed as shown in Equation (1):

Rx(v) =
∞

∑
n=−∞

x[n]x[n + v] (1)

The autocorrelation function of the finite discrete function x′[n] of size N is derived as
per Equation (2):

Rx′(v) =
N−1−v

∑
n=0

x′[n]x′[n + v] (2)

The following is the cross-correlation function between the x[n] and y[n] functions as
shown in Equation (3):

Rxy(v) =
∞

∑
n=−∞

x[n]y[n + v] (3)

Then, on F0 raw, pitch trimming and smoothing methods are applied, and F0 is
obtained. Later, the pitch means subtraction algorithm is added to the F0 function, and the
probability of voicing is captured, as it indicates the percentage of the signal’s unvoiced
and voiced data [11]. Let the normalized cross-correlation function value be ‘a’, which
must be absolute on a particular frame. The POV is calculated as follows in Equation (4):

L = −5.2 + 5.4 exp(7.5(a− 1)) + 4.8a− 2 exp(−10a) + 4.2 exp(20(a− 1)) (4)

where L is approximation of log-likelihood ratio log(p(voiced)/p(unvoiced)). The approxi-
mation value of p is calculated in that frame as mentioned in Equation (5):

p =
1

(1 + exp(−L))
(5)

The jitter and shimmer algorithm is used to capture the voice quality [39]. The essential
property of tonal words is lexical stress, also known as intensity. Stressed words are more
energetic, have more prominent F0 movements, and have long durations. The F0 contour
reflects the amplitude of a change in log energy in the voiced area of a syllable. Boundary
identification is a method for calculating stress [40].

3.2. Discriminative Training Technique

The main objective of the discriminative technique is to reduce the mismatch be-
tween incorrect and correct word sequences in testing and training modeling [41]. The
discriminative techniques are discussed below:
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3.2.1. Maximum Mutual Information (MMI)

Until the language model is tweaked or updated, conditional machine learning is
identical to MMI. MMI was first used in an isolated word recognition system, and after
proving its worth in isolated word ASR, it was successfully applied to continuous speech
recognition. The MMI criterion is used to optimize the posterior for the spoken words in
the decoding process. The MMI criterion for each sentence is shown in Equation (6):

MMI(θ; S) =
M

∑
m=1

log
p (Om|Sm) kP(wm)

∑w p (Om|Sw; θ) kP(w)
(6)

The observation sequence is represented by Om, while the accurate word transcription
of the m-th utterance is represented by wm. M is the total number of words in the utterance’s
transcription. θ is a deep neural networks model parameter that incorporates biases and
weight matrices. Sm represents the sequence of states about wm. The letter k denotes the
acoustic scaling factor. The total in the denominator should theoretically be calculated
across all possible word sequences [42]. When MMI is used, there is a reduction in Bayes
risk decoding and a boost in system efficiency. The acoustic and language models in MMI
are scaled such that the class posterior is smoothed [7].

3.2.2. Boosted MMI (BMMI)

A boosting parameter is transferred to the function in BMMI. This boosting parameter
produces more confusing results by increasing the probability of sentences with more
errors. Boosted MMI can be thought of as an attempt to impose a soft margin proportional
to the number of errors in a hypothesized statement. When using the forward–backward
algorithm on the denominator lattice, BMMI needs a little more computation than MMI.
The BMMI is calculated as shown in Equation (7):

BMMI(θ; S) =
M

∑
m=1

log
p (Om|Sm) kP(wm)

∑w p (Om|Sw) kP(w)e−bA(w,wm)
(7)

where b is the boosting factor having 0.5 value, and A(w, wm) measures accuracy between
word sequence w and wm. The sole difference between MMI and BMMI is adding a
boosting component to the BMMI equation’s denominator [42].

3.2.3. Feature Space MMI (fMMI)

fMMI gives a significant improvement in the field of other discriminative techniques.
A single modification is performed in the function of MMI to change it into an fMMI
function. In fMMI learning, the rate is reduced to 0.01 or 0.015 to compensate for the lower
range of the MMI objective function [32]. If the boosting parameter is passed to the fMMI
function, the term used is fBMMI.

4. Experimental Setup

This research was carried out to see how effective prosodic features are on acoustic
modeling discriminative techniques. The speech corpus of Punjabi children is still in
its infancy stage. A concerted effort was made to set a Punjabi children speech corpus,
and the whole study was based on this corpus. The recordings were made in classrooms
with microphones tuned to a frequency of 16 kHz. The age range was 7 to 13 years old.
Following the collection of audios, the audios were segmented to obtain utterances aligned
with suitable meaning. In the segmentation procedure, the Praat toolset was employed. The
utterances were then transcribed for the language model. The total number of utterances
was 2370. A total of 1885 utterances were used in the training data set and 485 utterances
in the testing data set. The details of children’s Punjabi corpora are explained in Table 2.
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Table 2. Description of Children Punjabi Speech Corpora.

Term Train Test

No. of Speakers 39 6
No. of Unique Sentences 1885 485

Type of Corpus Continues Continues
Age Group 7 to 13 7 to 13

No. of words 24,536 2845

The procedure was carried out with the Kaldi toolkit [43]. In the training data set,
there were 39 speakers, while in the testing data set, there were six speakers. The Word
Error Rate (WER) evaluated the ASR system. The substituted words (S), the elimination of
words (D), or the addition of new words (I) were the error words. WER was calculated as
mentioned in Equation (8):

WER% =
S + I + D

N
× 100 (8)

where S is the substitution of words, I is the number of inserted words, D is deleted words,
and N is the total number of words in the dataset [44]. Relative Improvement (RI) is another
performance evaluation metric. The absolute rise related to a new value (N) in comparison
with an old value (O) is called RI, as shown in Equation (9):

RI% =
O−N

O
× 100 (9)

5. System Overview

In the proposed system initially, the children’s speech corpus was fed into the feature-
extraction module, which extracted MFCC features from the input signal. Using the
MFCC technique, each frame’s energy parameters were collected, yielding 13 function
coefficients. Each frame took 25 milliseconds to complete, with a 10-millisecond frameshift.
Frame extraction used a Hamming window and a 23-channel Mel filter bank. After that,
function coefficients were calculated using logarithm and DCT. MFCC features defined the
instantaneous and spectral envelope shapes of a speech signal. Since MFCC features were
insufficient, prosodic features were extracted as well. OpenSmile Toolkit and MATLAB
were used to extract prosodic features. The extracted prosodic features were the probability
of voicing (POV) (P1), F0 (P2), intensity (P3), loudness (P4), voice quality (P5), F0 raw (P6),
and F0 envelope (P7). The extracted prosodic features were merged with MFCC features
one by one and in combinations. These were fed to the ASR system, which employed
discriminative techniques. MMI, BMMI, and FMMI are some of the discriminative methods
used. Monophone (HMM) modeling was achieved when features were initially fed into the
ASR framework. In Monophone modeling, acoustic vectors were incoming sequences; a
word sequence W had to be found using probability P(W|A) and had to include constraints
imposed by grammar. The Bayesian theorem was applied, and probability was calculated
as shown in Equation (10):

P(W|A) =
P(A|W)·P(W)

P(A)
(10)

The probability of a sequence of acoustic vector A to the given word sequence (referred
to as an acoustic model trained on training input data) is represented by P(A|W). The
second P(W) is the probability of word sequence given by the language model (LM). The
language model is a text corpus that includes 1000 or 10,000 words. P(W|A) is a pattern
recognition approach, and a number of techniques were used to compute the acoustic
model of given input training data [6]. Dynamic features of speech include MFCC feature
trajectories over time. These trajectories were then estimated and combined with MFCC
and prosodic coefficients to improve ASR results. Delta features were characteristics of



Sustainability 2022, 14, 614 10 of 22

trajectory paths. Following Monophone, delta features were utilized to achieve triphone
modeling (tri 1). Delta features were computed as shown in Equation (11):

dt =
∑N

n=1 n(ct − ct−n)

2 ∑N
n=1 n2

(11)

where dt stands for delta coefficients computed on frame t, ct and ct−n for static coefficients,
and N equals 2. Triphone simulation is achieved again for delta features, this time with
delta-delta features, which are the time variant component of delta features (tri 2) and
formula of computation, as mentioned in Equation (12):

ddt =
∑N

n=1 n(dt − dt−n)

2 ∑N
n=1 n2

(12)

Delta and delta-delta features were extracted, also known as the first and second
derivatives of the speech signal. Following that, triphone simulation using the Maximum
Likely Linear Transform (MLLT) and Linear Discriminative Analysis (LDA) was performed
(tri 3). Linear Discriminative Analysis (LDA) was applied to the output of tri 2 to transform
smaller volumes of acoustically distinct units, reducing the coefficient to a manageable 40
dimensions. Following the likelihood estimation, a new set of inputs was assigned to the
new class, and the output class with the highest probability was chosen. The scatter matrix
is computed in LDA as shown in Equation (13):

S =
1
n ∑

i
ni(mi −m)(mi −m)T (13)

where sample class is represented by ni, mi represents the mean of ith class, m is the
global mean, and T is the transpose of (mi −m) [38,45]. The next step was to calculate the
Maximum Likelihood Linear Transformation (MLLT), which was computed over utterances
and excluded speaker-specific information. The system’s tri 3 modeling is LDA + MLLT [46].
The tri 3 output was then used to evaluate MMI, BMMI, and fMMI. The dataset was trained
using the MMI function, and then decoding was performed for two rounds. The BMMI
implementation was achieved by adding a 0.5 boosting factor to the MMI. The learning rate
factor was given a value of 0.0025, and the boosting factor was given a value of 0.1 during
the implementation of fMMI. Discriminatively trained modules were then sent for decoding.
Decoding is the process of identifying recorded test samples based on auditory features
of words. For precise voice recognition, it uses training, acoustic, and language models.
It decodes the feature vectors, same as the training module, to determine the most likely
word sequence. Figure 1 shows a block diagram of the implementation of discriminative
techniques on the Punjabi children’s speech corpus using prosodic features.
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The step-by-step procedure for the implementation of prosodic features on the dis-
criminative technique is explained below, and the illustration of this methodology is shown
in Figure 2.

Step 1: Collection of original children’s Punjabi speech data (male/female of age group 7
to 13 years) corpus.

Step 2: Initialize: Segmentation and transcription of audios. training_data = 1885 utter-
ances from 2370 utterances testing_data = 485 utterances from 2370 utterances

Step 3: Extraction of MFCC and prosody features from training and testing datasets as:
A mfcc(training_data) and mfcc(testing_data)

The Mel filter bank can process speech signals with linear or nonlinear distributions at
various frequencies.

Mel(f(t, k)) = 2595 log10

(
1 +

f(t, i)
700

)
Additionally, f(t,i) (Fast Fourier Transformation) is computed as:

F(t, i) =

∣∣∣∣∣∣∣
1

N ∑N−1
k=1

(
e−

2πjkn
N

)
fk

∣∣∣∣∣∣∣
(
S′(n)

)
(14)

where i 0, 1, 2, 3, . . . , (N/2) − 1.

B prosody(training_data)and prosody(testing_data) Applying prosodic feature extrac-
tion on the utterances of training and testing data set:
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i To calculate the cue of F0 feature, autocorrelation function was used in the discrete
function x[n] of speech signal on each 25 ms frame.

Rx(vi) =
∞

∑
n=−∞

x[n]x[n + v]

where Rx(vi) is the feature value of F0 raw at i frame of given speech utterance.
ii Cross-correlation function of two consecutive discrete function x[n] and y[n] of speech

signal at each 25 ms frame is F0.

Rxy(vi) =
∞

∑
n=−∞

x[n]y[n + v]s

Rx(vi) is the feature value of fundamental frequency at i frame of given speech
utterance.

iii The POV is calculated from the pitch mean subtraction formula.

L = −5.2 + 5.4 exp(7.5(a− 1)) + 4.8a− 2 exp(−10a) + 4.2 exp(20(a− 1))

where ‘a’ is the F0 value of the frame. Approximation value of POV is:

p =
1

(1 + exp(−L))

Step 4: The extracted prosodic features are in matrix form and stored in a .xls file. There
is one .xls file for each utterance, and features are extracted at every 25 ms frame.
The MFCC features are combined with Prosodic features to form a single matrix
using MATLAB. Later on, this single matrix is converted in .htk format for the
Kaldi toolkit to proceed further.

[ml,f]=MFCC(ado,fs,‘z0Mp’,12,23,20e−3*fs,10e−3*fs, 0,0.5,0.97);
//MFCC feature Matrix

PROm=dlmread(pro_f_name); // prosodic feature matrix where pro_f_name
is prosody file name extracted using OpenSmile toolkit

MFPro=[ml Pros]; //New matrix having all features of MFCC and prosody

writehtk(output,MFPro,0.010,8198); // writing the file in .htk format
which is kaldi supportive.

Step 5: Conduct monophone training (mono) and align monophone results using kaldi
toolkit.

steps/train_mono.sh --nj $num_jobs --cmd $train_decode_cmd $taining_
directory $language_directory exp/mono
where $num_jobs is the number of jobs of training data set,
$train_decode_cmd is run.pl file
$taining_directory is the training where the training utterances
and training transcription is stored
$language_directory is the language model directory
exp/mono is the directory where the training model and the results
of recognition are saved.

Step 6: Conduct delta training (tri 1) and align their phones.

steps/train_deltas.sh --cmd $train_decode_cmd 600 7000 $taining_directory
$language_directory exp/mono_ali exp/tri1



Sustainability 2022, 14, 614 13 of 22

where 600 is the number of senons and 7000 is the number of leaves used
by train_delta.sh file for tri 1 modeling.

Step 7: Perform delta + delta training (tri 2) and also align their triphones.

steps/train_deltas.sh --cmd $train_decode_cmd 500 5000
$taining_directory $language_directory exp/tri1_ali exp/tri2

Step 8: Training of LDA + MLLT training (tri 3) on tri 2 output and aligning of their phones.

steps/train_lda_mllt.sh --cmd $train_decode_cmd 600 8000 $taining_directory
$language_directory exp/tri2_ali/ exp/tri3steps/align_fmllr.sh --nj
“$train_nj” --cmd “$train_decode_cmd” $taining_directory $language_
directory exp/tri3 exp/tri3_ali || exit 1

Step 9: Perform MMI training on tri 3 output.

steps/train_mmi.sh $taining_directory $language_directory exp/tri3_ali
exp/tri3_denlats exp/tri3_mmi

Step 10: Perform BMMI training on tri 3.

steps/train_mmi.sh --boost 0.5 $taining_directory $language_directory r
exp/tri3_ali exp/tri3_denlats exp/tri3_bmmi_0.5

Step 11: Conduct fMMI training on tri 3.

steps/train_mmi_fmmi.sh --learning-rate 0.0025 --boost 0.1 --cmd $train_
decode_cmd $taining_directory $language_directory exp/tri3_ali exp/dubm3b
exp/tri3_denlats exp/tri3b_fmmi_b

Step 12: Repeat steps 4 to 11 for each prosodic feature.
Step 13: Finally, performance is analyzed after comparing the results of three discriminative

techniques on the number of prosody features combined with MFCC.

Further, the speech corpus was enhanced by artificially expanding the training dataset
to improve the performance of both systems. The Punjabi children corpus was subjected to
out-domain data augmentation. The ASR system received pre-synthesized speech from
Tacotron, which was augmented with children’s speech. After augmenting, a speech
corpus of 2032 utterances was produced. Prosodic features and MFCC features were also
retrieved from the new enhanced corpus, and experiments were repeated for individual
prosodic and integrated prosodic performance analysis. The scarcity of training data was
removed by using an expanded corpus. This led to considerable performance improvement,
as evidenced by experimental results. Furthermore, increasing the training complexity
increased the training time while maintaining the original processing time.
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6. Experimental Results and Discussion

Experiments were carried out to see how prosodic features fared on discriminative
approaches. The experiments were carried out in four phases. In the first phase, only a
particular prosodic feature was concatenated with MFCC features of the Punjabi children’s
corpus. In the second phase, the combinations of prosodic features with concatenation
of MFCC was given to the discriminative methods of ASR systems. In third phase, data
were augmented with original speech using the out-domain technique, and features were
extracted from augmented data. The process was repeated for individual prosodic feature
combinations with MFCC; as fMMI was performing well at this phase, only the fMMI
discriminative technique was used, and results were compared. In the last phase, all or
some prosodic features computed from the data-augmented corpus were integrated with
MFCC and fMMI.

6.1. Performance Analysis of Discriminative Techniques on the Individual Concatenation of
Prosodic Feature with MFCC of Punjabi Children’s ASR

The speech corpus was provided for MFCC feature extraction and then sent to the ASR
system for discriminative approaches. Baseline results referred to the MFCC feature results,
and performance analysis of prosodic features was conducted by comparing baseline
results. Prosodic features were retrieved and merged with MFCC features before being
sent into the ASR system for modeling, as shown in Figure 2. The results of MMI, BMMI,
and fMMI techniques on a children’s Punjabi corpus with MFCC features and prosodic
features are shown in Table 3.

Table 3. Result of Mono, Tri 1, Tri 2, Tri 3, MMI, BMMI, and fMMI on Children’s Punjabi speech
corpus with MFCC and individual prosodic feature.

Feature Used Mono Tri 1 Tri 2 Tri 3 MMI BMMI fMMI

MFCC 20.58 18.62 17.9 15.02 17.94 17.45 14.53
MFCC + POV 20.16 18.45 16.88 14.74 14.98 16.53 14.25

MFCC + F0 20.37 18.92 18.33 15.34 18.4 17.69 14.53
MFCC + intensity 18.36 17.13 17.41 15.05 20.47 17.94 14.32
MFCC + loudness 19 17.13 17.41 15.05 15.05 17.69 14.69

MFCC + voice quality 19.42 17.06 17.24 15.57 19.63 20.8 14.64
MFCC + F0 raw 19.3 16.78 17.38 14.84 18.71 21.46 15.44

MFCC + F0 envelop 24.09 20.09 20 16.9 16.14 20.08 15.06

In Table 3, the first row represents the baseline results, while the subsequent rows
reflect the outcomes of prosodic features. fMMI beats MMI and BMMI. Compared with
MMI and BMMI results, fMMI results had a RI of 20% to 25%. Figure 3 illustrates a bar
graph of particular prosodic features with regard to their WER when the MMI, BMMI, and
fMMI methods were employed for speech recognition. The POV feature outperformed
other features in all modeling techniques. It is recommended that the POV feature be
included along with MFCC to improve the robustness of ASR systems since POV shows
the voicing component of the spoken data, which increases the chances of recognition.
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6.2. Performance Analysis of Discriminative Techniques on the Integration of Prosodic Features
with a Combination of MFCC of Punjabi Children’s ASR

Following the particular prosodic feature, the performance was evaluated by inte-
grating some or all of the features. At first, all features were integrated and then merged
with MFCC features. These integrated features were supplied to the recognition system,
assessing the outcome. After that, the best three features were integrated and concatenated
with MFCC, and recognition was completed. The result of MMI, BMMI, and fMMI having
integrated prosodic features merged with MFCC again is represented in Table 4.

Table 4. Result of Mono, Tri 1, Tri 2, Tri 3, MMI, BMMI, and fMMI having MFCC and a Combination
of prosodic features.

Feature Used Mono Tri 1 Tri 2 Tri 3 MMI BMMI fMMI

MFCC + POV + F0 + voice quality + intensity +
loudness + F0 raw + F0 envelop 19.66 18.12 16.99 15.16 19.21 19.24 14.6

MFCC + POV + F0 + voice quality 23.04 19.45 19.28 14.7 19.35 19.38 13.95

At fMMI, the combination of all prosody and MFCC had a WER of 14.6 percent,
whereas the combination of three prosodic features and MFCC had a WER of 13.95 percent.
The graph of integrated prosodic features coupled with MFCC is shown in Figure 4.
Integration was the concatenation of all prosodic and MFCC features into a single matrix,
and the WER was reduced. The performance improved when integration was carried out
with the primary prosodic features of POV, F0, and voice quality. Combining POV, F0, and
voice quality produced better results than combining all seven prosodic features, as seen in
Figure 4. A 4–5% RI was obtained by combining POV, F0, and voice quality features with
MFCC features rather than only MFCC features.
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6.3. Performance Analysis of Out-Domain Data-Augmented Punjabi Children’s ASR
Implementing Discriminative Techniques on Individual Prosodic Features Combined with MFCC

To overcome the issue of data scarcity, an artificial approach of data augmentation
was used to enrich the training data while preserving the default test data. Synthesized
speech was augmented with the actual speech corpus. After Tacotron synthesis, prosodic
and MFCC features were retrieved, and a new matrix was formed by merging prosody and
MFCC matrixes. The fMMI was then given the newly merged feature matrix. Only fMMI
was used in this section since it performed well in Sections 6.1 and 6.2, and the results are
presented in Table 5.

Table 5. Data-Augmented Result of Mono, Tri 1, Tri 2, Tri 3, and fMMI having MFCC and Combination
of prosodic features.

Feature Used Mono Tri 1 Tri 2 Tri 3 fMMI

MFCC 17.76 16.88 17.04 13.86 13.33
MFCC + POV 18.65 16.45 15.88 14.74 12.80

MFCC + F0 18.68 16.25 15.62 14.49 12.87
MFCC + intensity 18.36 16.55 16.05 14.75 13.25
MFCC + loudness 18.96 17.15 16.78 15.05 13.15

MFCC + voice quality 18.40 16.95 16.54 14.58 13.25
MFCC + F0 raw 17.99 16.95 16.56 15.86 15.17

MFCC + F0 envelop 18.15 17.89 17.59 16.15 15.04

The first row of Table 5 shows 13.33% WER after augmentation on solely MFCC
features, with a RI of 8% compared with the original dataset, exhibiting good accuracy.
Later, enhanced data were processed for prosodic features to improve performance, and
the results were outperforming those using fMMI, as shown in Figure 5.



Sustainability 2022, 14, 614 18 of 22Sustainability 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 
Figure 5. Data-augmented corpus WER of individual prosodic features using mono, tri 1, tri 2, and 
tri 3 modeling and fMMI discriminative techniques. 

6.4. Performance Analysis of Out-Domain Data-Augmented Punjabi Children’s ASR Imple-
menting Discriminative Techniques on Integrated Prosodic Features Combined with MFCC 

After implementing one prosodic combination, integrated prosodic features were im-
plemented on fMMI, and all computations were performed on the augmented data cor-
pus. The first row in Table 6 shows a WER of 13.85% for total prosodic feature integration. 
In comparison, the second row shows a WER of 12.61% for integrating significant features 
such as POV, F0, and voice quality, resulting in a RI of 13% more and outperforming other 
tests. The graphical representation of the result is shown in Figure 6, where the fMMI of 
MFCC + POV + F0 + voice quality shows the reduced WER. 

Table 6. Data-augmented Result of Mono, Tri 1, Tri 2, Tri 3, and fMMI having MFCC and integrated 
prosodic features. 

Feature Used Mono Tri 1 Tri 2 Tri 3 fMMI 
MFCC + POV + F0 + voice quality + 
intensity + loudness + F0 raw + F0 

envelope 
18.97 17.88 16.06 15.07 13.85 

MFCC + POV + F0 + voice quality 18.63 16.94 15.89 14.05 12.61 

Figure 5. Data-augmented corpus WER of individual prosodic features using mono, tri 1, tri 2, and
tri 3 modeling and fMMI discriminative techniques.

6.4. Performance Analysis of Out-Domain Data-Augmented Punjabi Children’s ASR
Implementing Discriminative Techniques on Integrated Prosodic Features Combined with MFCC

After implementing one prosodic combination, integrated prosodic features were
implemented on fMMI, and all computations were performed on the augmented data
corpus. The first row in Table 6 shows a WER of 13.85% for total prosodic feature integration.
In comparison, the second row shows a WER of 12.61% for integrating significant features
such as POV, F0, and voice quality, resulting in a RI of 13% more and outperforming other
tests. The graphical representation of the result is shown in Figure 6, where the fMMI of
MFCC + POV + F0 + voice quality shows the reduced WER.
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Table 6. Data-augmented Result of Mono, Tri 1, Tri 2, Tri 3, and fMMI having MFCC and integrated
prosodic features.

Feature Used Mono Tri 1 Tri 2 Tri 3 fMMI

MFCC + POV + F0 + voice quality + intensity +
loudness + F0 raw + F0 envelope 18.97 17.88 16.06 15.07 13.85

MFCC + POV + F0 + voice quality 18.63 16.94 15.89 14.05 12.61

6.5. Comparative Analysis with Earlier Research Works on Punjabi Speech Recognition

The majority of ASR research has been focused on international languages. It is
challenging to develop ASR systems for languages with limited resources. The Punjabi
ASR system has received little attention, where the accumulation of training data has
progressed from being isolated to continuous and then to spontaneous. Adult speech
was used in the study of Punjabi speech, and much effort was undertaken to obtain high
performance. Children’s speech corpora are in their infancy, and we have gathered a
children’s Punjabi speech corpora for this research. Prosodic features were extracted from
the data set, and discriminative methods were used. Table 7 shows the comparative result
of the existing state-of-the-art on Punjabi speech ASR, which includes adult speech of
isolated words and continuous sentences and very few works on children’s Punjabi speech.

Table 7. Comparative analysis with existing state-of-the-art.

Sr. No. Ref. Data Set Feature-Extraction
Technique

Acoustic Modeling
Technique Performance

1. (2012)
[47]

2760 Distinct
words (training

dataset) (isolated
data set)

MFCC HMM (HTK toolkit
was used)

Classroom environment (WER 4.37%,
and accuracy was 95.63%), In open
environment (5.92%, and accuracy

was 94%)

2. (2017)
[48]

45,000 utterances
(15 males,

10 males) (isolated
data set)

MFCC, PLP,
RASTA-PLP

HMM + GA (Genetic
Algorithm), HMM +

DE (Differential
Evolution)

MFCC word accuracy was 67.38%.
PLP word accuracy was 61.17%, and

RATA-PLP word accuracy
was 58.67%.

3. (2017)
[49]

58,700 utterances
(training dataset)
6100 (test dataset)
(isolated data set)

MFCC

HMM, HMM + GA
(Genetic Algorithm),

HMM + DE
(Differential
Evolution)

The system was tested on different
real environment noises. RI of 3–4%

(86% accuracy) using DE+HMM
technique and 2–3% (83% accuracy)
RI with GA + HMM as compared

with HMM. (81% accuracy)

4. (2018)
[50]

3611 in training (6
male and 7 female),

422 sentences in
test (phonetically

rich sentences)

MFCC and GFCC GMM + HMM and
DNN + HMM

Using MFCC feature extraction, WER
for DNN + HMM was 5.22%, and for

GMM + HMM was 7.01%. Using
GFCC feature extraction, WER for
DNN + HMM was 24.67% and for

GMM + HMM was 34.4%.

5. (2020)
[46]

1887 utterances in
training, 485 in test

(continuous
children’s speech)

MFCC DNN + HMM Hidden Layer 4 was performing well.
Obtained WER was 14.46%.

6. Proposed
Work

1887 utterances in
training, 485 in test

(continuous
children’s speech)

MFCC + Prosody
features

Discriminative
Techniques (MMI,
BMMI, and fMMI)

RI of 20–25% was observed using the
fMMI discriminative technique. A
combination of POV + F0 + voice

quality prosody features with MFCC
extracted on data-augmented corpus
showed RI of 13% more than MFCC

features alone.
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7. Conclusions

This paper presents a prosodic feature-based automatic Punjabi speech recognition
system for children that was experimentally evaluated using discriminative approaches. In
this context, an effort was made to overcome the zero resource issue for children’s Punjabi
ASR by developing a new speech corpus. With a RI of 20% to 25%, fMMI was a more
promising method than MMI and BMMI. After a series of experiments, it was concluded
that POV outperformed others when particular prosodic features were coupled with MFCC
on fMMI modeling approaches. Integration of POV, F0, and voice quality prosodic features
was conducted again to improve performance, and a RI of 4% was observed. The out-
domain data augmentation technique was employed to enhance the training dataset to
avoid the scarcity of data. The RI of the MFCC experiment using the data-augmented
corpus was 8%, but when integrated prosodic features were included, the RI increased to
13%. It is proposed that extracting integrated prosodic features (POV + F0 + voice quality +
MFCC) from the augmented corpus led to enhanced system performance, and the system’s
accuracy improved to 88% for the children’s Punjabi ASR system. Further work can be
extended by employing the spectrogram augmentation approach, which can help generate
an artificial dataset wherein a few more essential factors responsible for building an efficient
children’s speech recognition system need to be identified.
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