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1 Introduction

Prospect theory, due to Kahneman and Tversky (1979, 1992), is a highly influential theory of

decision-making under risk. In a parsimonious way, it captures a wide range of experimental

evidence on attitudes to risk. As such, it has the potential to shed light on asset prices and

investor behavior. However, despite years of effort, we still do not understand its implications

for some basic aspects of asset prices, such as the cross-section of average returns. Under

mean-variance preferences, average returns are described by the CAPM. But what determines

average returns when investors instead evaluate risk according to prospect theory? What

does prospect theory predict about the relative average returns of small-cap stocks and large-

cap stocks, or of value stocks and growth stocks? Answers to these basic questions are still

not available.

In this paper, we answer these questions. We build a new model of asset prices that

incorporates prospect theory, as well as a related concept known as narrow framing, into

investor preferences. We show how the model can be used to make quantitative predictions

about the cross-section of average returns. In our main application, we take 23 prominent

stock market anomalies and examine whether our model can help explain them. We find

that the model is able to shed light on a majority of these anomalies.

Prospect theory posits that people evaluate risk using a utility function that is defined

over gains and losses; that has a kink at its origin, capturing a greater sensitivity to losses

than to gains (“loss aversion”); and that is concave over gains and convex over losses, captur-

ing risk aversion over moderate-probability gains and risk-seeking over moderate-probability

losses (“diminishing sensitivity”). It also states that people weight outcomes not by objective

probabilities but by transformed probabilities that overweight the tails of the distribution

they are thinking about (“probability weighting”). Prospect theory is often implemented in

conjunction with narrow framing, a phenomenon observed in experimental studies whereby,

when an individual is thinking about taking on a new risk, he evaluates it to some extent in

isolation, separately from his other risks.

Intuition and prior research suggest that, in an economy with prospect theory investors

who engage in narrow framing, the price of an asset will depend in part on three asset char-

acteristics: the volatility of the asset’s returns; the skewness of the asset’s returns; and the

average prior gain or loss since purchase across investors holding the asset, a quantity known

as the asset’s “capital gain overhang” (Grinblatt and Han, 2005). All else equal, investors

require a higher average return on more volatile assets: since these investors evaluate each

asset to some extent in isolation, and since they are loss averse, they find assets with volatile
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returns unappealing. All else equal, investors require a lower average return on assets with

more positively-skewed returns: since these investors focus on an asset’s own distribution of

potential gains and losses, and since they overweight the tails of this distribution, they find

assets with positively-skewed returns attractive. Finally, the utility function’s concavity over

gains and convexity over losses mean that, all else equal, investors require a higher average

return on assets where they have larger prior gains.1

The above intuitions indicate that, to understand prospect theory’s implications for asset

prices, we need a model that incorporates all the elements of prospect theory and accounts

for investors’ prior gains and losses in each risky asset. No existing model of asset prices

fulfills both conditions; we therefore build a new one that does. In our model, investor

preferences have two components. The first is traditional mean-variance preferences; taken

alone, they lead to the CAPM. The second embeds prospect theory and narrow framing.

While our model has a simple structure, solving for equilibrium prices presents a chal-

lenge. In the model, all investors are identical. In an Expected Utility framework, this would

imply that, in equilibrium, all investors hold identical portfolios. Strikingly, such an equi-

librium does not exist once we introduce prospect theory preferences. To break this logjam,

we construct an alternative equilibrium, one in which investors hold different portfolios that

correspond to non-unique optima of their objective function. With this equilibrium structure

in hand, we are able to generate quantitative predictions about the expected return on any

risky asset.

In our main application, we examine whether the model can explain 23 prominent stock

market anomalies. To see if our model can explain a particular anomaly – the size anomaly,

say – we compute what it predicts for the average return of the typical small-cap stock. As

explained above, this average return will depend on the return volatility, return skewness,

and capital gain overhang of the typical small-cap stock. We estimate these quantities from

historical U.S. data, plug them into our model, and record the model’s prediction for the

average return of a typical small-cap stock. We repeat this process for the typical stock in

each of the ten market capitalization deciles. The results reveal how much, if any, of the size

anomaly our model can explain. We proceed in the same way for all 23 anomalies.

Our empirical estimates of the volatility, skewness, and gain overhang of the typical

stock in each anomaly decile are interesting in their own right. We find that the three

characteristics are strongly correlated across anomaly deciles: if the typical stock in decile

1The three intuitions described here are outlined in Barberis and Huang (2001) and Li and Yang (2013);
in Section III.G of Barberis and Huang (2008a); and in Grinblatt and Han (2005) and Li and Yang (2013),
respectively.
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1 for some anomaly has more volatile returns than the typical stock in decile 10 for that

anomaly, then it almost always also has more positively-skewed returns and a more negative

gain overhang. For example, in the case of the size anomaly, the typical small-cap stock not

only has more volatile returns than the typical large-cap stock, but also has more skewed

returns and a more negative gain overhang.

This last observation points to the necessity of the quantitative approach we take in this

paper. Consider again the size anomaly. Empirically, the returns of the typical small-cap

stock are much more volatile than those of the typical large-cap stock. All else equal, this

leads prospect theory investors to charge a higher average return on small-cap stocks than on

large-cap stocks, thereby helping to explain the size anomaly. However, the typical small-cap

stock also has more positively-skewed returns, and a more negative gain overhang, than the

typical large-cap stock. All else equal, these two factors lead prospect theory investors to

charge a lower average return on small-cap stocks, thereby hampering the model’s ability

to explain the size anomaly. Since one economic force goes in one direction and the other

forces go in the opposite direction, the only way to determine prospect theory’s prediction

for the size anomaly is to develop a quantitative model that combines all three forces. This

has not been done before; it is what we do in this paper.

We find that our model can help explain 14 of the 23 anomalies we consider, in the sense

that it predicts a substantially higher CAPM alpha for the extreme anomaly decile portfolio

that actually has a higher alpha, empirically. These are the momentum, failure probability,

idiosyncratic volatility, gross profitability, expected idiosyncratic skewness, return on assets,

capital gain overhang, maximum daily return, O-Score, external finance, composite equity

issuance, net stock issuance, post-earnings announcement drift, and difference of opinion

anomalies. The model explains these anomalies in the same way. For each of these 14

anomalies, the typical stock in the extreme decile with the lower average return is more

positively skewed, more volatile, and has a lower gain overhang than the typical stock in

the other extreme decile. The greater skewness and lower gain overhang of the former

stock leads investors to charge a lower average return on it, while its higher volatility leads

investors to charge a higher average return on it. Quantitatively, the first effect dominates.

As a consequence, our model’s prediction about the anomaly is in line with the empirical

facts. To evaluate the model’s performance more formally, we compare its average absolute

pricing error across the 23 anomalies to that of several widely-used factor models. Our model

achieves similar performance to the Carhart four-factor model – a striking result, given that

the Carhart model was designed in full knowledge of several major anomalies, while ours was

not. We also find that our model can explain time variation in anomaly alphas – variation

that it attributes to changes in stocks’ volatility, skewness, and gain overhang over time.
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For some anomalies, most notably the size and value anomalies, our model performs

poorly. For example, value stocks are more positively skewed and have a more negative gain

overhang than growth stocks. All else equal, this leads prospect theory investors to charge

a lower average return on value stocks. However, value stocks are also more volatile, which,

all else equal, leads investors to charge a higher average return on them. Quantitatively, the

first effect dominates. The model therefore predicts a lower average return on value stocks,

contrary to the empirical facts. We are able to shed light on why the model sometimes

performs poorly. For most of the anomalies that the model fails to explain, a large part of

the anomaly return comes around earnings announcement dates. This suggests that these

anomalies are driven not by the risk attitudes embedded in prospect theory, but rather

by incorrect beliefs about firms’ future outcomes – incorrect beliefs that are corrected by

earnings announcements.

Our analysis builds on intuitions laid out in earlier papers. The idea that, due to loss

aversion, more volatile assets should, all else equal, have a higher average return, is discussed

by Barberis and Huang (2001) and Li and Yang (2013); the idea that, due to diminishing

sensitivity, an asset’s gain overhang should be positively related to its average return, is

developed by Grinblatt and Han (2005) and Li and Yang (2013); and the idea that, due to

probability weighting, an asset’s return skewness should be negatively related to its average

return, is studied by Barberis and Huang (2008a) and Baele et al. (2019), among others.

Despite these advances, the basic questions listed in our opening paragraph remain unan-

swered. The reason is that the three above intuitions have opposite effects on average returns.

As such, to determine what prospect theory predicts for the size anomaly, the value anomaly,

or indeed any anomaly, we have to combine the three intuitions in a single model, something

that has never been done before. To do this, we need a model that incorporates all the

elements of prospect theory and takes account of investors’ prior gain or loss in each asset.

Most of the earlier models incorporate only a subset of the elements of prospect theory: only

loss aversion (Barberis and Huang, 2001), only loss aversion and diminishing sensitivity (Li

and Yang, 2013), or only loss aversion and probability weighting (Baele et al., 2019). Mean-

while, the prior models of the cross-section that do incorporate all the elements of prospect

theory, those of Barberis and Huang (2008a), Ingersoll (2014), and Barberis, Mukherjee, and

Wang (2016), are all one-period models; as such, they cannot account for investors’ prior

gains and losses. To answer the questions we laid out at the start, a new model is needed,

and we develop one in this paper. The model is not an “easy extension” of prior models,

but rather requires an entirely new equilibrium structure and solution method. The effort

to develop these pays off: our model can explain many more of the 23 anomalies than can

models that omit elements of prospect theory or that ignore investors’ prior gains and losses.
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In summary, this paper makes three contributions. First, by way of a new model of

the cross-section, it answers the long-standing question “What does prospect theory predict

for stock market anomalies?” Second, by helping to explain a majority of 23 prominent

anomalies, it offers a psychological account of multiple stock-level puzzles. Finally, to our

knowledge, the paper marks the first time a “behavioral” model of either beliefs or preferences

has been used to make quantitative predictions about a wide range of anomalies.

In Section 2, we review prospect theory and narrow framing. In Section 3, we present

a model that incorporates these concepts and discuss the structure of the equilibrium. In

Section 4, we introduce the 23 anomalies that are the focus of our study and compute the

empirical characteristics that serve as inputs to the model. In Section 5, we present the

model’s predictions about stock market anomalies. Section 6 discusses some other aspects

of our analysis, while Section 7 concludes. Additional details are in the Internet Appendix.

2 Prospect Theory and Narrow Framing

Our goal is to study asset prices in an economy where investors have prospect theory prefer-

ences and engage in narrow framing. In this section, we review prospect theory and narrow

framing in turn. Readers already familiar with these concepts may prefer to go directly to

Section 3.

2.1 Prospect theory

The original version of prospect theory is described in Kahneman and Tversky (1979). This

version of the theory has some limitations: it can be applied to gambles with at most two

nonzero outcomes, and it predicts that people will sometimes choose dominated gambles.

Tversky and Kahneman (1992) propose a modified version of the theory known as cumulative

prospect theory that overcomes these limitations. This is the version we adopt in this paper.2

To see how cumulative prospect theory works, consider the gamble

(x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn), (1)

which should be read as “gain or lose x−m with probability p−m, x−m+1 with probability

p−m+1, and so on,” where xi < xj for i < j and where x0 = 0, so that x−m through x−1 are

2While our analysis is based on cumulative prospect theory, we often abbreviate this as “prospect theory.”
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losses and x1 through xn are gains, and where
∑n

i=−m pi = 1. For example, a 50:50 bet to

win $110 or lose $100 is written as (−$100, 1
2
; $110, 1

2
). In the Expected Utility framework,

an individual with utility function U(·) evaluates the gamble in (1) by computing

n∑

i=−m

piU(W + xi), (2)

where W is his current wealth. A cumulative prospect theory individual, by contrast, assigns

the gamble the value
n∑

i=−m

πiv(xi), (3)

where

πi =

⎧
⎨
⎩

w(pi + . . .+ pn)− w(pi+1 + . . .+ pn)

w(p−m + . . .+ pi)− w(p−m + . . .+ pi−1)
for

0 ≤ i ≤ n

−m ≤ i < 0
, (4)

and where v(·) and w(·) are known as the value function and probability weighting function,

respectively.3 Tversky and Kahneman (1992) propose the functional forms

v(x) =

⎧
⎨
⎩

xα

−λ(−x)α
for

x ≥ 0

x < 0
(5)

and

w(P ) =
P δ

(P δ + (1− P )δ)1/δ
, (6)

where α, δ ∈ (0, 1) and λ > 1. The left panel in Figure 1 plots the value function in (5) for

α = 0.5 and λ = 2.5. The right panel in the figure plots the weighting function w(P ) in (6)

for δ = 0.4 (the dashed line), for δ = 0.65 (the solid line), and for δ = 1, which corresponds

to no probability weighting (the dotted line). Note that v(0) = 0, w(0) = 0, and w(1) = 1.

There are four differences between (2) and (3). First, the carriers of value in prospect

theory are gains and losses, not final wealth levels: the argument of v(·) in (3) is xi, not

W + xi. Second, while U(·) is typically differentiable everywhere, the value function v(·) is
kinked at the origin, as shown in Figure 1, so that the individual is more sensitive to losses

– even small losses – than to gains of the same magnitude. This element of prospect theory

is known as loss aversion and is designed to capture the widespread aversion to bets such as

(−$100,
1

2
; $110,

1

2
). (7)

The severity of the kink is determined by the parameter λ; a higher value of λ implies a

3When i = n or i = −m, equation (4) reduces to πn = w(pn) and π−m = w(p−m), respectively.
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greater sensitivity to losses.

Third, while U(·) in (2) is typically concave everywhere, v(·) in (3) is concave only over

gains; over losses, it is convex. This pattern, which can be seen in Figure 1, captures the

experimental finding that people tend to be risk averse over moderate-probability gains –

they prefer a certain gain of $500 to ($1000, 1
2
) – but risk-seeking over moderate-probability

losses, in that they prefer (−$1000, 1
2
) to a certain loss of $500.4 The degree of concavity

over gains and convexity over losses are governed by the parameter α; a lower value of α

means greater concavity over gains and greater convexity over losses.

Finally, under cumulative prospect theory, the individual does not use objective prob-

abilities when evaluating a gamble, but rather, transformed probabilities obtained from

objective probabilities via the weighting function w(·). The main consequence of the proba-

bility weighting in (4) and (6) is that the individual overweights the tails of any distribution

he faces. In equations (3)-(4), the most extreme outcomes, x−m and xn, are assigned the

weights w(p−m) and w(pn), respectively. For the functional form in (6) and for δ ∈ (0, 1),

w(P ) > P for low, positive P ; the right panel of Figure 1 illustrates this for δ = 0.4 and

δ = 0.65. If p−m and pn are small, then, we have w(p−m) > p−m and w(pn) > pn, so that the

most extreme outcomes – the outcomes in the tails – are overweighted.

The overweighting of tails in (4) and (6) is designed to capture the simultaneous demand

many people have for both lotteries and insurance. For example, people typically prefer

($5000, 0.001) to a certain $5, but also prefer a certain loss of $5 to (−$5000, 0.001). By

overweighting the tail probability of 0.001 sufficiently, cumulative prospect theory can cap-

ture both of these choices. The degree to which the individual overweights tails is governed

by the parameter δ; a lower value of δ implies more overweighting of tails.5

2.2 Narrow framing

Traditional models, in which utility functions are defined over wealth or consumption, make

a clear prediction as to how an individual evaluates a new gamble he is offered: he merges the

new gamble with other risks he is already facing to determine its effect on the distribution of

4We abbreviate (x, p; 0, q) as (x, p).
5Prospect theory has impressive predictive power in experimental settings: Fudenberg et al. (2019)

find that, at least for simple gambles, it attains almost the maximum possible level of predictive ability.
One aspect of prospect theory – the “rank-dependent” formulation of probability weighting in (4) – has
not found empirical support (Bernheim and Sprenger, 2019). Fortunately, our results do not rely on rank
dependence: we have repeated our analysis with non-rank-dependent probability weighting and obtain very
similar findings.

7



his future wealth or consumption, and then checks if the new distribution is an improvement.

Research on decision-making under risk has uncovered many instances in which people do

not appear to evaluate gambles in this way: instead of merging a new gamble with other risks

they are already facing and checking if the combination is attractive, they often evaluate the

new gamble in isolation, separately from their other risks. This is known as “narrow framing.”

Tversky and Kahneman (1981) present early laboratory evidence of narrow framing. More

recently, Barberis, Huang, and Thaler (2006) argue that the commonly-observed rejection

of the gamble in (7) is evidence not only of loss aversion, but of narrow framing as well.

Prospect theory and narrow framing are both widely seen as describing people’s intuitive

mode of thinking. As such, models with prospect theory investors often also incorporate

narrow framing. We follow this practice here.

3 Model and Equilibrium Structure

In the Introduction, we noted that, in an economy with prospect theory investors who engage

in narrow framing, three asset characteristics are particularly important for the pricing of

an asset: the volatility of the asset’s returns; the skewness of the asset’s returns; and the

average paper gain or loss in investors’ holdings of the asset. We now explain in more detail

why these three characteristics are important.

Prospect theory investors who engage in narrow framing evaluate a risky asset by thinking

about the potential gains and losses in their holdings of the asset, and then computing the

prospect theory value of this distribution of gains and losses. Since they are loss averse, they

dislike assets with volatile returns; all else equal, they require a higher average return on

these assets. Moreover, since, according to probability weighting, they overweight the tails of

the distribution they are thinking about, they like assets with positively-skewed returns; all

else equal, they require a lower average return on such assets. Finally, if an asset is trading

at a gain for the typical investor, this investor finds himself in the concave region to the

right of the kink in the value function in Figure 1. Since he is risk averse at this point, he

demands a high average return to hold the asset. If, on the other hand, the typical investor

has a paper loss in the asset, then he finds himself in the convex region to the left of the

kink, where he is risk-seeking. As a result, he requires a low average return for holding the

asset.

The above intuitions make it clear that, to understand prospect theory’s implications
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for asset prices, we need a model that incorporates all the elements of prospect theory and

accounts for investors’ prior gain or loss in each risky asset. No existing model of asset

prices fulfills both conditions. We now present a new model that does. Solving a model of

this kind presents significant challenges; to keep the model tractable, we necessarily make

some simplifying assumptions. Nonetheless, the model captures the three essential intuitions

described above in a robust way.

3.1 Model setup

We consider a model with three dates, t = −1, 0, and 1; our focus is on investor decision-

making at time 0. There is a risk-free asset with gross per-period return Rf . There are

also N risky assets. The gross per-period return of risky asset i is R̃i, and the return vector

R̃ = (R̃1, . . . , R̃N )
′ has a cumulative distribution function P (R̃) that we specify below. The

vector of expected returns on the risky assets is R = (R1, . . . , RN)
′ and the covariance matrix

of returns is Σ = {σij}.

The economy contains a large number of investors who are identical in their preferences;

in their wealth at time −1, W−1; and in their wealth at time 0, W0. The fraction of time 0

wealth that an investor allocates to risky asset i is Θi, so that wealth at time 1 is

W̃1 = W0((1− 1′Θ)Rf +Θ′R̃), (8)

where Θ = (Θ1, . . . ,ΘN)
′. To determine Θ, at date 0, each investor solves:

max
Θ1,...,ΘN

E(W̃1)−
γ

2
Var(W̃1) + b0

N∑

i=1

V (G̃i)

= max
Θ1,...,ΘN

W0((1− 1′Θ)Rf +Θ′R)− γ

2
W 2

0Θ
′ΣΘ+ b0

N∑

i=1

V (G̃i), (9)

where

G̃i = W0Θi(R̃i − Rf ) +W−1Θi,−1gi. (10)

The first two terms in (9) are the traditional mean-variance preferences; γ measures

aversion to portfolio risk. The third term in (9) is new, and captures prospect theory

and narrow framing. It is the sum of N components, where the i’th component, V (G̃i),

corresponds to asset i. Specifically, G̃i is the potential gain or loss on asset i, and V (G̃i) is

the cumulative prospect theory value of this gain or loss, incorporating all of loss aversion,

diminishing sensitivity, and probability weighting. The parameter b0 controls the importance
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of the prospect theory term relative to the mean-variance terms.

The gain or loss on asset i, G̃i, is defined in (10). It is the sum of two terms. The first

term, W0Θi(R̃i −Rf ), is the potential future gain or loss on asset i between time 0 and time

1: specifically, it is the value of the investor’s holdings of asset i at time 0 multiplied by the

return on the asset in excess of the risk-free rate. For example, if the investor’s holdings of

asset 1 are worth $100 at time 0, and the net return on asset 1 and on the risk-free asset

between time 0 and time 1 are 20% and 2% respectively, then the realized value of this first

term will be $120 − $102 = $18. We view the risk-free rate as a psychologically plausible

benchmark: the investor may think of the outcome of his investment in asset i as a gain only

if this outcome is better than what he would have earned by investing in the risk-free asset.

Our framework can also accommodate other choices of benchmark.

The second term in (10), W−1Θi,−1gi, is the gain or loss the investor experienced in his

holdings of asset i prior to arriving at time 0. Here, W−1 is the investor’s wealth at time

−1, Θi,−1 is the fraction of wealth allocated to asset i at time −1, and gi is the capital gain

on asset i between time −1 and time 0: if the investor experienced a capital gain of 30%

on asset i between t = −1 and t = 0, then gi = 0.3, while if he experienced a capital loss

of 30%, then gi = −0.3.6 Equation (10) indicates that, at time 0, the investor merges the

potential future gain or loss on asset i with his prior gain or loss on the asset and computes

the prospect theory value of this overall gain or loss.

To keep the model tractable, we take the second term on the right-hand side of (10) to

be identical across investors. Each investor in the model has the same prior gain or loss gi

in asset i, one that we will empirically estimate as the average gain or loss, since purchase,

across all holders of the asset. In addition, for each investor, we will set Θi,−1 to a neutral

value, namely asset i’s weight in the market portfolio. As such, the W−1Θi,−1gi term can be

thought of as exogenous: Θi,−1 is not a control variable that the investor chooses; the only

control variable is Θi, the investor’s allocation to asset i at time 0, which appears in the first

term in (10). We have studied the impact of allowing for heterogeneity across investors in

their gain or loss gi, and of endogenizing the initial allocation Θi,−1; as we discuss in Section

6, our conclusions are robust to these modifications. Finally, we use the approximation

W−1 ≈ W0.
7

6There are small differences in how the past and the future gains and losses are defined: for simplicity,
the past gain or loss does not account for dividends or correct for the risk-free rate. Adjusting for these has
a very minor impact on our results.

7More accurate approximations, such as W−1 ≈ W0/1.04, where 4% is a measure of the historical average
return on investor wealth, have a very minor impact on our quantitative predictions. We therefore stick with
the simpler approximation W−1 ≈ W0.
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We emphasize three aspects of the gain or loss in equation (10). First, we assume narrow,

rather than broad, framing: equations (9) and (10) show that the investor derives utility

from asset-level gains and losses, not from portfolio gains and losses. As noted in Section 2,

there is both psychological and experimental support for this assumption.

Second, when making his decision at time 0, the investor does not segregate the prior

gain or loss from the future gain or loss, deriving utility separately from each one; rather,

he merges the prior and future gains and losses and derives utility from the integrated gain

or loss. This is in line with mounting evidence from both experiments and betting markets

that, when an individual has an ongoing investment in an asset, he integrates the potential

future gain or loss in the asset with his past gain or loss (Thaler and Johnson, 1990; Imas,

2016; Andrikogiannopoulou and Papakonstantinou, 2020).

Finally, we assume that the investor derives utility from paper gains and losses rather

than from realized gains and losses: if he sells an asset at a gain at time 0, he does not derive

utility at time 0 from the realized gain, but only at time 1 from the accumulated gain or

loss.

To understand the impact of these assumptions, we have also analyzed a model with

broad rather than narrow framing; a model with utility from segregated rather than inte-

grated gains; and a model with utility from realized rather than paper gains. We discuss

our findings in Section 6.1. In brief, we find that our narrow framing and integrated gain

assumptions significantly improve the model’s ability to explain stock market anomalies – a

result that underscores the psychological realism of these assumptions. A model with utility

from realized gains, while less tractable, delivers predictions similar to those of the model

laid out above.

The quantity V (G̃i) is the cumulative prospect theory value of the gain or loss G̃i. For

Θi > 0, we can write V (G̃i) as

−λW α
0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Rf − Ri)−Θi,−1gi)

αdw(P (Ri))

−W α
0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Ri − Rf) + Θi,−1gi)
αdw(1− P (Ri)), (11)

where P (Ri) is the marginal CDF of asset i’s returns and where dw(P (Ri)) and dw(1−P (Ri))

are given in full in Section A of the Internet Appendix. The expression in (11) uses a standard

implementation of cumulative prospect theory for gambles with continuous distributions.

The top row corresponds to losses, and is therefore multiplied by loss aversion λ. The

bottom row corresponds to gains. We allow investors to sell short. In Section B of the
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Internet Appendix, we show how the expression in (11) is amended in the case of a negative

allocation to asset i, Θi < 0.

To complete the description of the decision problem, we need to specify the probability

distribution P (R̃) for asset returns. Since skewness plays an important role in our analysis,

we need a distribution that can capture it as accurately as possible. One distribution that

is increasingly seen as a superior way of modeling skewness and fat tails in asset returns is

the “generalized hyperbolic (GH) skewed t” distribution, and we adopt it here. The vector

of asset returns R̃ = (R̃1, . . . , R̃N )
′ has an N -dimensional GH skewed t distribution; we

present the density function for this distribution in Section C of the Internet Appendix. For

our computations, we need only the marginal distribution of an asset’s return. This is a

one-dimensional GH skewed t distribution; for asset i, its density function is8

p(Ri) =
21−

ν+1

2

Γ(ν
2
)(πνSi)

1

2

.
K ν+1

2

(
√
(ν + (Ri − µi)2/Si)ζ2i /Si) exp((Ri − µi)ζi/Si)

(√
(ν + (Ri − µi)2/Si)ζ2i /Si

)− ν+1

2

(1 + (Ri − µi)2ν−1/Si)
ν+1

2

,

for ζ �= 0

p(Ri) =
Γ(ν+1

2
)

Γ(ν
2
)(πνSi)

1

2

.(1 + (Ri − µi)
2ν−1/Si)

− ν+1

2 , for ζ = 0, (12)

where Γ(·) is the Gamma function and Kl is the modified Bessel function of the second kind

with order l.9

The above distribution has four parameters: µi, Si, ζi, and ν. Here, µi, the location

parameter, helps to determine the mean of the distribution; Si, the dispersion parameter,

controls the dispersion in returns; ζi, the asymmetry parameter, governs the skewness of

returns; and ν, a degree of freedom scalar, affects the heaviness of the tails of the distribution.

The mean, variance, and skewness of the distribution are

E(R̃i) = Ri = µi +
ν

ν − 2
ζi (13)

Var(R̃i) =
ν

v − 2
Si +

2ν2

(ν − 2)2(ν − 4)
ζ2i (14)

8We use p(·) and P (·) to denote the probability density function and the cumulative distribution function,
respectively.

9See Aas and Haff (2006) and Hu and Kercheval (2010) for more discussion of the GH skewed t distri-
bution. This distribution has one “heavy” tail and one “semi-heavy” tail, making it particularly useful for
capturing skewness and fat tails in asset returns. Simpler distributions such as the log-normal and skew-
normal are not suitable for our purposes. The log-normal distribution has two parameters; setting these to
match an asset’s volatility and skewness also fixes the asset’s mean, preventing it from being determined in
equilibrium by market clearing. The skew-normal distribution cannot accommodate skewness levels higher
than 0.995; this makes it a poor fit for our application.
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Skew(R̃i) =
2ζi

√
ν(ν − 4)

√
Si(2νζ2i /Si + (ν − 2)(ν − 4))

3

2

[
3(ν − 2) +

8νζ2i
Si(ν − 6)

]
. (15)

In Sections 4 and 5, using equations (14) and (15), we will set Si, ζi, and ν to match the

empirical volatility and skewness of asset i’s returns. We will then search for a value of µi

so that the market for asset i clears. The asset’s expected return – the quantity we want to

determine – is then given by (13).10

The objective function in (9) combines a traditional component, namely mean-variance

preferences, with a non-traditional one that incorporates prospect theory. As such, it is

consistent with the approach advocated by Koszegi and Rabin (2006) among others, namely

that models of gain-loss utility should retain a traditional utility term. One interpretation of

this two-part utility function draws on the influential “two-system” framework in psychology

(Kahneman, 2013). Under this view, the prospect theory term in (9) captures a person’s

“fast,” intuitive sense of how to invest, while the mean-variance term corresponds to an

investment strategy based on “slow,” effortful reasoning. The individual’s final course of

action is a combination of these intuitive and reasoned judgments: he anchors on his initial

intuitive impression, which then leaves an imprint on his final decision.

Why do we take the traditional term in (9) to be mean-variance preferences, rather than

some other Expected Utility specification? Our main application in this paper is to see if

prospect theory can explain stock market anomalies, in other words, empirical deviations

from the CAPM. As such, we want the traditional part of our preference specification to

deliver CAPM pricing; this will allow us to cleanly identify the deviations from the CAPM

that prospect theory generates. The simplest preferences that lead to the CAPM are mean-

variance preferences.11

10This procedure is analogous to that for the CAPM. In the case of the CAPM, we estimate a second
moment – an asset’s beta – from the data and use it to determine the asset’s expected return. Here, we will
estimate second and third moments – the asset’s beta, volatility, and skewness – and use them all to predict
the expected return.

11This explains why we do not include a preference for portfolio skewness in the Expected Utility compo-
nent of the objective function. If we did, it would be unclear whether deviations from the CAPM predicted
by the model are due to the Expected Utility term – specifically, to coskewness – or to the prospect theory
term. Other papers have examined whether coskewness can shed light on stock market anomalies; see Harvey
and Siddique (2000). Here, we examine whether prospect theory can do so.
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3.2 Equilibrium structure

In this section, we discuss the form of the equilibrium in our economy. The equilibrium

structure that is typically used to analyze Expected Utility models does not apply for the

model in (9). This is a roadblock to understanding prospect theory’s implications for the

cross-section, and one of our contributions is to surmount it by way of a new equilibrium

structure. Below, we describe three types of equilibrium and explain why we study the one

that we do.

Full rationality with homogeneous holdings. At time 0, the investors in our econ-

omy are identical in their preferences, their wealth, and their prior gain or loss in each risky

asset. It is therefore natural to think that, in equilibrium, at time 0, they would all choose

the same portfolio holdings {Θi}Ni=1, in other words, that they would each hold the market

supply of each risky asset. Formally, such an equilibrium would consist of a location vector

µ = (µ1, . . . , µN)
′ such that, for this µ, the objective function in (9) has a unique global

maximum Θ∗ = (Θ∗
1, . . . ,Θ

∗
N)

′ with Θ∗
i = ΘM,i for all i, where ΘM,i is the market value of

asset i divided by the total market value of all traded assets. This equilibrium structure is

the one used in Expected Utility models with identical investors.

Remarkably, however, for the wide range of parameter values we have examined, this

type of equilibrium does not exist for the model in Section 3.1. Later in the paper, we

illustrate this non-existence with an example. Here, we explain it in general terms. Suppose

that, for some value of µ1, the location parameter for asset 1, the objective function in

(9) is maximized at Θ1 = Θ∗
1, where Θ∗

1 exceeds the asset’s market supply ΘM,1. This

suggests that, to clear the market, we simply need to lower the value of µ1, as this will lower

the asset’s expected return. However, it turns out that, as we do so, the value of Θ1 for

which the objective function attains its maximum can jump discontinuously from a Θ∗
1 that

exceeds ΘM,1 to a Θ∗
1 that lies below it. As such, there can be no value of µ1 for which the

objective function is maximized at a Θ∗
1 that equals ΘM,1. An equilibrium where investors

have identical holdings for all assets therefore does not exist.12

Full rationality with heterogeneous holdings. Given that the homogeneous-holdings

equilibrium does not exist, what kind of equilibrium can we consider instead? One alterna-

tive structure involves multiple global maxima. In other words, it may be that there exists

12Why does the value of Θ∗

1
at which (9) is maximized jump discontinuously as we lower µ1? When b0 = 0,

the expression in (9), viewed as a function of Θ1, depends only on Θ1 and Θ2
1. It therefore has a single local

maximum that is also its global maximum. When b0 > 0, (9) becomes a function of Θ1, Θ
2

1
, and additional

powers of Θ1, including Θα
1 , where α ∈ (0, 1). As such, it can have multiple local maxima. As we lower µ1,

there can come a point where the global maximum jumps from one local maximum to another; this makes
Θ∗

1
a discontinuous function of µ1.
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a location vector µ = (µ1, . . . , µN)
′ such that, for this µ, the objective function in (9) has

multiple global maxima, and that by allocating the appropriate number of investors to each

maximum, we can clear the market in each asset.

The difficulty with this equilibrium structure is that it is computationally infeasible to

determine if it exists. To see why, suppose that we consider 100 candidate values for each

element of the location vector µ; this implies 100N possible location vectors µ. Since we are

thinking of the risky assets as individual stocks, N is a large number, on the order of 1000.

For each of the 100N location vectors, we need to solve the N -dimensional optimization

problem in (9) and determine if there are multiple global maxima. We then need to see

whether, by allocating investors to the various maxima, we can clear the market. This

procedure is challenging even for N = 2 risky assets; for N = 1000, the more realistic value

we use below, it is completely infeasible.

Bounded rationality with heterogeneous holdings. To overcome the difficulties

described above, we introduce a mild bounded-rationality assumption, one that makes it

feasible to find a heterogeneous-holdings equilibrium. Specifically, we assume that, when

trying to determine the allocation Θi to asset i that maximizes the objective function in (9),

an investor assumes that his holdings of the other N−1 risky assets equal the market supply

of those assets – in other words, that Θj = ΘM,j for all j �= i. This will not be exactly true

– investors’ actual portfolios will be less diversified than the market portfolio – but, as we

explain below, this discrepancy is likely to have a negligible impact on our results. We think

of this bounded-rationality assumption not just as a computational technique for solving the

problem in (9), but also as a psychological assumption as to how an individual might in

reality go about solving this problem.

We define a bounded-rationality equilibrium with heterogeneous holdings as consisting

of a location vector µ such that, for this µ, and under the bounded-rationality assumption,

the solution to the problem in (9) involves multiple global maxima, and by allocating each

investor to one of the maxima, we can clear the market. More precisely, for each risky asset

i in turn, we take the objective function in (9), view it as a function of Θi, and then – this

is where the bounded-rationality assumption comes in – set Θj = ΘM,j for all j �= i. Up to

a linear transformation, the resulting function can be written:

Θi(µi +
νζi

ν − 2
− Rf )−

γ̂

2
(Θ2

iσ
2
i + 2Θi

∑

j �=i

ΘM,jσij)

−λb̂0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Rf − Ri)−Θi,−1gi)

αdw(P (Ri))
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−b̂0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Ri − Rf) + Θi,−1gi)
αdw(1− P (Ri)), (16)

where

γ̂ = γW0 (17)

b̂0 = b0W
α−1
0 . (18)

A bounded-rationality equilibrium with heterogeneous holdings consists of a location vector

(µ1, . . . , µN)
′ such that, for each i, the function in (16) has either a unique global maximum

at Θi = ΘM,i, or has multiple global maxima, one of which lies below ΘM,i and one of which

lies above it, thereby allowing us to clear the market in asset i by allocating some investors

to the lower optimum and others to the upper optimum.

The bounded-rationality assumption greatly simplifies the investors’ optimization prob-

lem: by turning the multivariate function in (9) into the univariate function in (16), it

converts the search for the optimal allocation Θi to asset i into a one-dimensional problem,

one where investors trade off a larger allocation to asset i and lower allocation to the risk-free

asset against the opposite strategy. Moreover, because the problem is now one-dimensional,

it is easy to determine whether the function in (16) has multiple global maxima or a unique

global maximum.13

We find that a bounded-rationality equilibrium with heterogeneous holdings exists for a

wide range of parameter values, and it is the one we focus on. We note two things about

it. First, in this equilibrium, investors need not have heterogeneous holdings for all the

risky assets. When we implement the equilibrium, we find that, for many risky assets,

investors have identical holdings. Second, we find that, for any asset i where investors

have heterogeneous holdings, the function in (16) has just two global maxima, Θ∗
i and Θ∗∗

i ,

both of which are non-negative. These maxima straddle the market supply ΘM,i, so that

Θ∗
i < ΘM,i < Θ∗∗

i , and this allows us to clear the market in the asset by assigning some

investors to the Θ∗
i allocation and the rest to the Θ∗∗

i allocation. We also find that Θ∗
i is

always much closer to ΘM,i than is Θ∗∗
i . As such, to clear the market, we assign the vast

majority of investors to the Θ∗
i allocation and the remaining few to the Θ∗∗

i allocation.

The two global maxima arise because investor preferences embed elements of risk-seeking

– as described in Section 2, risk-seeking over moderate-probability losses and over low-

probability gains; if investors were instead uniformly risk averse, the objective function

13If a symmetric equilibrium were to exist under full rationality, then this equilibrium would coincide with
the bounded-rationality equilibrium.
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would be concave and would have only one global maximum. We discuss this in more detail

in Section 4.2 by way of a numerical example. For now, we note that there is a simple

intuition for the two optima, Θ∗ and Θ∗∗. The heterogeneous holdings typically arise for

stocks with a positive gain overhang which, in part because of this, have a high expected

return. The lower optimum Θ∗ reflects investors’ desire to lock in their prior gains in these

stocks by selling some of their holdings; the upper optimum Θ∗∗ reflects investors’ desire

to benefit from the high expected return by increasing their allocation to these stocks. In

equilibrium, the two strategies are equally attractive.

To understand the portfolios that the investors in our economy hold, suppose that there

are N = 1000 risky assets, and that for 500 of them, all investors have identical holdings – for

these assets, the function in (16) has a unique global maximum – while for the remaining 500,

the function in (16) has two global maxima, so that investors have heterogeneous holdings;

this equal split between assets with homogeneous holdings and assets with heterogeneous

holdings approximates what we find when we implement the equilibrium. All investors then

hold the first 500 assets in proportion to their market weights. For the vast majority of the

remaining 500 assets, the fraction of his portfolio that a given investor allocates to each one

is lower than its market weight – this is the Θ∗
i optimum – but for a small handful of these

assets, he holds a large position given by the Θ∗∗
i optimum. Overall, then, each investor

combines a diversified portfolio of many assets with a small number of concentrated holdings

– a portfolio structure that mirrors that of many real-world investors.

An investor’s assumption, when solving for his optimal allocation to asset i, that his

holdings of the remaining assets equal their market weights, is not exactly correct: by the

nature of the heterogeneous-holdings equilibrium, he may have an undiversified position in

a small number of these other risky assets. However, this discrepancy is likely to have a

negligible impact on the model’s predictions: we find that, if, when solving for his allocation

to asset i, the investor instead makes the correct assumption that he has a few undiversified

holdings, the quantitative predictions for expected returns are very similar to those of the

simpler bounded-rationality equilibrium defined through equations (16)-(18).14

14We have also studied the following iterative procedure. When solving for his allocation Θi to asset i, the
investor starts with an assumption A1 about his remaining holdings – specifically, that they equal market
weights. He then uses the resulting optimal portfolio P1 as a new assumption A2 about the structure of his
portfolio: he again solves for his allocation Θi, this time under assumption A2 about his remaining holdings.
He then takes the new optimal portfolio P2 as a new assumption about his remaining holdings, and so on.
This iterative procedure converges to a “self-consistent” heterogeneous-holdings equilibrium, one where the
assumption the investor makes about his remaining holdings when solving for his allocation to a particular
asset is consistent with the portfolio he actually ends up choosing to hold. The expected asset returns in
this self-consistent equilibrium are quantitatively very similar to those in the simpler bounded-rationality
equilibrium in equations (16)-(18).
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To make the model easier to implement, we rescale it. Specifically, let ΘM,R =
∑N

i=1ΘM,i

be the market value of all risky assets relative to the market value of all assets, and define

θi = Θi/ΘM,R

θM,i = ΘM,i/ΘM,R

θi,−1 = Θi,−1/ΘM,R. (19)

From now on, we think of investors as choosing θi rather than Θi. In Section D of the

Internet Appendix, we show that, when reformulated with θi as the choice variable, the

investor’s decision problem has exactly the same form as in (16), subject only to a rescaling

of γ̂ and b̂0. The rescaled problem is simpler to implement because it is easier to compute an

empirical counterpart for θM,i than for ΘM,i and because the rescaling allows us to simplify

the variance term in the first row of (16) by introducing asset i’s beta, denoted βi.
15

For completeness, we restate the definition of equilibrium in terms of θi. The equations

below are simply a rescaled version of (16)-(18). A bounded-rationality equilibrium consists

of a location vector µ = (µ1, . . . , µN)
′ such that, for each i, the function

θi(µi +
νζi

ν − 2
− Rf )−

γ̂

2
(θ2i σ

2
i + 2θi(βiσ

2
M − θM,iσ

2
i ))

−λb̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Rf − Ri)− θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Ri − Rf) + θi,−1gi)

αdw(1− P (Ri)), (20)

where

γ̂ = γW0ΘM,R (21)

b̂0 = b0W
α−1
0 Θα−1

M,R, (22)

has either a unique global maximum at θi = θM,i or multiple global maxima that straddle

θM,i. In Section B of the Internet Appendix, we show how the prospect theory terms in

(20) are modified when an investor sells asset i short, so that θi < 0. It turns out that, in

equilibrium, no investor sells short: even for a stock i where investors have heterogeneous

holdings, the lower optimum θ∗i is always greater than or equal to zero. We return to this in

Section 4.2.

In Section E of the Internet Appendix, we explain in full the procedure we use to de-

15Since ΘM,R =
∑N

i=1
ΘM,i, it follows that

∑N

i=1
θM,i = 1. However, due to investors’ heterogeneous

holdings,
∑N

i=1
θi will almost never equal 1 for any given investor.
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termine whether investors have identical or heterogeneous holdings in an asset, and to then

compute the asset’s expected return. Since it involves numerical integration, this calculation

takes a few minutes of computing time; this is fast enough for the application we consider

in this paper.

4 Anomalies and Model Parameter Values

The model of Section 3 generates quantitative predictions about the cross-section of average

returns when investors evaluate risk according to prospect theory. We now use the model to

answer a basic but long-standing question: Can prospect theory shed light on stock market

anomalies? To be as comprehensive as possible, subject to the computational constraints we

face, we consider 23 anomalies. They are listed in Table 1, along with the abbreviations we

use in subsequent tables to refer to them; in Section F of the Internet Appendix, we define the

predictor variable associated with each anomaly. The 23 anomalies are intended to include

those that, to date, have received the most attention from researchers. To construct the set

of anomalies, we start with the 11 anomalies studied by Stambaugh, Yu, and Yuan (2012)

and then add 12 more from the 97 anomalies studied by McLean and Pontiff (2016). The list

is not based on any prior beliefs about whether prospect theory is helpful for explaining an

anomaly – again, it is intended to be nothing more than a representative set of well-known

anomalies. In Section 6.2, we check that our results are not specific to the 23 anomalies in

Table 1 by repeating our analysis for another set of anomalies.

To see if our model can explain a particular anomaly, we proceed as follows. We consider

an economy with N = 1000 stocks; each anomaly decile therefore contains 100 stocks. We

number the stocks so that, in the case of the value anomaly, say, stocks 1 to 100 belong to

decile 1, which contains stocks with low book-to-market ratios; stocks 101 to 200 belong to

decile 2; and so on. All stocks in a given decile are identical: they have the same charac-

teristics, namely, the empirical characteristics of the typical stock in that anomaly decile.

For each decile in turn, we choose one stock at random and compute our model’s prediction

for its expected return. Since all stocks in a given decile are identical, this immediately

tells us the expected return of all the stocks in that decile. Our model can help explain the

value anomaly if the expected return it predicts for the randomly-chosen stock in decile 10

is significantly higher than the expected return it predicts for the randomly-chosen stock in

decile 1.16

16Why do we not simply consider an economy with N = 10 risky assets, where each asset represents the
typical stock in one of the anomaly deciles? The reason is that the expected return our model predicts for an
asset depends on the asset’s weight in the market portfolio. We therefore need to capture the fact that, in
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What are the empirical inputs we need to compute the expected return of a stock in our

model? Equation (20) shows that, to determine µi, and hence stock i’s expected return, we

need to know σi, ζi, gi, and βi. In words, to compute the model’s prediction for the expected

return of a stock in some anomaly decile, we need to know, for the typical stock in that

decile, its return volatility, its return skewness, its gain overhang, and its beta. We estimate

these inputs from historical data. To explain how we do so, we use the value anomaly as an

example; the process is the same for all the anomalies we consider.

Each month from July 1963 to December 2014, we rank all stocks listed on the NYSE,

Amex, or Nasdaq on their book-to-market ratio and then group them into deciles. (For

each of the other anomalies, we instead rank stocks on the relevant anomaly characteristic –

for example, on their idiosyncratic volatility in the case of the volatility anomaly.) Decile 1

corresponds to stocks with the lowest book-to-market ratios, and decile 10 to stocks with the

highest book-to-market ratios. Suppose that, in some particular month, each decile contains

100 stocks. Take decile 4, say. To compute the beta of the typical stock in decile 4 in this

month, we calculate the betas of each of the 100 stocks in the decile and average them.17

To compute the capital gain overhang of the typical stock in decile 4, we calculate the gain

overhang for each stock in the decile – the percentage gain or loss since purchase for the

average investor in the stock – and average these 100 numbers. To compute the volatility

and skewness of the typical stock in decile 4 over the next year, we record the returns, over

the next year, of the 100 stocks in the decile and compute the cross-sectional volatility and

skewness of these 100 returns. We conduct this exercise for each decile in this month. At the

end of this process, we have four quantities in hand for each anomaly decile in this month:

the volatility, skewness, gain overhang, and beta for the typical stock in that decile.

We repeat the above exercise for each month in our sample. This gives us, for each

book-to-market decile, a time series for each of the four quantities: return volatility, return

skewness, gain overhang, and beta. In the final step, we compute the mean of each time

series. For each book-to-market decile, this leaves us with four numbers pertaining to the

typical stock in that decile: the standard deviation of its returns; its return skewness; its gain

overhang; and its beta. We feed these four numbers into our model to see what it predicts

for the expected return of the typical stock in that anomaly decile.18

reality, any given stock makes up only a small fraction of the overall market. Setting N = 1000 allows us to
do this. Since all 100 stocks in each decile are identical, the computational burden in the case of N = 1000
is the same as for N = 10.

17For a given stock in a given month, we compute its beta using daily returns over the following year.
18For four of the anomalies – O-Score, post-earnings announcement drift, failure probability, and difference

of opinion – data availability requires us to begin the computation after July 1963: in January 1972, December
1973, December 1974, and January 1980, respectively. For the size anomaly, we follow standard practice in
using NYSE rather than CRSP breakpoints. For this one anomaly, then, decile 1 contains many more stocks

20



In the calculations described above, we compute the volatility and skewness of annual

stock returns. Why is this? In our model, we focus on decision-making at time 0, which

lies somewhere between time −1, when an investor purchases a stock, and time 1, when he

disposes of it. In the best-known dataset of individual investor trading, portfolio turnover

is on the order of 50% per year (Barber and Odean, 2000); this implies that an individual

stock is held for roughly two years, on average.19 If the interval between time −1 and time

1 is two years, it is natural to take the interval between time 0 and time 1 to be one half of

this, namely one year.

We noted above that we compute the volatility and skewness of the typical stock in an

anomaly decile as the cross-sectional volatility and skewness of the subsequent returns of

the 100 stocks in the decile. This approach has a number of advantages. By measuring the

likely volatility and skewness of a stock going forward, rather than the stock’s past volatility

and skewness, it focuses on what a rational, forward-looking investor is interested in. It

also captures a natural way in which real-world investors may judge the future volatility or

skewness of a stock: when trying to estimate a stock’s skewness, say, they may take a set

of stocks with similar characteristics and then check how often stocks in this set post an

extreme right-tail return. The cross-sectional volatility and skewness are fairly stable from

month to month, which means that investors can learn them from even a short sample of

data.20

Before presenting the empirical characteristics of the 230 anomaly deciles, we clarify

the definition of a key variable: the capital gain overhang. There are two approaches to

computing this, one due to Grinblatt and Han (2005) and the other to Frazzini (2006).

Grinblatt and Han (2005) use a stock’s past trading volume to estimate how long each

of the investors in the stock has been holding it; this then allows them to calculate the

average investor’s capital gain or loss in the stock. Frazzini (2006) uses data on mutual fund

holdings to compute the average gain or loss in a stock across the mutual fund investors in

the stock. We computed both measures of gain overhang and find that they lead to similar

quantitative estimates and similar model predictions. We therefore pick one – the Grinblatt

and Han (2005) measure, because it is easier to compute and accounts for both individual

than decile 10.
19Barber and Odean (2000) report that the median annual portfolio turnover is 32% while the mean

turnover is 78%. Both numbers are informative for our purposes, but the median turnover is more so.
20We have also considered an alternative forward-looking approach. For each of the 100 stocks in a given

anomaly decile in a given month, we compute the volatility and skewness of the stock’s daily returns over the
next year; we then average these quantities across the 100 stocks. We can then use the volatility and skewness
of daily returns to make inferences about the volatility and skewness of annual returns. However, this last
step is challenging, particularly in the case of skewness, because it relies on additional assumptions about
the autocorrelations of stock returns. After weighing the pros and cons of the time-series and cross-sectional
approaches, we view the latter as superior.
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and institutional investors – and stick with it throughout.21

Table 2 presents the results of the above empirical exercise. The first column of the

table lists the 23 anomalies. The second and third columns report, for each anomaly, the

value-weighted return of decile 1 stocks and decile 10 stocks, respectively; these are com-

puted month by month, averaged across the 618 months of our sample, and annualized. By

definition of what an anomaly is, these average returns differ in a way that is not explained

by beta. The fourth and fifth columns report the standard deviation of the annual return of

the typical stock in deciles 1 and 10, respectively, computed as described above. The sixth

and seventh columns list the skewness of the annual return of the typical stock in deciles 1

and 10, respectively. Finally, the eighth and ninth columns report the capital gain overhang

of the typical stock in deciles 1 and 10, respectively.

We make two observations about the results in Table 2. First, for most of the anomalies,

the typical stock in decile 1 differs substantially from the typical stock in decile 10 in its return

volatility, return skewness, and gain overhang – in other words, in the three characteristics

that, aside from beta, determine expected returns in our model. Consider, for example, the

size anomaly: the typical stock in decile 1 has an annual standard deviation of 76%, while the

typical stock in decile 10 has an annual standard deviation of just 25%. Similarly, while the

typical small-cap stock has an annual return skewness of 4.3, the typical large-cap stock has

an annual return skewness of just 0.7. And while the typical small-cap stock has a negative

gain overhang of −15%, the typical large-cap stock has a positive gain overhang of 17%.

The second, more striking, observation is that the three characteristics – standard devi-

ation, skewness, and gain overhang – are strongly correlated across anomaly deciles: for 22

of the 23 anomalies, if the typical stock in decile 1 has a higher return skewness than the

typical stock in decile 10, then it also has a higher standard deviation, and vice-versa; the

only exception is for post-earnings announcement drift (PEAD). Furthermore, for 22 of the

23 anomalies – the only exception is the net operating assets (NOA) anomaly – if the typical

stock in decile 1 has a higher return skewness than the typical stock in decile 10, then it also

has a more negative gain overhang, and vice-versa.

Figure 2 illustrates these relationships. Consider the top-left graph in the figure. Each

asterisk in the graph corresponds to an anomaly decile; since there are 23 anomalies, this

makes for a total of 230 asterisks. The horizontal and vertical axes in the graph measure

the standard deviation and skewness, respectively, of the typical stock in an anomaly decile.

21Grinblatt and Han (2005) compute the gain overhang as (Pi−Ri)/Pi, where Pi is stock i’s current price
and Ri is the average purchase price. We compute it slightly differently, as (Pi − Ri)/Ri; this is a more
precise match for the capital gain variable gi in our model.
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The graph shows the positive correlation between these two quantities. In a similar way, the

other two graphs show the negative correlation, across anomaly deciles, between standard

deviation and gain overhang, and between skewness and gain overhang.22

The empirical patterns in Figure 2 point to the necessity of our quantitative approach.

Suppose that, for one of the extreme decile portfolios – decile 1, say – the typical stock in

that decile has a higher return skewness, higher return volatility, and lower gain overhang

than the typical stock in the other extreme decile, decile 10; of the 23 anomalies, 21 follow

this pattern. It is then impossible to tell, without a quantitative model, whether prospect

theory can explain the anomaly. The reason is that there are counteracting forces. Decile 1

stocks have more volatile returns than decile 10 stocks. Since prospect theory investors are

loss averse, this will lead them, all else equal, to require a higher average return on decile

1 stocks than on decile 10 stocks. However, decile 1 stocks also have more skewed returns

than decile 10 stocks. Since prospect theory investors exhibit probability weighting, this

will lead them, all else equal, to charge a lower average return on decile 1 stocks. Finally,

decile 1 stocks trade at a loss, while decile 10 stocks trade at a gain. Due to diminishing

sensitivity, this will lead prospect theory investors, all else equal, to require a lower average

return on decile 1 stocks. Since two of these forces go in one direction and the other goes in

the opposite direction, we need a quantitative model to determine whether prospect theory

can explain the anomaly.

The empirical results in Table 2 and Figure 2 are incorporated into the model through

the values we assign the model parameters. We now explain how we set these parameter

values.

4.1 Parameter values

To see if our model can capture a particular anomaly, we proceed as follows. We consider

an economy with N = 1000 stocks, and assign 100 of these stocks to each anomaly decile:

stocks 1 to 100 belong to anomaly decile 1, stocks 101 to 200 to anomaly decile 2, and so

on. For any given decile, we take all the stocks in the decile to be identical: they have the

same standard deviation, skewness, gain overhang, and beta, namely the empirical standard

deviation, skewness, gain overhang, and beta of the typical stock in that anomaly decile,

computed as described above. We set the parameters Si and ζi of the skewed t distribution,

22The correlations between volatility, skewness, and gain overhang shown in Figure 2 also hold at the
individual stock level; see Table 1 in An et al. (2020). However, the relationships are significantly stronger
at the anomaly decile level – and it is these decile-level relationships that matter when predicting decile-level
average returns.
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the capital gain gi, and the beta βi to capture these empirical values. We then search for a

location parameter µi so that the conditions for equilibrium described in Section 3.2 around

equation (20) are satisfied. Our model’s prediction for a stock’s expected return is then given

by (13). Note that all stocks in a given decile will have the same µi and hence the same

expected return.

We now explain in more detail how we parameterize the model. While the model features

several parameters, all of them are disciplined by either field data or experimental data. The

asset-level parameters are Rf , the gross risk-free rate; N , the number of stocks; {Si}, the
dispersion parameters for stock returns; {ζi}, the asymmetry parameters for stock returns; ν,

the degree of freedom parameter; {βi}, the stocks’ betas; {gi}, the stocks’ capital gains; σM ,

the standard deviation of stock market returns; and {θM,i}, the stocks’ market weights. The

investor-level parameters are γ̂, portfolio risk aversion; b̂0, the importance of the prospect

theory term in investor preferences; (α, δ, λ), the prospect theory preference parameters; and

{θi,−1}, investors’ prior allocations to the N stocks.23

We start with the asset-level parameters. We set ν = 7.5, which represents a reasonable

degree of fat-tailedness in stock returns; our results are not very sensitive to the value of ν.

We then set the dispersion parameters {Si} and the asymmetry parameters {ζi}. To do this,

recall from equations (14) and (15) that, for the GH skewed t distribution,

Std(R̃i) =

[
ν

v − 2
Si +

2ν2

(ν − 2)2(ν − 4)
ζ2i

]0.5
(23)

Skew(R̃i) =
2ζi

√
ν(ν − 4)

√
Si(2νζ2i /Si + (ν − 2)(ν − 4))

3

2

[
3(ν − 2) +

8νζ2i
Si(ν − 6)

]
. (24)

To set Si and ζi for a stock i that belongs to a particular anomaly decile, we take the

empirical standard deviation and skewness of the typical stock in that anomaly decile, and

plug them into the left-hand side of equations (23) and (24). These equations then allow

us to solve for the two unknowns, Si and ζi. For example, in the case of the size anomaly,

stocks 1 to 100 belong to the lowest market capitalization decile. From Table 2, we see

that the empirical standard deviation and skewness for the typical stock in this decile are

0.76 and 4.27, respectively. Accordingly, for this anomaly, to set the values of Si and ζi for

23An alternative to calibrating the model is to estimate it – specifically, to estimate the values of α, δ,
λ, b̂0, and γ̂. However, without the use of approximations, estimation is not feasible: it requires generating
expected returns for the 230 anomaly deciles for thousands of different sets of parameter values; because of
the numerical integration involved, generating the 230 expected returns even for one set of parameter values
takes a substantial amount of time. One appealing feature of our calibration approach is that it allows us
to see how well the model performs when parameterized using data that are independent of the anomalies it
is trying to explain.
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i ∈ {1, . . . , 100}, we solve

0.76 =

(
7.5

7.5− 2
Si +

2(7.5)2

(7.5− 2)2(7.5− 4)
ζ2i

)0.5

(25)

4.27 =
2ζi

√
7.5(7.5− 4)

√
Si(2(7.5)ζ2i /Si + (7.5− 2)(7.5− 4))

3

2

[
3(7.5− 2) +

8(7.5)ζ2i
Si(7.5− 6)

]
. (26)

For a given stock i that belongs to some anomaly decile, we set its beta equal to the empirical

beta of the typical stock in that decile.

In terms of asset-level parameters, this leaves {gi}, the stocks’ capital gains; σM , the

standard deviation of annual stock market returns; {θM,i}, the stocks’ market weights; and

the gross risk-free rate Rf . For a stock i in some anomaly decile, we set gi to the empirical

gain overhang of the typical stock in that anomaly decile, computed as described earlier in

this section and displayed in Table 2 for the two extreme deciles of each anomaly. We set

σM to 0.25 and the gross risk-free rate Rf to 1.

We set {θM,i}, the stocks’ market weights, to match empirical market weights. Take, for

example, the volatility anomaly. In each month of our sample, we compute the fraction of

the total market value of all stocks in our sample in that month that is made up by the

stocks in each volatility anomaly decile. We then compute the time-series averages of these

fractions. We find that, on average, volatility decile 1 makes up 29.6% of total stock market

value. Since, in our model, there are 100 identical stocks in decile 1, we set θM,i = 0.296/100

for all stocks in decile 1, in other words, for i = 1, . . . , 100. We proceed similarly for the

other deciles.

We now turn to the investor-level parameters. We set θi,−1, investors’ allocation to stock

i at time −1, to a neutral value, namely θM,i, the weight of stock i in the market portfolio of

risky assets, which, as noted above, is based on empirical values; we discuss the robustness of

our results to this assumption in Section 6.2. We set γ̂, the scaled portfolio risk aversion in

(21), and b̂0, the scaled weight on the prospect theory term in (22), to generate an aggregate

equity premium of 6%. There are many pairs (γ̂, b̂0) that produce an equity premium of 6%.

How do we choose one? As we increase b̂0, we increase not only the equity premium, but

also investors’ degree of under-diversification. We therefore choose, from among the (γ̂, b̂0)

pairs that generate a 6% equity premium, a pair with a value of b̂0 that is consistent with

the degree of under-diversification estimated in actual portfolios by Calvet, Campbell, and

Sodini (2007). This is the pair (γ̂, b̂0) = (0.6, 0.6).24 For this value of b̂0, the prospect theory

24Calvet, Campbell, and Sodini (2007) find that the average Sharpe ratio of the household portfolios in

their sample is 19% lower than the Sharpe ratio of a market benchmark. For (γ̂, b̂0) = (0.6, 0.6), the average
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term in equation (9) makes up a modest 12% of the value of the overall objective function.

In Section G of the Internet Appendix, we also check that, for this b̂0, the investors’ objective

function generates sensible attitudes to large and small gambles: it satisfies the restrictions

on these attitudes suggested by Barberis, Huang, and Thaler (2006) and Barberis and Huang

(2008b), and also captures the experimental evidence in Kahneman and Tversky (1979) that

motivates the elements of prospect theory.

Finally, we set the preference parameters α, δ, and λ. A well-known set of values

for these parameters comes from Tversky and Kahneman (1992), who estimate (α, δ, λ) =

(0.88, 0.65, 2.25) for the median participant in their experiment. However, these estimates

are almost 30 years old and are based on a small number of participants. Given that the

values we assign to these parameters play a significant role in our results, it seems prudent

to base these values on a wide range of studies, not just one.

Tversky and Kahneman’s (1992) results have led to the widespread view that the degree of

loss aversion λ is approximately 2. However, recent studies suggest that the true level of loss

aversion in the population is significantly lower. In a meta-analysis of experimental estimates

of loss aversion, Walasek, Mullett, and Stewart (2018) find that the median estimate of λ is

just 1.31. Chapman et al. (2018) argue that even this estimate may be too high. Based on

a large group of people who are more representative of the population than the participants

in the typical experimental study, they obtain estimates of λ that are lower still – as low

as λ = 0.98 for their median participant, albeit somewhat higher for those with greater

cognitive ability. To reflect these findings, in a conservative way, we set λ = 1.5.

Booij, van Praag, and van de Kuilen (2010) compile a list of experimental estimates of

α and δ. The median estimate of δ is close to Tversky and Kahneman’s (1992) estimate;

we therefore maintain δ = 0.65. Experimental estimates of α span a fairly wide range; most

lie between 0.5 and 0.95. We set α near the midpoint of this range, at 0.7. Our preference

parameter values are therefore25

(α, δ, λ) = (0.7, 0.65, 1.5). (27)

Sharpe ratio of investors’ portfolios in our economy is 12.5% lower than that of the market portfolio – a
similar level of under-diversification.

25The values of α, δ, and λ in (27) are also in line with prior research on financial applications of prospect
theory. Barberis and Xiong (2009) find that prospect theory is more consistent with investor trading behavior
for values of α and λ that are lower than those estimated by Tversky and Kahneman (1992). Meanwhile,
even the lower level of loss aversion in (27) is strong enough to generate a high equity premium and non-
participation in the stock market – two prominent applications of loss aversion in finance.
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4.2 Illustration of equilibrium structure

Now that we have parameterized the model, we can illustrate the equilibrium structure. We

use the momentum anomaly as an example. For stocks in momentum decile 1, namely stocks

1 to 100, investors have identical holdings, each holding the market supply of each stock, θM,i.

For example, for stock 1, there is a value of µ1, the location parameter for stock 1, such that

the function in (20), for i = 1, has a unique global maximum at θ1 = θM,1 = 1.86 × 10−4.

Figure 3 plots the function in (20) for this value of µ1, namely µ1 = 0.0108. The global

maximum at θ∗1 = θM,1 is clearly visible.

Why does the solid line in Figure 3 have the shape that it does? In our model, investors

usually have identical holdings in stocks that are trading at a loss and that, in part because

of this, have a low, even negative, expected return. As an investor increases his allocation

to stock 1 from zero, utility initially rises: he is in the convex region of the value function,

where he is risk-seeking. As he further increases his allocation, utility falls: a larger fraction

of time 1 outcomes bring the investor to the right of the kink in the value function, increasing

his risk aversion; the stock’s low expected return and the greater portfolio volatility caused

by the larger allocation to the stock decrease utility further.

Figure 3 also shows that no investor will choose to short stock 1. Shorting the stock gives

the investor a high expected return; however, it also exposes him to strong negative skewness

which, due to probability weighting, he finds aversive. This explains why, as the investor

decreases his allocation from zero, the objective function initially rises but then falls.

For stocks in momentum decile 10, namely stocks 901 to 1000, investors have het-

erogeneous holdings. For example, for stock 901, there is a value of µ901 such that the

function in (20), for i = 901, has two global maxima that straddle the market supply of

θM,901 = 7.26 × 10−4. The solid line in Figure 4 plots the function in (20) for this value

of µ901, namely µ901 = 0.5853. It shows the two global maxima, one at θ∗901 = 9.1 × 10−5

< θM,901 and one at θ∗∗901 = 0.119 > θM,901. Since these optima straddle the market supply,

we can clear the market by allocating most investors to the first optimum and the rest to

the other optimum.

To explain the shape of the solid line in Figure 4, it is helpful to break it into its two

components: the mean-variance component, represented by the dashed line – this is the first

row of equation (20) – and the prospect theory component, represented by the dash-dot line,

which is the second and third rows of equation (20); the solid line is the sum of the dashed

and dash-dot lines. Heterogeneous holdings typically arise for stocks that are trading at a

gain and that, in part because of this, have a high expected return. The mean-variance
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component has the usual quadratic form: as the investor increases his allocation from zero,

it first rises due to the high average return and then falls due to the increased volatility. By

contrast, the prospect theory component initially falls sharply: the investor is in the gain

region of the prospect theory value function, where he is risk averse. As he increases his

allocation further, more of the stock’s outcomes fall in the convex segment of the prospect

theory value function to the left of the kink. This slows the rate of decline of the dash-dot

line, which, in turn, allows the mean-variance component to create a second global maximum

at θ∗∗901 = 0.119.26

Figure 4 also shows that no investor will choose to short stock 901. Shorting the stock

gives the investor both a low expected return and exposes him to negative skewness. This

is an unattractive combination and explains why the objective function in Figure 4 falls

sharply as the investor lowers his allocation from zero.

The above intuition points to a simple interpretation of the two global maxima in Figure

4. The lower optimum θ∗ reflects investors’ desire to lock in their prior gains in the stock

by selling some of their holdings; the upper optimum θ∗∗ reflects investors’ desire to benefit

from the stock’s high expected return by increasing their allocation to it. In equilibrium,

the two strategies are equally attractive. To generate the two maxima, it is crucial that

investors exhibit an element of risk-seeking: if they were uniformly risk averse, the objective

function would be concave and have only one global maximum. In Figure 4, the risk-seeking

stems primarily from the convex segment of the prospect theory value function; this leads

the dash-dot line to fall more slowly as the investor increases his allocation, which, in turn,

allows the objective function – the solid line – to have a second global maximum.

The value of the objective function at the two global maxima in Figure 4 is, by definition,

the same. One may worry that this represents a “knife-edge” situation which arises only

for particular values of the preference parameters. This is not the case. For a wide range

of preference parameter values, if investors do not have identical holdings in a stock, we

can always find a heterogeneous-holdings structure like the one in Figure 4; in each case,

the stock’s expected return adjusts until the two local maxima have the same height. The

intuition we gave above for the shape of the solid line in Figure 4 helps explain why this

structure arises as commonly as it does.

In Section H of the Internet Appendix, we discuss some other aspects of the equilibrium

26As the investor increases his allocation to stock 901 from zero, the prospect theory part of the objective
function – the dash-dot line – actually rises slightly before falling. The initial rise is not visible to the naked
eye in Figure 4, but it is the reason the lower optimum θ∗ is strictly greater than zero. For stock 901, the
investor is in the gain region of the value function at time 0. While the value function is concave over gains,
it exhibits second-order risk aversion. This, and the stock’s high expected return, explain the initial rise.
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structure. We explain why, for the stocks in momentum decile 10, there is no equilibrium

with identical holdings; and why, for the stocks in momentum decile 1, there is no equilibrium

with heterogeneous holdings. We also contrast the heterogeneous holdings that arise in our

setting with those that arise in other models, such as that of Barberis and Huang (2008a).

5 Application

We now use our model to answer a long-standing question: Can the risk attitudes captured

by prospect theory shed light on the prominent anomalies in Table 1?

To determine whether the model can help explain an anomaly, we focus on anomaly

alphas. For any given anomaly, we compute the empirical alphas for the ten anomaly

deciles over our 1963-2015 sample – these are value-weighted CAPM alphas computed from

a monthly regression and annualized – and denote them as αd(1), . . . , αd(10), where the “d”

superscript stands for “data.” We then compute the alphas predicted by the model for each

of the ten deciles, namely αm(1), . . . , αm(10), where “m” stands for “model.” Since, within

each decile, all stocks are identical and hence have the same expected return and alpha, we

can compute the alpha of decile l as the alpha of any stock in that decile – for example, as

the alpha of stock 100l:

αm(l) = R100l − (Rf + β100l(RM − Rf )),

where RM =
∑N

i=1 θM,iRi.

We say that the model can help explain an anomaly if

sign(αd(10)− αd(1)) = sign(αm(10)− αm(1)) and |αm(10)− αm(1)| > 0.015. (28)

The first condition in (28) is that the model correctly predicts the sign of the difference

between αd(10) and αd(1), in other words, predicts that α(10) > α(1) if this is empirically

the case and that α(10) < α(1) if that is empirically the case. The second condition in

(28) is that the model makes a “strong” prediction, in other words, predicts a substantial

difference between the two alphas; while the 1.5% cutoff is somewhat arbitrary, it allows for

a simple way of organizing our results. Similarly, we say that the model fails to explain an

anomaly if

sign(αd(10)− αd(1)) = −sign(αm(10)− αm(1)) and |αm(10)− αm(1)| > 0.015, (29)
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in other words, if the model makes a strong prediction but this prediction is incorrect, for

example predicting that α(10) > α(1) when the opposite is true in the data. Finally, we say

that the model does not make a strong prediction about an anomaly if

|αm(10)− αm(1)| < 0.015. (30)

We find that the model is helpful for thinking about a strikingly large number – a majority,

in fact – of the anomalies we consider; we review these anomalies in Section 5.1. In Section

5.2, we discuss the anomalies where the model performs poorly. And in Section 5.3, we note

the anomalies where the model does not make a strong prediction. Finally, in Section 5.4,

we compare our model’s performance to that of some widely-used factor models.

5.1 Anomalies where the model performs well

We present the model’s predictions in Table 3. The horizontal lines in the table divide the

23 anomalies into three groups. The upper group is the anomalies that the model performs

well on; for these anomalies, the conditions in (28) are satisfied. The middle group is the

anomalies that the model does not make a strong prediction about; for these anomalies, the

condition in (30) holds. Finally, the lower group is the anomalies that the model performs

poorly on; for these anomalies, conditions (29) are satisfied. For each anomaly, the table

reports the model’s predictions for the alphas of deciles 1 and 10, αm(1) and αm(10); the

model-predicted alpha spread αm(10) − αm(1) between the two deciles; and the empirical

alpha spread, αd(10)− αd(1).

The table shows that the model is helpful for thinking about 14 of the 23 anomalies

– specifically, the momentum, gain overhang, failure probability, return on assets, idiosyn-

cratic volatility, maximum daily return, idiosyncratic skewness, O-Score, external finance,

gross profitability, post-earnings announcement drift, composite equity issuance, net stock

issuance, and difference of opinion anomalies.

In Figures 5 and 6, we take eight of the 14 anomalies and present additional results about

them. The top-left graph in Figure 5 shows the results for the momentum anomaly. The

horizontal axis corresponds to the ten decile portfolios, 1 through 10. The dashed line plots

the empirical alpha of each decile. The solid line plots the alphas predicted by the model.

The other graphs in Figures 5 and 6 have the same structure. Table 3 and Figures 5-6 show

that, for many of the 14 anomalies, the model can explain a large fraction of the spread in
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empirical alphas between anomaly deciles 1 and 10.27

The intuition for why our model helps to explain the 14 anomalies is the following. For

these anomalies, the extreme decile with the lower empirical alpha – for example, decile 1

in the case of the momentum anomaly and decile 10 in the case of the volatility anomaly –

contains stocks with more volatile returns, more skewed returns, and a more negative capital

gain overhang. On the one hand, the higher volatility of these stocks leads the investors in

our economy to charge a higher average return on them. On the other hand, the stocks’

higher skewness and more negative gain overhang leads investors to charge a lower average

return on them. The latter force dominates, so that the model predicts a low average return

on these stocks, consistent with the data.

Figures 5 and 6 show that the model can explain not only the alphas for the extreme

deciles, but also those for the intermediate deciles. For several of the anomalies, the dashed

lines, which plot the empirical alphas, are concave: the alphas are similar for most deciles,

but fall rapidly as we approach the extreme decile with the most skewed stocks. This pattern

is particularly stark for the volatility and failure probability anomalies in Figure 5, but is

present for other anomalies as well. The solid lines in the graphs show, strikingly, that the

model captures this concavity.

Prior studies have linked the diminishing-sensitivity component of prospect theory to

some of the anomalies we consider – specifically, to momentum and post-earnings announce-

ment drift (Grinblatt and Han, 2005; Frazzini, 2006; Li and Yan, 2013). In the case of

momentum, the idea is that stocks in momentum decile 10 have capital gains which bring

investors into the concave, risk averse region of the value function, leading them to charge

a higher average return on these stocks. Our analysis confirms that this mechanism helps

to explain these anomalies, but also shows that the argument is incomplete in important

ways. It is not just that stocks in momentum decile 10 trade at a gain; their returns are

also less volatile and less skewed than the returns of stocks in momentum decile 1 – charac-

teristics that, due to loss aversion and probability weighting, also affect the average return

that prospect theory predicts for momentum deciles. Our analysis shows that, once we take

all three characteristics – volatility, skewness, and gain overhang – into account, prospect

theory can indeed explain the momentum anomaly, but it is only through a quantitative

framework like the one we develop in this paper that this conclusion can be drawn.

27For six of the 14 anomalies, the model explains a sufficiently large fraction of the empirical spread
that there is no statistical difference between the empirical and model-predicted spreads. These are the
gain overhang, idiosyncratic skewness, failure probability, O-Score, gross profitability, and return on assets
anomalies.
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Similarly, prior work has linked the probability-weighting component of prospect theory

to some of the anomalies we consider – specifically, to the idiosyncratic volatility, idiosyn-

cratic skewness, and failure probability anomalies (Campbell, Hilscher, and Szilagyi, 2008;

Boyer, Mitton, and Vorkink, 2010; Conrad, Kapadia, and Xing, 2014). The idea is that, for

these anomalies, stocks in decile 10 have positively-skewed returns, which, due to probability

weighting, leads investors to charge a lower average return on them. Our analysis confirms

this mechanism, but also indicates that the argument is incomplete. Highly-skewed stocks

also tend to have more volatile returns and to trade at a loss – characteristics that, in a

prospect theory framework, also affect their average returns. We show that, when all three

characteristics are taken into account, prospect theory can explain the above anomalies –

but, again, it is only through our quantitative approach that this can be confirmed.

The results in Table 3 also draw a connection between prospect theory and a number of

anomalies that, to our knowledge, has not previously been noted. For example, they show

that prospect theory is helpful for thinking about the gross profitability, return on assets,

external finance, composite equity issuance, net stock issuance, and difference of opinion

anomalies – again, anomalies that prospect theory has not previously been linked to.

5.2 Anomalies where the model performs poorly

For seven of the 23 anomalies – the seven anomalies in the bottom group in Table 3 – the

model performs poorly, in that, as laid out in the conditions in (29), it predicts a substantial

difference between the alphas for deciles 1 and 10, but of the wrong sign. These are the

size, value, long-term reversal, short-term reversal, accrual, asset growth, and investment

anomalies. We discuss two of these – the size and value anomalies – in more detail, and the

others more briefly.

Table 3 shows that the model incorrectly predicts a negative alpha for decile 1 of the size

anomaly, which contains the stocks with the lowest market capitalizations. These stocks are

very volatile, which, all else equal, leads investors to charge a high average return on them.

However, they also have positively-skewed returns and trade at a loss, which leads investors

to charge a low average return on them. Our quantitative analysis shows that the second

effect overwhelms the first one; as a result, the model makes an incorrect prediction.

Table 3 shows that the model also fails to explain the value anomaly. The reason is that

value stocks have more positively-skewed returns than growth stocks and trade at a larger

loss; this leads investors to charge a lower average return on value stocks. It is true that
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value stocks are also more volatile than growth stocks, which, all else equal, leads investors

to charge a higher average return on value stocks. However, the second effect is overwhelmed

by the first one, and the model makes the wrong prediction. Table 3 also reports results for

five other anomalies that the model performs poorly on – the long-term reversal, short-term

reversal, accrual, asset growth, and investment anomalies.

Why does the model perform poorly for some anomalies? One possibility is that, for

these anomalies, any effect that prospect theory risk attitudes have on prices is swamped by

other factors. In Section I of the Internet Appendix, we present evidence in support of this

view. We show that, for five of the seven anomalies that prospect theory does not explain

– the value, investment, long-term reversal, accrual, and asset growth anomalies – a large

fraction of their return comes around earnings announcement dates. This suggests that these

anomalies are driven to a significant extent by investors’ incorrect beliefs about firms’ future

prospects – incorrect beliefs that are corrected around earnings announcements – and not by

prospect theory risk attitudes. This, in turn, raises the possibility that many anomalies can

be put into one of two categories: “preference-based” anomalies that are driven by investor

risk attitudes of the kind captured by prospect theory, and “belief-based” anomalies driven

by incorrect beliefs.28

Another approach to understanding the model’s poor performance for some anomalies is

also related to investor beliefs, albeit within the context of the model. When generating the

results in Table 3 and Figures 5-6, we assumed that investors have accurate beliefs about

stocks’ return volatility, return skewness, and gain overhang. However, for certain types of

stocks, investors’ beliefs about these characteristics may be incorrect. For example, when

generating the model’s predictions for the value anomaly, we assumed that investors know

that value stocks have more positively-skewed returns than growth stocks; this, in turn, leads

the model to predict a lower average return on value stocks. However, if investors think that

it is growth stocks that have the more positively-skewed returns, this will increase the average

return that the model predicts for value stocks relative to growth stocks, reducing the gap

between the empirical and model-predicted alphas. In Section J of the Internet Appendix,

we examine how large the error in beliefs about skewness has to be for the model to predict

a substantially positive value premium in line with the empirical facts.29

28A sixth anomaly that the model performs poorly on, the short-term reversal anomaly, is widely thought
to be driven by liquidity considerations. This may explain why the model does not capture it.

29Bordalo, Gennaioli, and Shleifer (2013) suggest that investors find the potential upside of growth stocks,
and the potential downside of value stocks, to be more salient. This may lead investors to over-estimate the
skewness of growth stocks and under-estimate the skewness of value stocks.
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5.3 Anomalies where the model does not make a strong prediction

For two other anomalies – the middle group in Table 3, namely the net operating assets and

organizational capital anomalies – the model does not make a strong prediction, in that, as

specified in (30), it predicts alphas for the two extreme decile portfolios that differ by less

than 1.5% in absolute magnitude.

5.4 Model performance

The results presented so far show that our model is helpful for thinking about a majority of

the 23 anomalies. We now examine how the model performs relative to other pricing models

– in particular, relative to the CAPM; the Fama-French three-factor model; the Carhart

four-factor model; the Fama-French five-factor model; and a six-factor model that augments

the five-factor model with a momentum factor. Specifically, we compute the models’ average

absolute pricing errors for the 23 long-short portfolios that, for each anomaly, go long the

stocks in anomaly decile 1 and short the stocks in anomaly decile 10. For example, for the

prospect theory model, the pricing error for a given long-short anomaly portfolio is

[R
d
(1)−R

d
(10)]− [R

m
(1)−R

m
(10)],

where R(l) is the average return of the stocks in anomaly decile l, and where d and m refer

to the data and the model, respectively. The pricing error for the three-factor model, say, is

computed in the usual way as the intercept in a regression of the long-short portfolio return

on the three Fama-French factors.

Table 4 reports the average absolute monthly pricing error across the 23 anomalies for

the prospect theory model and for the five factor models. The table shows that our model

performs better than the CAPM and three-factor model, similarly to the four-factor model,

and less well than the five- and six-factor models.

It is striking that our model has similarly good performance to the four-factor model,

given that the latter was developed in full knowledge of the size, value, and momentum

anomalies. By contrast, our model was developed independently of any information about

the anomalies: prospect theory itself was designed with no knowledge of any anomalies, and

we calibrated the model based on experimental evidence that is again independent of the

anomalies. Despite being handicapped in this way, our model is able to match the four-factor

model in its performance. It is not surprising that our model underperforms the five- and
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six-factor models as these were developed in full knowledge of multiple anomalies.

6 Discussion

In this section, we discuss some additional issues raised by the analysis in Section 5.

6.1 The impact of each model ingredient

Which of the three elements of prospect theory – loss aversion, diminishing sensitivity, or

probability weighting – is most useful for explaining stock market anomalies? To answer this,

we take the 14 anomalies that the model can help explain, and, for each one, we decompose

the model-predicted alpha spread between deciles 1 and 10 into three pieces that correspond

to the three elements of prospect theory.

We start by computing the model-predicted alpha spreads for the 14 anomalies when

investors exhibit only loss aversion, and not diminishing sensitivity or probability weighting,

so that the preference parameters equal (α, δ, λ) = (1, 1, 1.5). We then compute the pre-

dicted alpha spreads when investors exhibit loss aversion and probability weighting, but not

diminishing sensitivity; this corresponds to (α, δ, λ) = (1, 0.65, 1.5). With these results in

hand, we can decompose the full model’s prediction for the alpha spread between deciles 1

and 10 for a given anomaly, αm(10)− αm(1), as

αm(10)− αm(1) = αLA(10)− αLA(1)

+[(αLA,PW (10)− αLA,PW (1))− (αLA(10)− αLA(1))]

+[(αm(10)− αm(1))− (αLA,PW (10)− αLA,PW (1))], (31)

where αLA(j) and αLA,PW (j) are, respectively, the alpha predicted by the model for decile j

when investors exhibit only loss aversion, and only loss aversion and probability weighting.

The first row on the right-hand side of equation (31) is the component of the alpha spread

generated by loss aversion alone; the second and third rows are the marginal contributions

to the alpha spread of probability weighting and diminishing sensitivity, respectively.

For each anomaly, we compute the fraction of the spread generated by each of the three

elements of prospect theory, and then average these fractions across the 14 anomalies.30 The

30The decomposition for all 14 anomalies is reported in Table A1 in the Internet Appendix.
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fractions of the spread that come from loss aversion, probability weighting, and diminishing

sensitivity are −21%, 48%, and 73%, respectively; the negative fraction for loss aversion

means that loss aversion typically predicts an alpha spread of the opposite sign from the

empirical alpha spread.

These numbers indicate the importance of diminishing sensitivity. However, they under-

state the role of probability weighting. In addition to the above analysis, we also computed

the alpha spreads predicted by the model when investors exhibit only loss aversion and di-

minishing sensitivity. In this case, the model can explain just eight of the 23 anomalies; it

is only when we also add probability weighting that the model can explain 14 anomalies.

As such, the introduction of probability weighting almost doubles the number of anomalies

we can explain. The way to reconcile this with the numbers that suggest an outsize role

for diminishing sensitivity is to note that it is probability weighting that allows diminishing

sensitivity to have a large effect. Probability weighting lowers the expected return on all

anomaly deciles. This means that, for a stock with a prior loss at time 0, many of its time

1 gains and losses are likely to remain in the convex region of the value function where

investors are risk-seeking. This lowers the stock’s expected return even further, allowing the

model to explain the very low average returns of several anomaly deciles, such as decile 1 of

the momentum anomaly and decile 10 of the failure probability anomaly.

Given that diminishing sensitivity and probability weighting play a major role in the

model’s successful predictions, it is useful to know how sensitive these predictions are to the

values of the associated parameters, α and δ. To study this, we pick a representative anomaly

that the model can help explain – the idiosyncratic volatility anomaly – and compute the

model’s predicted alpha spread for this anomaly, αm(10)− αm(1), for different values of the

diminishing-sensitivity parameter α, while keeping the other preference parameters fixed at

λ = 1.5 and δ = 0.65. Similarly, we compute the predicted alpha spread for different values

of the probability-weighting parameter δ, while maintaining α = 0.7 and λ = 1.5. We present

the results in Figure A1 in the Internet Appendix. The figure shows that, by the criterion

in (28), the model can help explain the volatility anomaly for a large range of values of the

preference parameters.

Our model assumes that, when making their allocation decision at time 0, investors

merge their prior gain or loss with their potential future gain or loss and derive utility from

the integrated gain or loss. It also assumes that investors engage in narrow framing: they

derive utility from stock-level gains and losses. Both of these assumptions have experimental

support. However, they also significantly improve the model’s ability to explain the stock

market anomalies.
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To demonstrate this, we study a model in which, at time 0, investors consider only the

potential future gain or loss, without merging it with their prior gains; this corresponds

to setting gi = 0 in equations (10) and (20). We find that, by the criterion in (28), this

specification can explain only five of the 23 anomalies. Under the same bounded-rationality

assumption we adopted in Section 3, we have also studied a model with broad, rather than

narrow, framing. This model also explains fewer anomalies than the model with narrow

framing.

What is the intuition for these results? A mechanism that helps our model explain a

majority of the anomalies in Table 1 is the one studied by Grinblatt and Han (2005) and Li

and Yang (2013), namely, that a stock with a prior gain brings its investors into the concave

region of the prospect theory value function where they are risk averse and require a high

average return. This mechanism relies on narrow framing and on investors taking their prior

gains and losses into account. Without these assumptions, the mechanism loses its force and

the model’s explanatory power is weaker.

We have also studied a model in which investors derive utility from realized gains and

losses rather than from paper gains and losses. While less tractable, this model delivers

similar predictions to the model of Section 3. The reason is that it features a mechanism

similar to that described in the previous paragraph. At time 0, investors are keen to sell an

asset trading at a gain because they want to enjoy positive realization utility. To clear the

market, the stock must therefore have a high expected return. Conversely, at time 0, investors

are reluctant to sell a stock with a prior loss: they want to avoid negative realization utility.

They are therefore willing to hold the market supply even if the stock has a low expected

return.31

6.2 Initial holdings and an alternate set of anomalies

In this section, we examine the robustness of our results on two dimensions: to endogenizing

investors’ initial holdings; and to considering an alternate set of anomalies.

When computing the expected return of a stock i, we take investors’ initial holdings of

the stock at time −1, θi,−1, to equal the stock’s market supply θM,i estimated from the data.

We can instead endogenize the initial holdings. Specifically, we take the objective function

in (20) and set gi = 0; this captures the fact that, when an investor initially buys stock

i, his prior gain is zero. We look for a value of the location parameter µi that clears the

31In Section K of the Internet Appendix, we show that our conclusions are also robust to allowing for
heterogeneity across investors in their prior gains and losses on a stock.
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market at time −1 and take investors’ initial holdings of stock i to be the maxima of the

objective function for this µi. We then use these initial holdings as inputs to the time 0

pricing problem. While this analysis is less tractable, it leads to similar conclusions: using

the criterion in (28), the model again helps to explain 14 of the 23 anomalies, namely the

14 anomalies in the top group in Table 3; and it again produces an average absolute pricing

error similar to that of the Carhart four-factor model. We provide more details, along with

an example, in Section L of the Internet Appendix.

We chose the 23 anomalies in Table 1 because they have received a lot of attention from

researchers. However, we want to be sure that the conclusion we draw in Section 5 – that

prospect theory is helpful for thinking about stock market anomalies – is not special to this

set of anomalies.

After completing the analysis in Section 5, we came across another set of 23 anomalies,

one constructed by Novy-Marx and Velikov (2016) as part of a study of transaction costs,

in other words, for reasons that have nothing to do with prospect theory. We use our model

to generate predictions about this alternate set of 23 anomalies and report the results in

Section M of the Internet Appendix. We find that, by the criterion in (28), the model can

help explain 13 of the 23 Novy-Marx and Velikov anomalies. This is a very similar proportion

to that reported in Section 5, where the model explained 14 of the 23 anomalies in Table 1.

As such, it reinforces our conclusion that prospect theory is helpful for understanding stock

market anomalies.

6.3 Comparison with other prospect theory models

Our model accounts for all the elements of prospect theory – all of loss aversion, diminishing

sensitivity, and probability weighting – as well as for investors’ prior gains and losses. In this

section, we compare our model to other prospect theory models. We find that our model can

explain almost all of the facts captured by prior models, but that the converse is not true:

the earlier models explain substantially fewer of the anomalies in Table 1 than our model

does.

We put the earlier prospect theory models into three groups and consider each group in

turn. Barberis, Huang, and Santos (2001) and Barberis and Huang (2001) incorporate only

the loss aversion element of prospect theory, and show that this predicts a high aggregate

equity premium. Our model also delivers a high equity premium, and for similar reasons:

due to loss aversion, investors find the volatility of stock returns unappealing and require
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a high average return as compensation. Barberis, Huang, and Santos (2001) and Barberis

and Huang (2001) explain two facts that our model does not: high stock market volatility

and the value premium in the cross-section. However, they do so only by introducing an

assumption that lies outside of prospect theory, namely that investors’ loss aversion varies

over time. Our framework can in principle accommodate such an assumption, and doing so

may allow us to explain a wider set of phenomena, but we do not pursue this approach: we

want our model to reflect only the elements of prospect theory, in part for discipline, and

in part because these elements have far more experimental support than does time-varying

loss aversion.

Grinblatt and Han (2005), Barberis and Xiong (2009), and Li and Yang (2013) con-

sider models that account for both loss aversion and diminishing sensitivity, and also for

investors’ prior gains and losses. Between them, the papers show that these assumptions

can generate a disposition effect; momentum in the cross-section; and a positive relationship

between volume and return. Our model also delivers these predictions: as Figure 5 shows,

the model captures momentum; and consistent with the disposition effect and the positive

volume-return correlation, the investors in our model sell stocks at time 0 only in the case

of heterogeneous holdings, a case that arises primarily for stocks with prior gains.

Finally, Barberis and Huang (2008a), Ingersoll (2014), and Barberis, Mukherjee, and

Wang (2016) consider models that account for all the elements of prospect theory but not

for investors’ prior gains and losses. Between them, these models make the prediction that an

asset’s idiosyncratic skewness will be priced, and also that some investors hold undiversified

portfolios. Our model also makes these predictions.

While our model can explain most of the empirical facts captured by previous models, the

converse is not true: the prior models explain far fewer of the 23 anomalies in Table 1 than

our model. To be clear, none of the previous papers makes predictions, either qualitatively or

quantitatively, about a wide range of anomalies. However, we can use our model to see what

they would predict. A model that, like Barberis, Huang, and Santos (2001) or Barberis and

Huang (2001), features loss aversion but not diminishing sensitivity or probability weighting

– this corresponds to the preference parameter values (α, δ, λ) = (1, 1, 1.5) – explains only

three of the 23 anomalies. A model that, like Grinblatt and Han (2005), Barberis and Xiong

(2009), and Li and Yang (2013), features loss aversion and diminishing sensitivity but not

probability weighting – this corresponds to the parameter values (α, δ, λ) = (0.7, 1, 1.5) –

can explain just eight of the 23 anomalies. Finally, as noted in the previous section, a model

that, like Barberis and Huang (2008a), Ingersoll (2014), or Barberis, Mukherjee, and Wang

(2016), captures all the elements of prospect theory but does not account for prior gains and
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losses – this corresponds to setting gi = 0 in equation (10) for all i – can explain only five

of the 23 anomalies. It is only when we incorporate all the elements of prospect theory and

account for prior gains and losses that we can explain a full 14 of the 23 anomalies.

6.4 Time-variation in alphas and interaction effects

In Section 5, we used our model to explain anomaly alphas in the full sample from 1963 to

2015. Can the model also explain variation in these alphas over time? In Section N of the

Internet Appendix, we show that it can. We divide the full sample into four equal subperiods

and use the procedure of Section 4 to compute, separately for each subperiod, the volatility,

skewness, and gain overhang of the typical stock in each anomaly decile. For each of the four

subperiods, we use these inputs to generate model-predicted alphas for each anomaly decile

which we then compare to the empirical alphas in that subperiod. We find that the model

is able to explain a significant fraction of the time variation in the alphas. It attributes this

variation to changes in stocks’ volatility, skewness, and gain overhang from one subperiod

to the next.

In Section P of the Internet Appendix, we consider another aspect of time variation in

anomaly alphas. We show that the anomalies where the prospect theory model performs

well have better out-of-sample performance – better performance in the years after the

publication of the journal articles that first documented them – than the anomalies where

the model performs poorly. One interpretation of this is that the anomalies where the model

performs well have a stronger theoretical foundation, one rooted in prospect theory; this in

turn explains their better out-of-sample performance.

The model can also help explain three interaction effects related to the anomalies in Table

1. Using double sorts, Wang, Yan, and Yu (2017) show that, for stocks with a large negative

overhang, there is a negative relationship between idiosyncratic volatility and subsequent

stock returns, but that for stocks with a large positive overhang, this relationship turns pos-

itive. Similarly, An et al. (2020) show that, for stocks with a large negative overhang, there

is a negative relationship between expected idiosyncratic skewness and subsequent returns,

but that this relationship is positive for stocks with a large positive overhang. Finally, Frazz-

ini (2006) shows that a strategy that buys stocks with positive earnings surprises performs

particularly well for stocks with a large positive overhang, and that a strategy that buys

stocks with negative earnings surprises performs particularly poorly for stocks with a large

negative overhang.
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All three sets of authors suggest, based on informal reasoning, that the risk attitudes

captured by prospect theory may be driving their results. In Section Q of the Internet

Appendix, we provide formal support for this claim: we show that our model can help

explain all three interaction patterns.

6.5 Prospect theory and real-world investors

The experimental evidence that motivates the elements of prospect theory is drawn primarily

from studies of ordinary individuals. Given that, during our sample period, individual

investors are a minority of the trader population, how large an effect on asset prices can

we expect prospect theory risk attitudes to have? We note three points about this.

First, even if it is primarily individual investors who have prospect theory preferences,

these preferences can still have a significant impact on asset prices. This will be the case

if individuals, despite being a minority, trade in a correlated way, according to prospect

theory, thereby exerting demand pressure on stocks; and if institutional investors are not

able to fully absorb this demand. There is reason to think that this will be the case because

of the particular type of mispricing that prospect theory generates, namely, overpricing of

volatile, skewed stocks. This pattern can be seen in all of the graphs in Figures 5 and 6.

For example, Figure 5 shows that, in the case of the volatility anomaly, the most severe

mispricing involves the overpricing of the volatile, skewed stocks in deciles 9 and 10. To

correct this mispricing, institutional investors would need to short a large number of highly

volatile, highly skewed, small-cap stocks. This strategy is risky and costly, which will limit

their ability to absorb individual investor demand. The individual investors can therefore

have a substantial impact on asset prices.

Second, several studies suggest that at least some institutional investors are likely to have

prospect theory preferences. Haigh and List (2005) and Abdellaoui et al. (2013) take some

of the experiments that have been used to document the elements of prospect theory for the

general population and repeat them for financial professionals – for 54 traders in the first

study and 46 investment managers in the second. Haigh and List (2005) test specifically for

loss aversion and find support for it; Abdellaoui et al. (2013) test for all of loss aversion,

diminishing sensitivity, and probability weighting, and find support for all three. In addition,

Coval and Shumway (2005) find strong evidence of diminishing sensitivity in the behavior

of futures’ traders, while Larson et al. (2016) find evidence of loss aversion in the trading

of 151 financial professionals. Moreover, studies of option prices – assets that are traded

by more sophisticated investors – exhibit price patterns that are consistent with probability
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weighting (Polkovnichenko and Zhao, 2013; Boyer and Vorkink, 2014; Baele et al., 2019).

Other studies, even if less directly related, also bolster the view that some professional

investors will exhibit the elements of prospect theory in their decision-making. Kachelmeier

and Shehata (1992) and Post et al. (2008) find support for prospect theory even in situations

with high financial stakes, while Pope and Schweitzer (2011) document loss aversion in the

behavior of highly-trained professional athletes in a competitive, high-stakes environment.

Finally, we find that, for the value of b̂0 that we assume in our calculations – recall that b̂0

is the effective weight on the prospect theory terms in (9) – these terms make up only 12% of

the value of the overall objective function. As such, even if investors put only modest weight

on prospect theory in their decision-making, the effect on asset prices can be substantial.

7 Conclusion

As a highly influential model of risk attitudes, prospect theory has the potential to shed light

on investor behavior. However, despite years of effort, a basic question about the theory’s

implications for asset prices remains unanswered: What does it predict about the relative

average returns of different types of assets? In this paper, we answer this question, and

in particular show that prospect theory can help explain a majority of 23 prominent stock

market anomalies.

Our paper joins a growing body of work that shows that prospect theory is useful for

thinking about a wide range of facts in finance. It also shows that a framework that is deeply

rooted in psychology can nonetheless make clear quantitative predictions. We are not aware

of a previous effort to use a behavioral model to make quantitative predictions about a large

number of stock market anomalies, but our analysis shows that this goal can be achieved.

We expect to see much more finance research that is both psychological and quantitative in

the years ahead.
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Table 1. Stock market anomalies.

Anomaly Abbreviation
Idiosyncratic volatility IVOL
Market capitalization SIZE
Value VAL
Expected idiosyncratic skewness EISKEW
Momentum MOM
Failure probability FPROB
O-Score OSC
Net stock issuance NSI
Composite equity issuance CEI
Accrual ACC
Net operating assets NOA
Gross profitability PROF
Asset growth AG
Return on assets ROA
Investment INV
Maximum daily return MAX
Organizational capital ORGCAP
Long-term reversal LTREV
External finance XFIN
Short-term reversal STREV
Difference of opinion DOP
Post-earnings announcement drift PEAD
Capital gain overhang CGO
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Table 3. The first column lists 23 anomalies; the acronyms are defined in Ta-
ble 1. The remaining columns report, for each anomaly, the model-predicted
annual alpha in percent for anomaly deciles 1 and 10; the model-predicted
alpha spread between these two deciles; and the empirical alpha spread be-
tween the two deciles. The horizontal lines in the table divide the anomalies
into three groups: the 14 anomalies where the model performs well (top
group); the two anomalies where the model does not make a strong pre-
diction (middle group); and the seven anomalies where the model performs
poorly (bottom group).

Anomaly Model alpha Model alpha Model Empirical
Decile 1 Decile 10 alpha spread alpha spread

CGO –15.79 1.53 17.32 11.95
MOM –12.52 2.0 14.52 23.26
FPROB 0.51 –12.8 –13.3 –18.82
ROA –8.27 1.04 9.31 10.39
IVOL 0.34 –8.44 –8.78 –17.99
MAX 1.23 –6.6 –7.84 –13.71
EISKEW 0.03 –5.22 –5.25 –6.48
OSC -4.1 0.34 4.44 10.32
XFIN 0.57 –3.79 –4.36 –11.91
PROF –2.71 0.94 3.65 6.43
PEAD –2.3 0.96 3.26 7.12
CEI 0.31 –2.37 –2.68 –9.06
NSI 0.26 –1.95 –2.21 –9.23
DOP 0.42 –1.65 –2.07 –9.46

NOA –0.14 –0.88 –0.74 –7.76
ORGCAP –0.14 –0.41 –0.27 6.06
INV –3.15 –1.31 1.84 –7.8
SIZE –2.61 –0.27 2.34 –1.76
ACC –3.92 –1.02 2.89 –8.35
AG –4.0 –1.07 2.93 –8.28
STREV –6.19 0.6 6.79 –3.57
VAL 0.6 –6.24 –6.85 5.79
LTREV –8.19 0.42 8.61 –4.7
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Table 4. The table reports the average absolute monthly pricing error across
the 23 anomalies for the prospect theory model of Section 3 and for five
factor models: the CAPM; the Fama-French three-factor model; the Carhart
four-factor model; the Fama-French five-factor model; and a six-factor model
that augments the five-factor model with a momentum factor. For a given
factor model, we compute the alphas of the 23 long-short portfolios that,
for the 23 anomalies, go long the stocks in anomaly decile 1 and short the
stocks in anomaly decile 10; we report the average absolute alpha. For the
prospect theory model, we compute, for the 23 anomalies, the difference in
the empirical and theoretically-predicted average return of the 23 long-short
portfolios; we report the average absolute return difference.

Model Average absolute pricing error
Prospect theory 0.57
CAPM 0.82
Three-factor model 0.83
Four-factor model 0.55
Five-factor model 0.47
Six-factor model 0.31
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Figure 1. The left panel plots the value function proposed by Tversky and Kahne-
man (1992) as part of their cumulative prospect theory, namely, v(x) = xα for x ≥ 0
and v(x) = −λ(−x)α for x < 0, for α = 0.5 and λ = 2.5. The right panel plots the
probability weighting function proposed by Tversky and Kahneman (1992), namely,
w(P ) = P δ/(P δ + (1 − P )δ)1/δ, for three different values of δ. The dashed line
corresponds to δ = 0.4, the solid line to δ = 0.65, and the dotted line to δ = 1.
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Figure 2. Each graph plots 230 asterisks, where each asterisk corresponds to one
of 10 deciles for one of 23 anomalies. In the top-left graph, a given asterisk that
corresponds to some anomaly decile marks the standard deviation of returns and the
return skewness of the typical stock in that anomaly decile. In the top-right graph,
each asterisk marks the standard deviation of returns and the capital gain overhang
of the typical stock in some anomaly decile. In the bottom-left graph, each asterisk
marks the return skewness and capital gain overhang of the typical stock in some
anomaly decile.
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Figure 3. The graph shows that investors have identical holdings of each stock
in momentum decile 1. The solid line plots the value of an investor’s objective
function in equilibrium as a function of θ1, the (scaled) fraction of the investor’s
portfolio allocated to stock 1, which belongs to momentum decile 1. The function
has a unique global maximum at the point where θ1 equals the weight of stock 1 in
the market portfolio, namely 1.86× 10−4.
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Figure 4. The graph shows that investors have heterogeneous holdings of each
stock in momentum decile 10. The solid line plots the value of an investor’s objective
function in equilibrium as a function of θ901, the (scaled) fraction of the investor’s
portfolio allocated to stock 901, which belongs to momentum decile 10. The function
has two global maxima which straddle the weight of stock 901 in the market portfolio,
namely 7.26 × 10−4. The dashed and dash-dot lines plot the mean-variance and
prospect theory components of the objective function, respectively; the solid line is
the sum of the dashed and dash-dot lines.
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Figure 5. The graphs present results for four of the anomalies where the prospect
theory model performs well: the momentum, failure probability, idiosyncratic
volatility, and gross profitability anomalies. The dashed lines in the graphs plot
the historical annual alpha of each anomaly decile. The solid lines plot the alphas
predicted by the model.
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Figure 6. The graphs present results for four of the anomalies where the prospect
theory model performs well: the expected idiosyncratic skewness, return on assets,
maximum daily return, and capital gain overhang anomalies. The dashed lines in
the graphs plot the historical annual alpha of each anomaly decile. The solid lines
plot the alphas predicted by the model.
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INTERNET APPENDIX

A. The probability weighting terms

Here, we provide the full expressions for the dw(P (Ri)) and dw(1− P (Ri)) terms which

appear in (11), (16), and (20). We can write

dw(P (Ri)) =
dw(P (Ri))

dP (Ri)

dP (Ri)

dRi
dRi.

By differentiating the probability weighting function in (6), and using P as shorthand for

P (Ri), we can write the right-hand side above as

δP δ−1(P δ + (1− P )δ)− P δ(P δ−1 − (1− P )δ−1)

(P δ + (1− P )δ)1+
1

δ

p(Ri)dRi,

where the probability density function p(Ri) is given in (12). Similarly,

dw(1− P (Ri)) =
dw(1− P (Ri))

dP (Ri)

dP (Ri)

dRi
dRi

= −
δ(1 − P )δ−1(P δ + (1− P )δ)− (1− P )δ((1− P )δ−1 − P δ−1)

(P δ + (1− P )δ)1+
1

δ

p(Ri)dRi.

B. The form of the utility function in the case of shorting

In the model, investors are allowed to sell short. If an investor sells short risky asset i,

so that Θi < 0 and hence θi < 0, the expression in equation (11) is modified as

W α
0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Ri − Rf) + Θi,−1gi)

αdw(P (Ri))

+λW α
0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Rf − Ri)−Θi,−1gi)
αdw(1− P (Ri)).

In the same way, the prospect theory terms in equation (20) become

b̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Ri − Rf) + θi,−1gi)

αdw(P (Ri))

+λb̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Rf − Ri)− θi,−1gi)

αdw(1− P (Ri)).
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C. The Generalized Hyperbolic (GH) Skewed t distribution

In our model, the vector of asset returns R̃ = (R̃1, . . . , R̃N)
′ follows an N -dimensional

GH skewed t distribution. The density function for this distribution is

p(R) =
21−

ν+N
2

Γ(ν
2
)(πν)

N
2 |S|

1

2

.
K ν+N

2

(
√
(ν + (R− µ)′S−1(R− µ))ζ ′S−1ζ) exp((R− µ)′S−1ζ)

(√
(ν + (R− µ)′S−1(R− µ))ζ ′S−1ζ

)− ν+N
2

(1 + (R− µ)′S−1(R − µ)/ν)
ν+N

2

,

for ζ �= 0

p(R) =
Γ(ν+N

2
)

Γ(ν
2
)(πν)

N
2 |S|

1

2

.(1 + (R− µ)′S−1(R− µ)/ν)−
ν+N

2 , for ζ = 0, (32)

where Γ(·) is the Gamma function and Kl is the modified Bessel function of the second kind

with order l.

The above distribution has four parameters: µ, S, ζ , and ν. Here, µ = (µ1, . . . , µN)
′, the

vector of location parameters, helps to determine the mean of the distribution; S = {Sij},

the dispersion matrix, controls the dispersion in returns; ζ = (ζ1, . . . , ζN)
′, the vector of

asymmetry parameters, governs the skewness of returns; and ν, a degree of freedom scalar,

affects the heaviness of the tails of the distribution. The mean of the distribution is

µ+
ν

ν − 2
ζ . (33)

For our computations, we need only the marginal distribution of each asset’s return; this

is the one-dimensional GH skewed t distribution in equation (12). In that equation, µi and

ζi are the i’th elements of the vectors µ and ζ , respectively, while Si is the i’th diagonal

element of S.

D. Rescaling the decision problem

Substituting the definitions in (19) into (16) and multiplying the resulting expression by

the exogenous parameter Θ−1
M,R, we obtain

θi(µi +
νζi

ν − 2
− Rf )−

γ̂

2
(θ2i σ

2
i + 2

∑

j �=i

σijθiθM,j)

−λb̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Rf − Ri)− θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Ri − Rf) + θi,−1gi)

αdw(1− P (Ri)), (34)
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where

γ̂ = γW0ΘM,R, b̂0 = b0W
α−1
0 Θα−1

M,R.

It follows that if Θi maximizes (16), then θi = Θi/ΘM,R maximizes (34), and conversely

that if θi maximizes (34), then Θi = θiΘM,R maximizes (16). Maximizing (16) is therefore

equivalent to maximizing (34).

The rescaling also allows us to simplify the variance term in the first row of (34). Specif-

ically, the quantity ∑

j �=i

θM,jσij

can be rewritten as

−θM,iσ
2
i +

∑

j

θM,jσij = −θM,iσ
2
i + cov(R̃i, R̃M ) = −θM,iσ

2
i + βiσ

2
M ,

where R̃M is the return on the market portfolio of all risky assets, σM is the standard

deviation of this return, and βi is the beta of asset i. Substituting this into (34) leads to the

expression in (20).

E. Procedure for computing expected returns

The equilibrium structure we consider – a bounded-rationality equilibrium with het-

erogeneous holdings – consists of a location vector (µ1, . . . , µN)
′ such that, for each i, the

expression in (20) has either a unique global maximum at θ∗i = θM,i or else two global maxima

at θ∗i and θ∗∗i with θ∗i < θM,i < θ∗∗i .

We now explain how we compute this heterogeneous-holdings equilibrium. For a given

risky asset i, we first check whether investors have identical holdings in that asset, in other

words, whether they all hold the same per-capita market supply θM,i. To do this, we take

the first derivative of (20), substitute in θi = θM,i, and set the resulting expression to 0. This

gives32

0 = (µi +
νζi

ν − 2
− Rf)− γ̂βiσ

2
M

−αλb̂0

∫ Rf−θi,−1gi/θi

−∞
(θM,i(Rf −Ri)− θi,−1gi)

α−1(Rf − Ri)dw(P (Ri))

−αb̂0

∫ ∞

Rf−θi,−1gi/θi
(θM,i(Ri −Rf ) + θi,−1gi)

α−1(Ri − Rf )dw(1− P (Ri)). (35)

32As discussed in Section 4, we take θi,−1 = θM,i, which further simplifies (35).

59



We then check whether, for the µi that solves (35), the function in (20) has a global maximum

at θi = θM,i, as opposed to only a local maximum or a local minimum. If θi = θM,i indeed

corresponds to a global maximum, then all investors have identical holdings of risky asset

i, each holding the per-capita supply of the asset, namely θM,i. If the function in (20) does

not have a global maximum at this θi, then, in equilibrium, investors do not have identical

holdings of asset i. We must instead look for an equilibrium with heterogeneous holdings.

To find an equilibrium with heterogeneous holdings of asset i, we search for a value of

µi such that the maximum value of the function in (20) in the range (−∞, θM,i), attained

at θi = θ∗i , say, is equal to the maximum value of the function in the range (θM,i,∞),

attained at θi = θ∗∗i . If we find such a µi, then there is an equilibrium where investors have

heterogeneous holdings of the asset, with some investors allocated to θi = θ∗i and others

allocated to θi = θ∗∗i . The value of µi for which this holds is typically close to the value of µi

that solves the first-order condition (35). Therefore, if we find that, for the value of µi that

solves (35), the function in (20) does not have a global maximum at θi = θM,i, we search in

the neighborhood of that µi for an equilibrium with heterogeneous holdings.

F. Stock market anomalies

Here, we list the predictor variable associated with each of the 23 anomalies that we

study.

IVOL. Idiosyncratic volatility. Standard deviation of the residuals from a firm-level regression

of daily stock returns on the daily Fama-French three factors using data from the past month.

See Ang et al. (2006).

SIZE. Market capitalization. The log of the product of price per share and number of shares

outstanding, computed at the end of the previous month.

VAL. Book-to-market. The log of book value of equity scaled by market value of equity, com-

puted following Fama and French (1992) and Fama and French (2008); firms with negative

book value are excluded from the analysis.

EISKEW. Expected idiosyncratic skewness, computed as in Boyer, Mitton, and Vorkink

(2010).

MOM. Momentum. Measured at time t as the stock’s cumulative return from the start of

month t− 12 to the end of month t− 2.

FPROB. Failure probability. Estimated using a dynamic logit model with both accounting
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and equity market variables as explanatory variables. See Campbell, Hilscher, and Szilagyi

(2008).

OSC. O-Score. Uses accounting variables to estimate the probability of bankruptcy. See

Ohlson (1980).

NSI. Net stock issuance. Growth rate of split-adjusted shares outstanding over the previous

fiscal year. See Stambaugh, Yu, and Yuan (2012).

CEI. Composite equity issuance. Five-year change in number of shares outstanding, exclud-

ing changes due to dividends and splits. See Daniel and Titman (2006).

ACC. Accruals. See Sloan (1996).

NOA. Net operating assets. See Hirshleifer, Hou, Teoh, and Zhang (2004).

PROF. Gross profitability. Measured as revenue minus cost of goods sold at time t, divided

by assets at time t− 1. See Novy-Marx (2013).

AG. Asset growth. Percentage change in total assets over the previous year. See Cooper,

Gulen, and Schill (2008).

ROA. Return on assets. Income before extraordinary items divided by total assets. See

Stambaugh, Yu, and Yuan (2012).

INV. Investment to assets. The annual change in gross property, plant, and equipment plus

the annual change in inventory, scaled by the lagged book value of assets. See Stambaugh,

Yu, and Yuan (2012).

MAX. A stock’s maximum one-day return in month t − 1. See Bali, Cakici, and Whitelaw

(2011).

ORGCAP. Organizational capital. See Eisfeldt and Papanikolaou (2013).

LTREV. Long-term reversal. The stock’s cumulative return from the start of month t− 60

to the end of month t− 13.

XFIN. External finance. Total net external financing scaled by total assets. See Bradshaw,

Richardson, and Sloan (2006).

STREV. Short-term reversal. The stock’s return in month t− 1.

DOP. Difference of opinion. The standard deviation of earnings forecasts (unadjusted IBES
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file, item STDEV) divided by the absolute value of the consensus mean forecast (unadjusted

file, item MEANEST). We use the forecasts for the current fiscal year. See Diether, Malloy,

and Scherbina (2002).

PEAD. Post-earnings announcement drift. Measured as standardized unexpected earnings:

the change in the quarterly earnings per share from its value four quarters before divided by

the standard deviation of this change in quarterly earnings over the previous eight quarters.

See Foster, Olsen, and Shevlin (1984).

CGO. Capital gain overhang. The average percentage capital gain since purchase across

investors in a stock, computed as in Grinblatt and Han (2005).

G. Attitudes to gambles

When we implement the model, we set investors’ scaled portfolio risk aversion γ̂ and

scaled weight on the prospect theory term b̂0 to produce reasonable values for two market

data points: the equity premium and the level of under-diversification in household portfolios.

It is useful to check that the values of these parameters, namely (γ̂, b̂0) = (0.6, 0.6), also

generate sensible attitudes to small- and large-scale gambles.

Suppose that, at time 0, an investor in our economy is endowed with a symmetric gamble:

a 50:50 bet to gain $M or lose $M . What is the largest cash “premium” the investor would

be willing to pay to avoid this gamble? For simplicity, we assume that the premium payment

and gamble outcomes occur at time 1. If the investor takes the gamble, his time 0 utility

changes by

−
γ

2
M2 − b0(λ− 1)w

(
1

2

)
Mα, (36)

where γ = γ̂/W0ΘM,R and b0 = b̂0/W
α−1
0 Θα−1

M,R. If he instead pays a premium π at time 1,

his utility changes by

−π − b0λπ
α. (37)

The maximum amount he is willing to pay to avoid the gamble is therefore the value of π

that equates (36) and (37).

Using equations (36) and (37), we confirm that, for γ̂ = b̂0 = 0.6, the model satisfies the

restrictions on attitudes to small- and large-scale gambles proposed by Barberis and Huang

(2008b).

We can also examine investor attitudes to the gamble (−$M, 1
2
; $X, 1

2
). If an investor
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takes this gamble, his utility changes by

X −M

2
− γ

(X +M)2

8
− b0w

(
1

2

)
(λMα −Xα). (38)

By setting this expression equal to zero, we can compute how high X needs to be, for a

given M , for the investor to be indifferent to the gamble. We confirm that, for γ̂ = b̂0 = 0.6,

the model captures the restrictions on attitudes to small- and large-scale gambles proposed

by Barberis, Huang, and Thaler (2006): that, for a wide range of wealth levels, the investor

rejects the gamble (−$500, 1
2
; $550, 1

2
) and accepts the gamble (−$10000, 1

2
; $20, 000, 000, 1

2
).

Finally, we confirm, using a similar methodology, that for γ̂ = b̂0 = 0.6, the model

captures the basic experimental evidence in Kahneman and Tversky (1979) that motivates

prospect theory, including the rejection of (−$100, 1
2
; $110, 1

2
); the preference for (−$1000, 1

2
)

over −$500; and the preference for ($5000, 0.001) over $5.

H. Additional details about the equilibrium structure

Here, we present some additional information about the equilibrium structure illustrated

in Figures 3 and 4. We explain why, for some stocks – for example, for stocks in momentum

decile 10 – there is no equilibrium with identical holdings for these stocks. We also explain

why, for other stocks – for example, stocks in momentum decile 1 – there is no equilibrium

with heterogeneous holdings for these stocks. Finally, we contrast the heterogeneous holdings

that arise in our model with those in the model of Barberis and Huang (2008a).

No equilibrium with identical holdings for momentum decile 10 stocks. The solid line in

Figure 4 shows that, for any stock in momentum decile 10 – for example, for stock 901 –

investors have heterogeneous holdings in the stock. To see why there is no equilibrium with

identical holdings in this stock, consider Figure A2. The solid line in this figure is the same

as the solid line in Figure 4: it plots the objective function in (20) for the location parameter

µ901 = 0.5853. The dashed line in the figure plots the function in (20) for µ901 = 0.588.

For this higher value of µ901, the function has a unique global maximum at θ901 = 0.14

> θM,901 = 7.26× 10−4. Since demand for stock 901 exceeds supply at this value of µ901, it

appears that, to clear the market, we need to lower the value of µ901. However, as we do so,

the value of θ901 at which the function attains its maximum jumps discontinuously downward:

the dash-dot line, which plots the objective function for a slightly lower value of µ901, namely

0.582, shows that the unique maximum is now at θ901 = 0 < θM,901. As such, there is no

value of µ901 such that the function in (20), for i = 901, has a unique global maximum at

θ901 = θM,901. Instead, the market clears only by way of the heterogeneous-holdings structure
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represented by the solid line.

No equilibrium with heterogeneous holdings for momentum decile 1 stocks. For a stock

in momentum decile 1 – for example, for stock 1 – the investors in our model have identical

holdings. Why do heterogeneous holdings not arise in this case? This stock has a loss at

time 0 and, in part because of this, has a low expected return. One could then imagine

a heterogeneous-holdings structure of the following form. Some investors choose a positive

allocation in the stock: since they are in the convex region of the prospect theory value

function, they are keen to take risk. Other investors choose a negative allocation in the

stock to exploit its low expected return.

Figure 3 shows that the model comes close to delivering such an equilibrium: the objective

function has two local maxima, one in the positive domain and one in the negative domain,

which are driven by precisely the forces in the previous paragraph. However, the local

maximum in the negative domain has a lower utility level, and so there is a unique global

maximum. The reason it has a lower utility level is that, by shorting the stock, the investor

is exposing himself to high negative skewness, which he finds aversive.

Can a heterogeneous-holdings structure be achieved by lowering the stock’s expected

return below the level used in Figure 3? Doing so can indeed give the two local maxima the

same utility level. However, the market then no longer clears. As we lower the expected

return, the allocation corresponding to the local maximum in the positive domain falls below

the market supply. Since the allocations corresponding to the two local maxima are both

lower than the market supply, the market no longer clears. In equilibrium, then, the objective

function has a unique global maximum and all investors have identical holdings in the stock.

Comparison with the heterogeneous holdings in Barberis and Huang (2008a). An equi-

librium with two global maxima also arises in the prospect theory model of Barberis and

Huang (2008a). However, the economic forces underlying that equilibrium are different from

those that drive the two global maxima in our model. Similar to our model, the model of

Barberis and Huang (2008a) features all the elements of prospect theory; however, it differs

from our model in that it does not account for investors’ prior gains and losses and assumes

broad, rather than narrow, framing. Barberis and Huang (2008a) show that, if a positively-

skewed security is introduced into the economy, it earns a negative expected excess return.

The two global maxima correspond to a zero allocation in this skewed asset and a large

undiversified position in it. The economic force underlying the zero allocation is the skewed

asset’s low expected return; the economic force underlying the high allocation is that, by

adding a significant position in the skewed asset to his portfolio, an investor can make his

portfolio return more positively skewed, something that, due to probability weighting, he
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finds attractive.

The mechanism behind the equilibrium structure in Barberis and Huang (2008a) does

not arise in our model because it hinges on the broad framing assumption; we assume narrow

framing. Importantly, the mechanism in our paper does not arise in Barberis and Huang

(2008a). The lower optimum in Figure 4 reflects investors’ desire to preserve a prior gain.

This does not apply in the model of Barberis and Huang (2008a) because that model does

not account for investors’ prior gains and losses.

I. Earnings announcement analysis

The model performs poorly for some anomalies. One possible reason for this is that

some anomalies – we label them “belief-based” anomalies – may be driven not by investor

risk attitudes but by incorrect beliefs about firms’ future prospects. Below, we identify the

anomalies that are more likely to be belief-based by computing, for each anomaly, the fraction

of the return spread between deciles 1 and 10 that is earned in the five days around firms’

earnings announcement dates – in other words, on days when investors’ erroneous beliefs

would be corrected by realized earnings; we call an anomaly belief-based if this fraction is

large. We conjecture that the prospect theory model will do poorly for anomalies that are

belief-based and well for anomalies that are not.

We find strong support for this conjecture. For five of the seven anomalies where the

model performs poorly – the value, investment, long-term reversal, accrual, and asset growth

anomalies – a large fraction of the anomaly return spread comes around earnings announce-

ment dates. Meanwhile, for several of the anomalies where the model performs well, little or

none of the overall spread comes around these dates.

Our analysis is summarized in Table A2. Column A reports the monthly return spread

for each anomaly – the return difference between decile 10 and decile 1 – in the full sample

from 1963 to 2015. Column B reports the return spread predicted by our model. Column C

quantifies the performance of the model – how well it explains an anomaly – as the ratio of

column B to column A: a positive number indicates that the model is helpful for thinking

about an anomaly; a negative number means that it is not.

Columns D to H summarize the earnings announcement results. Due to data availability,

we conduct this analysis in a shorter sample which starts in the second quarter of 1983.

Column D reports the equal-weighted return spread of each anomaly in this sample period.

Column E reports, for each anomaly, the difference between decile 10 and decile 1 in the

cumulative abnormal returns of the underlying firms in the five days around their earnings
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announcements – put simply, the part of the return spread that comes around earnings

announcements. To do this calculation, we obtain earnings announcement dates from the

quarterly Compustat and Institutional Brokers’ Estimate System (IBES). When the an-

nouncement dates in the two databases are not the same, we follow DellaVigna and Pollett

(2009) and use the earlier of the two dates.

Column F reports the ratio of column E to column D, in other words, the fraction of

the return spread that comes in the days around earnings announcements; the higher this

number, the more likely that the anomaly is belief-based. We note two outliers in this

column, for SIZE and EISKEW; the extreme values for these anomalies are due to their

low return spreads in the post-1983 sample period. In column G, we winsorize the entries

for these two anomalies, although our results do not depend on this. Finally, in column H,

we construct a dummy variable which takes the value 1 if the number in column G exceeds

0.5, in other words, if more than half of an anomaly’s return spread comes around earnings

announcement dates. Using our terminology, a value of 1 indicates an anomaly that is likely

to be belief-based.

Our conjecture is that the prospect theory model will perform better for anomalies that

are not belief-based, and worse on anomalies that are. Put differently, the numbers in column

C will be negatively correlated with the numbers in column G. We find strong support for

this conjecture. The correlation is −0.571, which differs from zero in a highly significant

way.

J. Beliefs about skewness and the value and size anomalies

In Section I of the Internet Appendix, we discuss one reason why the model performs

poorly for some anomalies: in most cases, these anomalies appear to be driven primarily by

incorrect beliefs about firms’ future performance rather than by risk attitudes of the kind

captured by prospect theory.

There is another possible explanation for the model’s poor performance on some anoma-

lies, one that applies within the context of the model. When computing the model’s pre-

dictions for anomaly alphas – the predictions in Table 3 and Figures 5-6 – we assumed that

investors have sensible beliefs about the key model inputs: stocks’ volatility, skewness, and

gain overhang. However, investors may have incorrect beliefs about these quantities, which

may explain the model’s poor performance on some anomalies.

We examine this idea in the context of the value and size anomalies. Empirically, value

stocks are more volatile than growth stocks, more skewed than growth stocks, and trade at
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a larger loss than growth stocks. As a consequence, our model fails to explain the value

anomaly: the greater volatility of value stocks leads the model to predict a higher average

return on them, but their higher skewness and more negative gain overhang leads the model

to predict a lower average return on them, and the latter effect dominates.

However, real-world investors may think that it is growth stocks that are more highly

skewed than value stocks. If the model takes account of such incorrect beliefs, it will predict

a higher (lower) average return on value (growth) stocks, bringing its prediction more in line

with the empirical facts. We now examine just how incorrect beliefs about skewness would

need to be to generate a substantially positive value premium.

The empirical skewness levels of the typical stocks in the ten value anomaly deciles are

given by the vector

skew value = [1.85; 1.92; 2.05; 2.43; 2.05; 2.2; 2.34; 2.31; 2.97; 2.66];

value stocks (decile 10) have higher skewness than growth stocks (decile 1). We now construct

a vector of incorrect beliefs about the skewness of the typical stocks in the ten anomaly

deciles, namely

skew value incorrect = skew value+ k [1;
7

9
;
5

9
;
3

9
;
1

9
;−

1

9
;−

3

9
;−

5

9
;−

7

9
;−1],

where k > 0. This construction leads investors to over-estimate the skewness of growth

stocks and to under-estimate the skewness of value stocks while leaving their belief about

the skewness of the average stock unaffected.

We search for the lowest value of k that leads the model to generate a substantially pos-

itive value premium, in other words, one that, by the criterion in (28), would lead us to say

that the model can help explain the value premium. We find that this value of k is approx-

imately 1.8. For this k, investors believe that the skewness of decile 1 growth stocks is 3.65

and that the skewness of decile 10 value stocks is 0.86. If investors have sufficiently distorted

perceptions of stocks’ skewness, then, the model can generate a substantially positive value

premium. We leave it to future research to determine whether real-world investors hold such

distorted beliefs about skewness.

We conduct a similar exercise for the size anomaly. Empirically, small-cap stocks are

much more highly skewed than large-cap stocks, and this is a major reason why the model

incorrectly predicts a negative size premium. However, it is possible that investors under-

estimate the skewness of small-cap stocks, and that, once we take this into account, the
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model will predict a positive size premium. Here, we investigate how distorted investors’

perception of the relative skewness of small-cap and large-cap stocks would need to be to

generate a positive size premium.

The empirical skewness levels of the typical stocks in the ten size anomaly deciles are

given by

skew size = [4.27; 1.89; 1.65; 1.51; 1.28; 1.07; 1.17; 0.96; 0.93; 0.69];

small-cap stocks (decile 1) have much higher skewness than large-cap stocks (decile 10). We

now construct a vector of incorrect beliefs about the skewness of the typical stocks in the

ten anomaly deciles, namely

skew size incorrect = skew size + k [1;
7

9
;
5

9
;
3

9
;
1

9
;−

1

9
;−

3

9
;−

5

9
;−

7

9
;−1],

where k < 0. This construction leads investors to under-estimate the skewness of small-cap

stocks and to over-estimate the skewness of large-cap stocks while leaving their belief about

the skewness of the average stock unaffected.

We search for the highest value of k that leads the model to predict a positive size

premium of 1.5% – a size premium that, by the criterion in (28), would lead us to say that

the model can help explain the size anomaly. We find that this value of k is approximately

−1.9. For this k, investors believe that the skewness of decile 1 small-cap stocks is 2.37

and that the skewness of decile 10 large-cap stocks is 2.59. If investors have sufficiently

distorted perceptions of stocks’ skewness – if they perceive small-cap and large-cap stocks to

have fairly similar skewness levels – then the model can generate a substantially positive size

premium. Again, we leave it to future research to determine whether real-world investors

hold such distorted beliefs.

K. Investor heterogeneity

To keep the model tractable, we assume that, at time 0, all investors have the same prior

gain gi in stock i. What happens if we allow for heterogeneity across investors in their prior

gains? While it is not possible to study heterogeneity in a fully general way, our model does

allow us to consider simple forms of heterogeneity. The outcome of this exercise is reassuring:

the model predictions are quite robust to heterogeneity in investors’ prior gains.

Take, for example, momentum decile 10. The gain overhang of the typical stock in

this decile is 30.98%. Accordingly, in our main analysis, we assume that, for this stock,

all investors have the same prior gain of 30.98%, an assumption that leads the model to
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predict an expected return of 8.54% for the stock. Suppose instead that, for this stock, half

of the investors have a gain of 30.98 − 10 = 20.98% while the other half have a gain of

30.98 + 10 = 40.98%. There is then an equilibrium in which the objective function for the

40.98-gain investors has a single global optimum at θ∗i = 1.19 × 10−4 < θM,i = 7.26× 10−4,

while the objective function for the 20.98-gain investors has two global optima at θ∗i =

6.02× 10−5 < θM,i and θ∗∗i = 0.109 > θM,i. In equilibrium, the stock has an expected return

of 8.42%. As such, heterogeneity affects the expected return, but in a minor way.

For momentum decile 1, where investors have identical holdings of each stock, the impact

of heterogeneity is even smaller. The gain overhang of the typical stock in this decile is

−45.02%. In our main analysis, we assume that all investors have the same prior gain of

−45.02% in the stock, and this leads to a predicted expected return of −6.80%. Suppose

that we instead assume that half of the investors have a gain of −45.02−10 = −55.02% while

the other half have a gain of −45.02 + 10 = −35.02%. In this case, there is an equilibrium

in which the objective function of the −55.02-gain investors has a single global optimum at

θ∗i = 2.26× 10−4 > θM,i = 1.86× 10−4, while that for the −35.02-gain investors has a single

global optimum at θ∗i = 1.46× 10−4 < θM,i. The predicted expected return is the same as in

the equilibrium with identical investors, namely −6.80%.

The fact that heterogeneity in gi has a relatively small impact on our results immediately

implies that heterogeneity in Θi,−1, investors’ time−1 allocation to risky asset i, will also have

a small impact: equation (10) shows that allowing for heterogeneity in Θ−1 is mathematically

equivalent to allowing for heterogeneity in g. This helps explain why, as discussed in Section

L of the Internet Appendix, our conclusions are robust to endogenizing investors’ initial

holdings.

L. Endogenizing investors’ initial holdings

When we compute the model’s predicted alphas, we set investors’ initial stock holdings

at time −1 equal to stocks’ market weights: θi,−1 = θM,i for all i. Are our conclusions robust

to endogenizing the initial holdings? The answer turns out to be “yes”.

To illustrate the results, we take an anomaly that the model can help explain, but not

by a wide margin: the gross profitability anomaly. For this anomaly, conditions (28) are

satisfied, but only narrowly so. We want to see if, for this anomaly, conditions (28) continue

to hold even after we endogenize the initial holdings.

We start with anomaly decile 1. To endogenize the initial holdings of a stock i in this

decile, we search for a value of the location parameter µi that clears the market at time −1
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for the objective function in (20) when gi = 0; the last condition captures the fact that, when

an investor first buys the stock, he has no prior gain in it. We find that the market-clearing

location parameter is µi = 0.3682. For this value of µi, the objective function in (20) has

two global maxima, θ∗i = 0 and θ∗∗i = 0.0466. These straddle the market supply of the stock,

allowing us to clear the market by allocating some investors to the first maximum and the

remaining investors to the second maximum. These, then, are investors’ initial holdings.

We now move to time 0. The typical stock in decile 1 of this anomaly has a capital loss

at this time. We find that µi = 0.3682 no longer clears the market. The reason is that the

investors with an initial holding of 0.0466 now have a substantial prior loss; since they are

firmly in the convex region of the prospect theory value function, they want to take a large

position in the stock – so large that the market no longer clears. Through a manual search,

we find that the market now clears for a different location vector, µi = 0.3407. For this value

of µi, the objective function in (20) has a single global maximum at θi = 0 when θi,−1 = 0,

and a single global maximum at θi = 0.0466 when θi,−1 = 0.0466. The investors are therefore

happy to maintain their time −1 positions and the market clears. The predicted alpha is

−1.89%.

We now turn to decile 10. To endogenize the initial holdings of a stock i in this decile, we

again search for a value of the location parameter µi that clears the market at time −1 for

the objective function in (20) when gi = 0. We find that the market clears for µi = 0.5432.

For this value of µi, the objective function has two global maxima at θ∗i = 0 and θ∗∗i = 0.063,

which become investors’ initial holdings. We now move to time 0. At this time, the typical

stock in decile 10 has a capital gain. We find that the market clears for the same value of µi,

namely µi = 0.5432. For this µi, the investors who had initial holdings of θi,−1 = 0.063 now

choose θi = 0: they have large gains that they want to secure. Meanwhile, the investors with

initial holdings of θi,−1 = 0 are still indifferent between θi = 0 and θi = 0.063. By allocating

some of them to each maximum, we can clear the market. The alpha is 0.83%.

The overall alpha spread for this anomaly with endogenized initial holdings is therefore

2.73%, and so the conditions in (28) remain satisfied: the model again helps to explain this

anomaly.

After conducting this exercise for all 23 anomalies, we obtain the same conclusion as

for the benchmark model: the model can again explain 14 of the 23 anomalies – the 14

anomalies in the top group in Table 3. Moreover, the model continues to perform well in

terms of average absolute pricing error: it has a pricing error of 0.594, which is again better

than the pricing error for the CAPM (0.82) or the three-factor model (0.83) and similar to

the pricing error for the four-factor model (0.55). These results reflect the fact that the
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model’s mechanisms, and hence its predictions, are not very sensitive to investors’ initial

holdings.

M. Testing the model on another set of anomalies

In Section 5, we use the prospect theory model to generate predictions about the 23

anomalies in Table 1 and conclude that the model is helpful for thinking about a majority

of the anomalies. However, we want to be sure that this conclusion is not special to this

particular set of anomalies.

After completing the analysis in Section 5, we came across another set of 23 anomalies –

one constructed by Novy-Marx and Velikov (2016) [NMV] to study transaction costs, in other

words, for reasons that have nothing to do with prospect theory. To see if our conclusion in

Section 5 is robust, we use our model to generate predicted alphas for the 230 NMV anomaly

deciles. The results reinforce our conclusion in Section 5. By the criterion in (28), the model

can help explain 13 of the 23 NMV anomalies, a very similar fraction to that reported in

Section 5, where we find that the model can help explain 14 of the 23 anomalies in Table 1.

The left column of Table A3 lists the 23 NMV anomalies. The NMV anomalies and the

anomalies in Table 1 have 12 anomalies in common; we identify these common anomalies

by listing their acronyms in the second column. The third and fourth columns in the table

report, for each anomaly, the model-predicted alpha spread – the difference in alphas between

anomaly decile 10 and anomaly decile 1, αm(10) − αm(1) – and also the empirical alpha

spread, αd(10)−αd(1). The 13 anomalies that the model can help explain, per the criterion

in (28), are in the top part of the table; the remaining anomalies are in the lower part of the

table.

N. Explaining time variation in anomaly alphas

To predict the expected return of the typical stock in an anomaly decile, our model

requires three main inputs: the stock’s volatility, skewness, and gain overhang. In Sections

4 and 5, we estimate these inputs over the full sample from 1963 to 2015 and then compare

the model-predicted alphas to the empirical alphas in this sample period. We find that the

model is helpful for thinking about 14 of the 23 anomalies.

Can the model also explain variation over time in the alphas of these 14 anomalies? To

answer this, we divide the full sample into four equal subperiods. For each anomaly decile,

we use the procedure described in Section 4 to estimate the volatility, skewness, and gain
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overhang of the typical stock in this decile for each of the four subperiods – in other words,

using only data from the first subperiod; only data from the second subperiod; and so on.

For each subperiod in turn, we use these inputs to generate model-predicted alphas for each

anomaly decile in that subperiod.

To see if our model can explain some of the time variation in the empirical alphas, we

proceed as follows. For each of the 14 anomalies, we compute its empirical alpha spread –

the difference in the alphas of anomaly decile 10 and anomaly decile 1 – in each of the four

subperiods, and also its model-predicted alpha spread in each of the four subperiods. We

then run a regression of the empirical spreads on the model-predicted spreads. In order to

focus on the model’s ability to explain time variation in the alphas, we include anomaly fixed

effects. The regression coefficient is positive and highly statistically significant, showing that

the model can indeed explain time variation in anomaly alphas.

Table A4 reports the model-predicted and empirical alpha spreads for the 14 anomalies in

each of the four subperiods. Looking over the table, we can see even without a formal analysis

that the model is helpful for thinking about the time variation in the alphas. For example,

several of the anomalies have substantially higher alpha spreads in the third subperiod, a

pattern that the model is often able to capture and one that it ascribes to more extreme

values of stocks’ volatility, skewness, and gain overhang in this subperiod.

P. Pre- and post-publication alphas

There is currently a lot of interest in out-of-sample anomaly performance – how anomalies

perform after the publication of the journal articles that document them. In this section, we

compare the out-of-sample performance of the anomalies where the prospect theory model

performs well with the out-of-sample performance of the anomalies where it performs poorly.

One hypothesis is that, if the anomalies where the prospect theory model performs well can

be said, as a result, to have a sounder theoretical foundation, they should perform better

out-of-sample than the anomalies where the model performs poorly.

To investigate this, we take the 14 anomalies where the prospect theory model performs

well and, for each one, identify the date on which the article documenting the anomaly

was published. For each anomaly, we compute its alpha spread – the difference in alpha

between its better-performing extreme decile and its worse-performing extreme decile – in

its pre-publication period and also in its post-publication period. Averaged across the 14

anomalies, the pre- and post-publication alpha spreads are 13.8% and 7.86%, respectively,

as shown in the table below. We do the same computation for the seven anomalies where
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the model performs poorly; the pre- and post-publication alpha spreads, averaged across the

seven anomalies, are 9.28% and 1.76%, respectively.

From a casual inspection of the table, we see that the anomalies where the prospect

theory model does well “hold up better” in the post-publication period. For these anomalies,

their post-publication alpha is on average 63% of their pre-publication alpha, while for the

anomalies where the model does poorly, the post-publication alpha is just 26% of the pre-

publication alpha. (To be clear, the 0.63 is the anomaly-by-anomaly ratio of post-publication

alpha to pre-publication alpha, averaged across anomalies – it is not 7.86% divided by 13.8%,

although the difference is small.) These results are consistent with the hypothesis we started

with: if the anomalies where the prospect theory model performs well can be said to have

a stronger theoretical foundation, they should perform better out of sample. The results

are also consistent with the anomalies where prospect theory performs well being harder to

exploit. As discussed in Section 6.5, this is plausible in that the main mispricing generated

by prospect theory investors is the overpricing of volatile, skewed, small-cap stocks – a

mispricing that is hard to arbitrage.

pre-publication post-publication post/pre winsorized

alpha alpha ratio ratio

14 anomalies where the model does well 13.8% 7.86% 0.63 0.53

7 anomalies where the model does poorly 9.28% 1.76% 0.26 0.24

We have examined the statistical significance of the above results. The difference between

the post-/pre-publication ratios, i.e. the difference between 0.63 and 0.26, is not statistically

significant. However, if we apply a reasonable winsorization – one where we constrain the

post-publication alpha spread to be at most 100% and at least 0% of the pre-publication

alpha spread, a restriction that affects four anomalies, namely EISKEW, ACC, SIZE, and

STREV – then the post-/pre-publication ratios become 0.53 and 0.24, which are statistically

different with a t-statistic of 2.16. In addition, the post-publication alpha spreads for the

two groups of anomalies – the 7.86% and the 1.76% – are also statistically different with a

t-statistic of 2.56.

Q. Interaction effects

In this section, we examine whether the prospect theory model can help explain three

interaction effects related to the anomalies in Table 1.

Wang, Yan, and Yu (2017) sorts stocks into quintiles based on their gain overhang, where
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quintile 1 contains the lowest overhang stocks and quintile 5 the highest overhang stocks.

They then further sort stocks into quintiles based on idiosyncratic volatility, computed as

in Ang et al. (2006), where quintile 5 contains the stocks with the highest volatility. Each

stock in the cross-section can then be placed into one of 25 categories, which we label using

the notation (i, j), where i, j ∈ {1, 2, 3, 4, 5}, so that category (i, j) corresponds to the

i’th overhang quintile and j’th idiosyncratic volatility quintile. The authors show that, for

stocks in the lowest overhang quintile, there is a negative relationship between idiosyncratic

volatility and return: the stocks in (1, 5) have a lower average return and alpha than the

stocks in (1, 1). However, for stocks in the highest overhang quintile, there is a positive

relationship between idiosyncratic volatility and return: the stocks in (5, 5) have a higher

average return and alpha than the stocks in (5, 1).

An et al. (2020) conduct a similar double-sort exercise, this time sorting stocks on their

gain overhang and on a measure of skewness such as expected idiosyncratic skewness. They

again create 25 categories, which we again label with the notation (i, j), which corresponds

to the i’th overhang quintile and j’th idiosyncratic skewness quintile. The authors find that,

for the quintile of stocks with the lowest overhang, there is a negative relationship between

idiosyncratic skewness and return: the stocks in (1, 5) have a lower average return and alpha

than the stocks in (1, 1). However, for the stocks in the highest overhang quintile, there is a

positive relationship between idiosyncratic skewness and return: the stocks in (5, 5) have a

higher average return and alpha than those in (5, 1).

Frazzini (2006) also sorts stocks on two dimensions: their gain overhang and the size of

the surprise in their most recent earnings announcement. The 25 resulting categories can

again be labeled with the notation (i, j), which now denotes the i’th overhang quintile and

j’th earnings surprise quintile. The author shows that a strategy that buys stocks with

a positive earnings surprise and high overhang and shorts stocks with a negative earnings

surprise and low overhang has a significantly higher alpha than a strategy that buys stocks

with a positive earnings surprise and low overhang and shorts stocks with a negative earnings

surprise and high overhang. In other words, the alpha of (5, 5) stocks minus the alpha of

(1, 1) stocks is significantly higher than the alpha of (1, 5) stocks minus the alpha of (5, 1)

stocks.33

We now examine whether our model can help explain these empirical patterns. Consider

the first pattern – the volatility-overhang interaction described by Wang, Yan, and Yu (2017).

33Frazzini (2006) measures “earnings surprise” using cumulative abnormal stock returns around earnings
announcement dates. We measure it instead as the difference between realized earnings and expected earnings
derived from a seasonal random walk model. We do not expect that this difference in methodology will have
a material impact on our results.
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We use the methodology of Section 4 to compute the volatility, skewness, and gain overhang

of the typical stock in each of the 25 volatility-overhang categories. We then plug these

inputs into our model to see what it predicts for the expected returns and alphas of the 25

categories. We proceed in a similar way for the other two interaction patterns.

We find that the model can help explain all three empirical interactions and illustrate the

results in Figure A3. The top-left graph in the figure corresponds to the volatility-overhang

interaction. The horizontal axis marks the idiosyncratic volatility quintiles, 1 through 5.

The lower line in the graph plots the alphas predicted by the model for categories (1, 1) to

(1, 5), in other words, the alphas as we increase idiosyncratic volatility within the lowest

overhang quintile. The upper line plots the predicted alphas for categories (5, 1) to (5, 5), in

other words, the alphas as we increase idiosyncratic volatility within the highest overhang

quintile. As in the data, the lower line is downward sloping while the upper line is upward

sloping.

The top-right graph in the figure corresponds to the skewness-overhang interaction. The

horizontal axis marks the idiosyncratic skewness quintiles, 1 through 5. The lower line in the

graph plots the alphas predicted by the model for categories (1, 1) to (1, 5), in other words,

the alphas as we increase idiosyncratic skewness within the lowest overhang quintile. The

upper line plots the predicted alphas for categories (5, 1) to (5, 5), in other words, the alphas

as we increase idiosyncratic skewness within the highest overhang quintile. As in the data,

the lower line is downward sloping while the upper line is upward sloping.

Finally, the bottom-left graph in the figure corresponds to the earnings surprise-overhang

interaction. The horizontal axis marks the earnings surprise quintiles, 1 through 5. The lower

line in the graph plots the alphas predicted by the model for categories (1, 1) to (1, 5), in

other words, the alphas as we increase the earnings surprise within the lowest overhang

quintile. The upper line plots the predicted alphas for categories (5, 1) to (5, 5), in other

words, the alphas as we increase earnings surprise within the highest overhang quintile. As

in the data, the difference between the alphas for categories (5, 5) and (1, 1) is much higher

than the difference between the alphas for categories (1, 5) and (5, 1).

Wang, Yan, and Yu (2017), An et al. (2020), and Frazzini (2006) suggest, using infor-

mal arguments, that the risk attitudes captured by prospect theory can help explain the

interaction effects they document. Our results provide formal support for this claim.
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Table A1. The contribution of each element of prospect theory. The left-
most column lists the 14 anomalies that the prospect theory model can help
explain; the acronyms are defined in Table 1. The next three columns report,
for each anomaly, the percentage of the alpha spread – the difference in
the model-predicted alphas for deciles 1 and 10 – that is generated by the
loss aversion, probability weighting, and diminishing sensitivity elements of
prospect theory, respectively.

Anomaly Loss Probability Diminishing
aversion weighting sensitivity

IVOL –26 58 68
MOM –13 34 79
FPROB –24 52 73
OSC –43 85 58
PROF –12 50 62
EISKEW –62 121 41
MAX –11 37 74
DOP –28 45 84
CEI –23 34 88
XFIN –4 18 85
PEAD 3 6 91
ROA –12 33 79
NSI –23 60 64
CGO –22 38 84
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Figure A1. The solid line in the left graph shows how the model-predicted al-
pha spread for the idiosyncratic volatility anomaly depends on the value of the
diminishing-sensitivity parameter α; the baseline value is 0.7. The solid line in the
right graph shows how the predicted alpha spread for this anomaly depends on
the value of the probability-weighting parameter δ; the baseline value is 0.65. The
dashed lines in the graphs mark the empirical alpha spread.
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Figure A2. The graph shows that investors have heterogeneous holdings of each
stock in momentum decile 10. The solid line plots the value of an investor’s ob-
jective function in equilibrium as a function of θ901, the (scaled) fraction of the
investor’s portfolio allocated to stock 901, which belongs to momentum decile 10.
The function has two global maxima which straddle the weight of stock 901 in the
market portfolio, namely 7.26× 10−4. The dashed line plots the objective function
for a higher expected return on the stock, while the dash-dot line plots the objective
function for a lower expected return.
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Figure A3. The graphs show that the prospect theory model can help explain
three anomaly interaction effects. The lower lines in the three graphs plot the
model-predicted alphas for stocks with large negative overhang and various levels of
volatility, skewness, and earnings surprise, respectively. The upper lines in the three
graphs plot the model-predicted alphas for stocks with large positive overhang and
various levels of volatility, skewness, and earnings surprise, respectively.
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