
Eur. Phys. J. C (2021) 81:632
https://doi.org/10.1140/epjc/s10052-021-09438-5

Regular Article - Theoretical Physics

Prospecting black hole thermodynamics with fractional quantum
mechanics

S. Jalalzadeh1,a, F. Rodrigues da Silva1,b, P. V. Moniz2,3,c

1 Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 52171-900, Brazil
2 Departmento de Física, Universidade da Beira Interior, 6200 Covilhã, Portugal
3 Centro de Matemática e Aplicações (CMA-UBI), Covilhã, Portugal

Received: 11 March 2021 / Accepted: 9 July 2021 / Published online: 20 July 2021
© The Author(s) 2021

Abstract This paper investigates whether the framework
of fractional quantum mechanics can broaden our perspec-
tive of black hole thermodynamics. Concretely, we employ a
space-fractional derivative (Riesz in Acta Math 81:1, 1949)
as our main tool. Moreover, we restrict our analysis to the
case of a Schwarzschild configuration. From a subsequently
modified Wheeler–DeWitt equation, we retrieve the corre-
sponding expressions for specific observables. Namely, the
black hole mass spectrum, M , its temperature T , and entropy,
S. We find that these bear consequential alterations conveyed
through a fractional parameter, α. In particular, the standard
results are recovered in the specific limit α = 2. Furthermore,
we elaborate how generalizations of the entropy-area relation
suggested by Tsallis and Cirto (Eur Phys J C 73:2487, 2013)
and Barrow (Phys Lett B 808:135643, 2020) acquire a com-
plementary interpretation in terms of a fractional point of
view. A thorough discussion of our results is presented.

1 Introduction

Black hole (BH) physics constitutes an enthusiastic research
domain for this century. On the one hand, gravitational waves
resonating from colliding BHs have been measured [4] and
are now a regular astronomical probing tool. Outstandingly,
astrophysicists have also captured the first-ever image of a
BH at the center of galaxy M87 [5,6]. Furthermore, there is a
collection of additional observational data [7] hinting at the
presence of an event horizon for BHs. In general, BH candi-
dates may be stellar-mass objects in a X-ray binary system
or supermassive at the center of typical galaxies [8–11]. All
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these achievements have been recently conveyed and recog-
nized within the 2020 Nobel prize in Physics [12].

On the other hand, innovative work on BH physics in
the past forty years or so have also brought us to the fore-
front of unanticipated research directions. In the early 70’s
of the last century, Bekenstein proposed that a BH entropy
is proportional to its horizon area [13,14]. Then, the evap-
oration of BHs (through the seminal use of quantum fields
in curved spaces) was formulated by Hawking [15]. Testing
this property observationally has been recently appraised,
bearing promising results [16]. Thereafter, physicists real-
ized an intimate connection between geometrical horizons,
thermodynamic temperature and quantum mechanics [17–
19]. Moreover, it was advanced [20] that the BH horizon
area may be quantized, and the corresponding eigenvalues
would be given by

An = γ L2
Pn, n = 1, 2, 3, ... , (1)

where γ is a dimensionless constant of order one and LP =√
G is the Planck length. The literature has since then been

enriched with contributions strengthening in favor of the area
spectrum (1), including information-theoretic considerations
[21,22], ranging from string theory arguments [23] to the
periodicity of time [24–27], plus e.g., a Hamiltonian quanti-
zation of a dust collapse [28,29].

Within the viewpoint outlined in the previous paragraph,
we suggest a complementary direction of exploration. Let us
be more specific. Recently, a set of pertinent arguments and
results have been put forward to apply fractional calculus
[30–35] in quantum physics. Such framework is known as
Fractional Quantum Mechanics (FQM), see e.g. [36]. Frac-
tional calculus has been embraced mainly within the last cen-
tury. In essence, it follows from extending the meaning of
derivatives to the case where the order is any number, i.e.,
irrational, fractional or complex. Its peculiar interest notwith-
standing, the obstacles have been fruitfully addressed. In par-
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ticular, it is currently known that non-integer order systems
can describe the dynamical behavior of specific classes of
materials and processes over different time and frequency
scales. Fractional calculus has assisted in scattering theory,
diffusion, probability, potential theory and elasticity. There-
fore, it was only sensible to embrace and explore it within
quantum physics.

FQM was built upon Feynman and Hibbs [37] assertion
about quantum mechanics and path integrals. Moreover, Nel-
son [38,39] clarified about classical Brownian motion and
quantum mechanical features, whereas Abbott and Wise [40]
determined that in 1-dimensional settings, the fractal (or
Hausdorff) dimension of those paths is 2. The essential moti-
vation for FQM emerges in that if we restrict the path integral
(Feynman) description of quantum mechanics to Brownian
paths only, it will be challenging to explain a few other per-
tinent quantum phenomena [41]. Such difficulties have led
to consider a generalization of the Feynman path integral,
specifically by replacing the Gaussian probability distribu-
tion by Lévy’s [42]; the Hausdorff dimension of the Lévy
path is then equal to the fractional parameter α.

Extended versions of the Schrödinger equation (SE) are
then retrieved, namely from such broader path integral.
More concretely, by including non-Brownian trajectories
in the path integral formalism of quantum physics, either
the space-fractional [43,44], time-fractional [45], and space-
time-fractional [46] versions of the standard SE can be elab-
orated. Let us be precise and clarify that it is in space-
fractional quantum mechanics, where the Feynman path inte-
gral method is modified such that the Gaussian probability
distribution is replaced by Lévy’s [42], that we obtain the
following and broadly used modified SE. More particularly,
starting from the Hamiltonian

H = p2

2m
+ V (r, t), (2)

a generalization [36,41,43,44] is produced by means of

Hα(p, r) := Dα|p|α + V (r), 1 < α ≤ 2, (3)

in which Dα is a coefficient carrying dimension [Dα] =
erg1−αcmαsec−α . The parameter α is known as Lévy’s frac-
tional parameter and is associated to the concept of Lévy path
and its induced fractal dimension. In the Feynman path inte-
gral, the measure is generated by the process of the Brownian
motion, and the path’s corresponding (fractal) dimension is
d(Feynman)

fractal = 2, as we have remarked. The Lévy path inte-
gral leading to a SE would lead to a fractal dimension as
d(Lévy)

fractal = α. For more details, please browse through, e.g.,
[1,30–33,36,41,43,44] and other references therein.

Therefore, choosing a space representation with p̂ →
−i h̄∇ and r̂ → r, we obtain the space-fractional SE

i h̄
∂ψ(r, t)

∂t
= Dα(−h̄2Δ)α/2ψ(r, t) + V (r, t)ψ(r, t).

(4)

In the above fractional SE, the fractional Riesz derivative
[1,36,47], (−h̄2Δ)α/2, is defined in terms of the Fourier
transformation F
(−h̄2Δ)α/2ψ(r, t) = F−1|p|αFψ(r, t)

= 1

(2π h̄)3

∫
d3 pei

p·r
h̄ |p|α

∫
e−i p·r′

h̄ ψ(r′, t)d3r ′. (5)

The infinite-well example was one of the first solutions of
space-fractional SE, which Laskin solved [41]. Despite its
simplicity, this problem is critical since it is the prototype of
a quantum detector with internal degrees of freedom.

In what concerns the time-fractional SE, the time evolu-
tion is given by the Caputo fractional derivative [48]. In this
case, the associated Hamiltonian is non-Hermitian and not
local in time. The space-time fractional SE has been intro-
duced by Wang and Xu [46], where they employed a combi-
nation of space and time-fractional models to establish their
equation. The space-time fractional SE is a generalized ver-
sion of the equation (4):

h̄β i
β∂

β
t ψ(r, t) =

[
Dα,β(−h̄2

βΔ)α/2 + V (r, t)
]
ψ(r, t), (6)

where 1 < α ≤ 2, 0 < β ≤ 1, h̄β and Dα,β are two scale
coefficients with physical dimensions [h̄β ] = erg.secβ and

[Dα,β ] = erg1−α.cmα.sec−αβ . In addition, ∂
β
t denotes the

left Caputo fractional derivative [49] of order β:

∂
β
t f (t) = 1

Γ (1 − β)

∫ t

0
dτ

ḟ (τ )

(t − τ)β
, (7)

where ḟ (τ ) = d f (τ )
dτ

.
Proceeding towards a broader context, we recall that

Wheeler [50] seminally suggested a foam structure for space-
time on the Planck scale. Hence, allowing that a fractal qual-
ity could therein be natural. Thus, contemplating a fractional
WDW equation could unveil interesting aspects regarding
the gravitational domain [51,52]. In fact, in the last few
years, FQM has indeed been proposed and employed as a
tool to explore features within quantum cosmology and quan-
tum gravity [53–62]. It has pointed to exciting opportunities
and sidelong connections between unexpected mathematics
and physics domains. See [51,52], for a recent survey about
engaging FQM within a canonical route towards quantum
gravity and cosmology. Additionally, a few more other ref-
erences can be found in [63–70].

Thus, in our paper we propose to apply space-FQM
to investigate thermodynamic properties of the Schwarz-
schild BH. The Bekenstein–Hawking entropy expression for
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a Schwarzchild BH with mass M is given by

SB–H = 4πGM2 = A

4G
, (8)

where A = 16πG2M2 is the BH horizon area. A suitably
extended fractional version of the Wheeler–DeWitt (WDW)
equation for the Schwarzschild BH will enable us to retrieve
altered expressions for the entropy and other specific BH
observables.

Moreover, Tsallis and Cirto recently proposed a new for-
mulation for the Schwarzschild BH’s horizon entropy and
the entropy-area relation [2]. They asserted that since the
Bekenstein–Hawking entropy is proportional to the horizon
area (instead of its volume), it would hint that Boltzmann-
Gibbs entropy would be unsuitable to describe BHs. These
authors have proposed a modified form upon the BH entropy
given by Eq. (8), such that an extended expression, using a
generalized non-additive entropy, would be

Sδ = γ Aδ, (9)

where γ is an unspecified constant and δ denotes the non-
additivity parameter. The above equation suggests that the
entropy is a power-law function of its area.

In addition, by introducing a fractal structure for the hori-
zon surface of the BH, Barrow [3] conceived a 3-dimensional
spherical analog of a Koch Snowflake – a sphereflake – using
a hierarchy of touching spheres around the event horizon.
This fractal structure of the BH surface changes its actual
area, which in turn leads us to a new entropy relation, namely,

S =
(

A

AP

)1+ �
2

, (10)

where AP is the Planck area and � would suggestively denote
an induced deformation of the horizon, with � = 0 repro-
ducing the conventional Bekenstein–Hawking entropy (sim-
plest horizon structure) and with � = 1 corresponding to
the most intricate structure. Note that the Barrow modified
entropy resembles Tsallis and Cirto’s non-additive entropy
(9); nevertheless, the involved foundations and physical prin-
ciples are entirely different. As an additional application of
BH prospecting by means of FQM, we will retrieve these two
extended entropy expressions but without using generalized
non-additive features.

In essence, we propose and employ herewith a space-
fractional formulation of the WDW equation for the
Schwarzschild BH. Hence, let us then mention that the
remaining of this paper is organized as follows. In Sect. 3, we
summarize the canonical quantization of the Schwarzschild
BH, having briefly reviewed the corresponding Hamiltonian
setting in Sect. 2. In Sect. 4, we hypothesize a fractional
calculus setting for the corresponding WDW equation as
applied to the Schwarzschild BH. Specifically, we consider
the observables reviewed in Sect. 3 and present them (e.g.,

the Schwarzschild BH entropy) from within the framework
of FQM. Section 5 contains our conclusions and a thorough
discussion. Throughout this paper we shall work in natural
units, h̄ = c = kB = 1.

2 Canonical quantization of a Schwarzchild black hole

We recall in this section results concerning the canonical
quantization of the Schwarzschild BH that will be of rele-
vance for our analysis in subsequent sections. The spherical
symmetric ADM line element is

ds2 = −N (r, t)2dt2

+Λ(r, t)2
(
dr + Nr (r, t)dt

)2 + R(r, t)2dΩ2, (11)

where dΩ2 is the line element for the unit two sphere S2. We
follow Kuchař’s fall-off conditions [71]. Firstly, it confirms
that the coordinates r and t are extended to the Kruskal man-
ifold, −∞ < r, t < ∞, and secondly, that the spacetime is
asymptotically flat as well. Likewise, the fall-off conditions
guarantee that the 4-momentum at the infinities, r → ±∞,
has no spatial component, which indicates that the BH is
at rest concerning the left and right asymptotic Minkowski
spacetimes. By fixing the asymptotic values of the lapse func-
tion, N , at infinities, r → ±∞ to be t-dependent quanti-
ties (denoted by N±(t), respectively), the Hamiltonian form
of the Einstein–Hilbert action functional, with appropriate
boundary terms, reads then

S =
∫

dt
∫ ∞

−∞

{
ΠΛΛ̇ + ΠR Ṙ − NH − Nr Hr

}
dr

−
∫ {

N+M+ + N−M−
}
dt, (12)

in which the conjugate momenta of Λ and R are

ΠΛ = −M2
P

N
R
(
Ṙ − R′Nr

)
,

ΠR = −M2
P

N

[
Λ

(
Ṙ − R′Nr ) + R

(
Λ̇ − (ΛNr )′

) ]
,

(13)

MP = 1/
√
G is the Planck mass, ḟ = ∂t f , f ′ = ∂r f

and the quantities M±(t) are defined by the asymptotic fall-
off of the configuration variables. Note that on a classical
solution, M± are equal to the Schwarzschild mass of the BH.
Furthermore, H and Hr are the super-Hamiltonian and the
radial super-momentum constraints, respectively, given by
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H = − 1

RM2
P

ΠRΠΛ + 1

2R2M2
P

Π2
Λ + RR′′

Λ

− RR′Λ′

Λ2 + R′2

2Λ
− Λ

2
,

Hr = 1

M2
P

(ΠR R
′ − ΛΠ ′

Λ).

(14)

Following Kuchař [71] introducing the following two
(M,ΠM ) and (R,ΠR) pairs of canonical transformations

M = Π2
Λ

2M4
P R

− RR′2

2Λ2 + R

2
,

ΠM = ΛΠΛ

M2
P

[(
R′

Λ

)2

− 1

M4
P

(
ΠΛ

R

)2
]−1

,

R = R,

ΠR =
(

ΠΛH

M2
P R

+ R′Hr

Λ2

) [(
R′

Λ

)2

− 1

M4
P

(
ΠΛ

R

)2
]−1

,

(15)

the action (12) becomes

S =
∫

dt
∫ ∞

−∞
{
ṀΠM + ṘΠR − Nr Hr − NH

}
dr

−
∫

{M+N+ − M−N−} dt, (16)

where the new super-Hamiltonian, H , and the super-
momentum, Hr , are

H = −

(
1 − 2M

M2
P R

)−1

M ′R′ + M−4
P

(
1 − 2M

M2
P R

)
ΠMΠR

[(
1 − 2M

M2
P R

)−1

R′2 − M−4
P

(
1 − 2M

M2
P R

)
Π2

M

] 1
2

,

Hr = 1

M2
P

(
ΠMM ′ + ΠRR′) . (17)

The variation of ADM action (17) with respect to the lapse
function N and Nr imposes the Hamiltonian and momentum
constraints

H ≈ 0, Hr ≈ 0, (18)

or equivalently

M ′ ≈ 0, ΠR ≈ 0. (19)

The constraint M ′ = 0 means that M is homogeneous
M = M(t). Now, by substituting ΠR ≈ 0 and M = M(t)

back into the action (17) and in addition the new conjugate
momenta of M defined by

P =
∫ ∞

−∞
ΠMdr

= −
∫ ∞

−∞

√( dR
dr

)2 − Λ

(
1 − 2M

M2
P R

)

1 − 2M
M2

P R

dr, − ∞ < P < ∞,

(20)

we obtain

S =
∫ {

PṀ − (N+ + N−)M
}
dt. (21)

Note that the new conjugate variables (M, P) obey the Pois-
son bracket {M, P} = 1. Following Louko and Mäkelä [72],
if we picked the right-hand side asymptotic Minkowski time
as the observer time parameter, we should restrict N+ = 1
and N− = 0. Next, the reduced action (21) reduces to the
following simple form

S =
∫ {

PṀ − H(M)
}
dt, (22)

where H(M) = M is the reduced Hamiltonian of the BH.
One can easily show that the field equations’ solution is
M = const. and P = −t , as expected. The BH’s mass con-
stancy follows Birkhoff’s theorem, which declares that the
mass is the only time-independent and coordinate invariant
solution. Moreover, the conjugate momenta, P , describes the
asymptotic time coordinate at the spacelike slice. Once again,
by using the canonical transformations (M, P) → (x, p),
introduced by Louko and Mäkelä [72]

|P| =
∫ 2MG

x

dy√
2MG
y − 1

,

M = 1

2G

(
G2 p2

x
+ x

)
,

(23)

the reduced action (22) takes the form

S =
∫

{pẋ − H} dt, (24)

where H = M is the Hamiltonian and is given (utilizing the
second transformation of (23)), as

H = M2
P

2

( p2

M4
P x

+ x
)
. (25)

It is of interest to acknowledge the following at this point.
Transformations (23) map the BH solution into a wormhole
solution, in which x represents the wormhole throat [72].
The time evolution of this corresponding wormhole throat is
given by Hamilton’s equations
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ẋ = p

M2
P x

, ṗ = p2

2M2
P x

2
− 1

2
M2

P (26)

with a solution for the wormhole throat as

x = M

M2
P

(
1 + cos(MPη)

)
, x ≥ 0

t = M

MP

(
η + 1

MP
sin(MPη)

)
, −Mπ

M2
P

≤ t ≤ Mπ

M2
P

.

(27)

As we can see from the above solutions, it is necessary to
define transformations (23) so that the time parameter t (or
equivalently the conjugate momentum P) is restricted into
the finite interval

− 1

8TH
≤ t ≤ 1

8TH
, TH = M2

P

8πM
, (28)

where TH is, remarkably, the Hawking temperature of the
BH.

3 Thermodynamic implications from the quantum
Schwarzschild black hole

In the coordinate representation p̂ → −id/dx , x̂ → x ,
the canonical quantization procedure upon the previous
section gives us a suitable time-independent WDW equa-
tion, for the simple one-dimensional minisuperspace of the
Schwarzschild BH

H

(
−i

d

dx
, x

)
ψ(x) = Mψ(x). (29)

As usual, there is an operator-ordering problem in addressing
the above WDW equation, but as we are interested in BH
states whose mass M � MP , its particular resolution will not
surpass our semiclassical considerations. Hence, we adopt
the following wide enough factor-ordering [73]

p2

x
= 1

3

(
xi px j pxk + xk pxi px j + x j pxk pxi

)
, (30)

where i + j + k = −1. Note that because in the left hand
side of (30) we have p2/x , so, in its right side the power of
x is also −1. We thus write the WDW equation (29)

− 1

2M2
P x

d2

d2 ψ(x) + 1

2M2
P x

2

d

dx
ψ(x)

+
(

1

2
M2

P x + q

2M2
P x

3

)
ψ(x) = Mψ(x), (31)

where q = (i j + ik + jk − 2)/3. If we redefine the wave
function ψ(x) → √

xψ(x), and choose ordering in which
q = −3/4, then Eq. (31) will reduce to

− 1

2MP

d2

dx2 ψ(x) + 1

2
MPω2

P

(
x − M

M2
P

)2

ψ(x)

= M2

2MP
ψ(x), (32)

which is a SE for the harmonic oscillator of the Planck’s mass
MP , the Planck’s angular frequency ωP = 1/tP defined in
terms of Planck’s time tP = 1/MP . The domain of defi-
nition for x is x ≥ 0, and consequently, the Hamiltonian
operator of the harmonic oscillator in (32) is defined on a
dense domain C∞(0,+∞). Hence, H is not an essentially
self-adjoint operator. It may constitute an Hermitian operator
if

〈ψ1|Hψ2〉 = 〈Hψ1|ψ2〉, ψ1, ψ2 ∈ D(H). (33)

A necessary and sufficient condition for the validity of this
condition is

ψ(x)

ψ ′(x)

∣∣∣∣
x=0

= γ, γ ∈ R, (34)

where a prime symbol, ′, denotes the derivative of ψ(x) with
respect to x . As pointed out by Tipler [74–77], the constant
γ (with dimension of length) would be a new fundamental
constant of theory. To avoid such, we set it to be zero. Hence,
we assume

ψ(x)
∣∣∣
x=0

= 0, (35)

which constitutes the DeWitt boundary condition [78]. In
addition, we are interested in square-integrable wave func-
tions in the interval 0 ≤ x < +∞, which implies the second
boundary condition ψ(x → +∞) = 0. The general solution
of the WDW equation (32) is

ψ(z) = e− z2
4

{
A 1F1

(
−ν

2
; 1

2
; z

2

2

)

+Bz 1F1

(
1 − ν

2
; 3

2
; z

2

2

)}
, (36)

where z = √
2MPωP (x−M/M2

P ) is the new dimensionless
coordinate in the minisuperspace, 1F1(a; b; ζ ) is confluent

hypergeometric function, ν = 1
2

(
M2

M2
P

− 1

)
, A and B are

two integration constants. Moreover, from the asymptotic
behavior of the confluent hypergeometric functions

1F1(a; b; ζ → ∞) � Γ (b)eζ ζ a−b/Γ (a), (37)

we find that the bracket {...} in Eq. (36) brings the factor
ez

2/2, which would dominate over the Gaussian exponential
factor explicit in (36). In other words, the wave function is
square-integrable if the remaining factor provided from the
bracket{...} in Eq. (36), vanishes. This fixes the relative values
of A and B, leading to
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ψ(z) = N2
ν
2 e− z2

4

{ 1F1

(
− ν

2 ; 1
2 ; z2

2

)

Γ

(
1−ν

2

)

−z

√
2 1F1

(
1−ν

2 ; 3
2 ; z2

2

)

Γ

(
− ν

2

) }
, (38)

where N is a normalization constant. Applying the boundary
condition (34) on the obtained wave function (38) gives us

1F1

(
− ν

2 ; 1
2 ;

(
M
MP

)2
)

Γ
( 1−ν

2

) +
2M 1F1

(
1−ν

2 ; 3
2 ;

(
M
MP

)2
)

MPΓ
(− ν

2

) = 0. (39)

The solution of the above equation for M , gives us the mass
spectrum of the BH.

We can see that the spectrum of M2 is not equally spaced
for small values of ν. On the other hand, for large values

of ν (which is defined by ν = 1
2

(
M2

M2
P

− 1

)
) if we use the

asymptotic relation (37) in (39) we find

e2ν+1

(2ν + 1)
ν+1

2 2νΓ (−ν)
= 0 ⇒ Γ (−ν) = ±∞ ⇒ ν = n,

(40)

which provides us the mass spectrum

M = MP
√

2n + 1, (41)

where n is an integer and n � 1. Note that the above
result assumes that M � MP , i.e., ν � 1 and is therefore
essentially semiclassical. To see this, let us apply the Bohr–
Sommerfeld quantization rule to the Hamiltonian (25). The
classical turning points of (25) are x = 0 and x = 2M/M2

P .
Hence, the conventional treatment of the Bohr–Sommerfeld
quantization rule yields

2π

(
n + 1

2

)
= 2

∫ 2M
M2
P

0
pdx

= 2
∫ 2M

M2
P

0

√√√√M2 − M4
P

(
x − M

M2
P

)2

dx,

(42)

which allows to extract the mass spectrum (41). Bekenstein
[20] firstly found a similar mass spectrum. Generally, the
proportionality constant for the square root of n in (41) is
model dependent. Since then, several authors [20,79] have
used different arguments for a quantum BH spectrum of the
type (41). Before proceeding, let us keep in mind equation
(41), as this and others in this section will bear alterations
that will be brought from the intrinsic features of FQM, as
applied to the Schwarzshild BH (see next section).

Hawking [15,80] showed in 1974 that due to quantum
fluctuations, BHs emit black-body radiation, consistently
with the corresponding entropy being one fourth of the
event horizon area, namely A = 16πG2M2. Following Refs.
[81,82], let us assume that the Hawking radiation of a mas-
sive BH where M � MP and n � 1, is emitted when the
BH system spontaneously jumps from the state n+1 towards
the closest lower state level, i.e., n, as described by (41). Let
us now denote the frequency of the emitted thermal radiation
as ω0. Then

ω0 = M(n + 1) − M(n) � MP√
2n

� M2
P

M

[
1 + 1

2

(
MP

M

)2
]

, (43)

which agrees with the classical BH oscillation frequencies
which scales as 1/M . We thus find a BH to radiate with a
characteristic temperature T ∝ M2

P/M , matching the Hawk-
ing temperature.

The characteristic BH time (the lifetime of the BH at the
state M(n + 1) before decaying into the lower state M(n))
can be defined [82] as

τ−1
n = Ṁ

ω0
� MṀ

M2
P

[
1 − 1

2

(
MP

M

)2
]

, (44)

where Ṁ = dM/dt is the mass loss of the BH because of its
evaporation; in the second equality we used the definition of
ω0 expressed in (43). As discussed in [81,83], because of the
interaction of the BH with the vacuum of the quantum fields,
the width of the states, Wn , is not zero. The width of state n
can be estimated [81,83] as

Wn = β[M(n + 1) − M(n)] = βω0, (45)

where β � 1 is a numerical dimensionless factor. Then, by
inserting (43) into the uncertainty relation Wnτn � 1 and
eliminating τn in resulting equation, with the assistance of
(44) we can find

Ṁ = βM4
P

M2

[
1 +

(
MP

M

)2
]

. (46)

If we further assume, on the one hand, that the origin of
the Hawking radiation emerges from the highly blueshifted
modes just outside the horizon, and, on the other hand, take
the BH as a black-body, then the radiated power is given by
the Stefan–Boltzmann law [84,85]

Ṁ = σS AT
4, (47)

where σS = π2/60 is the Stefan–Boltzmann constant and
A = 16πM2/M4

P is the horizon area. Eliminating the mass
loss of the BH, using Eqs. (46) and (47), gives us the effective
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temperature

T =
(

β

16πσS

) 1
4 M2

p

M

[
1 + 1

4

(
MP

M

)2
]

. (48)

The BH entropy can then be expressed as

S =
∫

dM

T
. (49)

By choosing β = 1/15360π [86–97], Eqs. (48) and (49)
yields

S = SB–H − 2π ln (SB–H) + const., (50)

where SB–H = 4πGM2 is the Bekenstein–Hawking entropy.
The logarithmic correction to the Bekenstein–Hawking
entropy is obtained using other methods [86–97] except that
the overall factor 2π is model dependent.

4 Fractional quantum mechanics and Schwarzschild
black hole thermodynamics

In this section, we will establish and then investigate the
alterations brought from employing FQM features towards
a Schwarzschild BH. This will provide broader expressions
for some thermodynamic observables, specifically in terms
explicitly dependent on the fractional parameter, 1 < α ≤ 2,
since the limit α = 2 will conveys us to the standard case
(summarized in Sects. 2 and 3).

Concretely, a fractional WDW equation for a BH will be
employed, in a corresponding minisuperspace. Our approach
stems from Laskin’s seminal papers [41,98], leading to an
Hamiltonian, which includes a fractional kinetic term in
terms of the quantum Riesz fractional operator; this method
has been extended to the WDW equation in Refs. [51,52].

The fractional extension of the WDW equation (32) is
given by

1

2
M1−α

P (−Δ)
α
2 ψ(z) + 1

2
Mα−1

P ω2
P z

αψ(z)

= M2

2MP
ψ(z), (51)

where z = x − M/M2
P is the new coordinate in the 1-

dimensional minisuperspace, Δ = d2/dz2, (−Δ)
α
2 is the

Riesz fractional derivative [1,30–33,99] and 1 < α ≤ 2.
Unfortunately, there is no known general solution, explicitly
bearing a dependence on α for the above fractional WDW
equation. Therefore, we may resort to employ the Bohr–

Sommerfeld quantization rule. By replacing |p| = (−∇)
1
2 ,

the fractional WDW equation leads to the following relation

M1−α
P

2
|p|α + Mα−1

P

2
ω2
P z

α = M2

2MP
, (52)

Fig. 1 Plot of the mass spectrum for a Schwarzschild black hole as
a function of quantum number n for three values of α = 1 (circles),
α = 1.5 (asterisks) and α = 2 (solid-diamonds)

which is, in fact, the fractional version of (25). Hence,
the classical turning points (where |p| = 0) are z =
±(M2/M2−α

P )
1
α . Moreover,

2π

(
n + 1

2

)
=

∮
pdz = 2

(
M

MP

) 4
α

∫ 1

0

(
1 − yα

) 1
α dy

= 2M
4
α

αM
4
α

P

B

(
1

α
, 1 + 1

α

)
, (53)

where y = (Mα+2
P /M2)

1
α z and B(a, b) is the beta func-

tion. Thus, the application of the standard Bohr–Sommerfeld
quantization rule in this setting gives us the following semi-
classical mass spectrum

M =
(

απΓ ( 2
α
)

Γ ( 1
α
)2

) α
4

MP

(
n + 1

2

) α
4

. (54)

For α = 2 we recover spectrum (41) as written in the previ-
ous section. Figure 1 shows the BH mass spectrum for three
values of α. As we show in this figure, the mass of the BH
increases with n but at a faster rate for α = 2, namely the
standard case.

Similarly to the previous Sect. 3, if we write the frequency
of the radiation emitted by the BH, ω0 , we now obtain

ω0(α) = M(n + 1, α) − M(n, α) � αBMP

4
n

α
4 −1

� αB
4
α M

4
α

P

4M
4
α
−1

[
1 + 1

2

(
1 − α

4

) (
BMP

M

) 4
α

]
, (55)
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where B =
(
απΓ ( 2

α
)
) α

4

Γ ( 1
α
)

α
2

. Note that the energy of the emitted

radiation is a function of the fractional-order α. We then find
that for a massive BH, where M � MP , the energy of emitted
radiation is minimal for α → 1, and it will increases up to
a maximum at α = 2. Additional elements are conveyed
within Fig. 2.

Interestingly, the mass spectrum (54) (which includes the
standard case (41)) may induce observable signatures that
gravitational waves [100–102] may inform about. Equation
(43) shows that the frequency of the emitted Hawking radi-
ation scales as 1/M . Hence, if we put M � 10M� − 50M�
as typical of the BHs registered by LIGO-Virgo, then we
obtain from Eq. (43) that f = ω0

2π
= O(102 − 104)

Hz. On the other hand, the fractional frequency of radi-
ation f (α) = ω0(α)

2π
, whereas defined instead with (55),

gives us a much wider possibility for the frequencies. For
example, with M = 10M� the range 1 < α ≤ 2 yields
O(10−74)Hz < f (α) ≤ O(104)Hz. Figure 2 shows how
ω0(α) depends on α.

To be more clear, let us contemplate the mass spectrum
as in (54) and further discuss it within a wider analysis as
follows. Take the interaction of a gravitational wave with
a BH. Suppose the BH is initially at state n1. Regarding the
mass spectrum in (54), we can also consider process whereby
the BH could alternatively absorb a gravitational wave whose
frequency, fGW satisfies

fGW = ΔM

2π
= απΓ ( 2

α
)Δn

8Γ ( 1
α
)2M

4
α
−1

, (56)

where Δn = n1 − n2 and n2 denotes the final state of the
BH after absorption of the gravitational wave. As known in
classical GR, the effective potential that describes the motion
of a test particle has a maximum at the 3/2 Schwarzschild
radius, called photon sphere. Essentially, this (potential bar-
rier) screens the near-horizon region from external observers
[103,104]. The gravitational radiation proceeding towards
the horizon will be scattered at the horizon if its frequency
does not match, e.g., (56). Otherwise, radiation with the fre-
quencies such as (56) in our example, would be absorbed.
The previous assertions notwithstanding, if then we consider
back-reaction quantum effects, BHs are not perfect absorbers
of gravitational radiation and part of the radiation will be
reflected from the horizon area. The reflected part of the radi-
ation then interacts with the potential barrier at the photon
sphere. Then, it will partially be transmitted, and the other
portion will be reflected again back towards the horizon. This
outcome generates a series of so-called gravitational-wave
echoes [105]. This feature could eventually be detected either
in the inspiral stage of BH binaries or during the last stages
of BH relaxation following a merger. For further details and
detection methods please see [106]. Therefore, BHs may act

Fig. 2 Logarithmic plot of the fractional entropy (dash), S(α), the tem-
perature (dash-dot), T (α), the frequency of the emitted thermal radia-
tion (line), ω0(α), and the mass loss (dot), Ṁ(α) of the Schwarzschild
black hole given by Eqs. (60), (58), (55) and (57) respectively, with
mass M = 10M� as a function of α

as “magnifying lenses” in the sense that they could bring new
features of the BH horizon-area within the realm of gravita-
tional waves observations.

Furthermore, using the formula of the characteristic time
of an evaporating BH, τ−1 = Ṁ/ω0, the uncertainty relation
for width of states, Wnτn � 1 and the relation Wn = βω0,
we compute

Ṁ = α2βB
8
α M

8
α

P

16M
8
α
−2

[
1 +

(
1 − α

4

) (
BMP

M

) 4
α

]
, (57)

which will increase as mass is lost. Inserting the above rela-
tion into the Stefan–Boltzmann law (47), it gives the corre-
sponding temperature of the BH1

T =
(

βα2B
8
α

162πσS

) 1
4 M

2
α
+1

P

M
2
α

[
1 + 1

4

(
1 − α

4

)(
BMP

M

) 4
α

]
,

(58)

β = Γ
( 1

α

)4

15(α + 2)44
4
α
−1Γ

( 2
α

)2
π

4
α
+1

. (59)

1 In our paper we assume that fractional calculus only induces alter-
ations at quantum geometrodynamics level, and all the thermodynamic
laws are essentially unchanged. We might extend the discussion to
include fractional thermodynamics, though. In this case, we should con-
sider a fractional Stefan-Boltzmann law; see, e.g., [107].
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Table 1 The fractional entropy, S(α), the temperature, T (α), the mass
loss, Ṁ(α) and the frequency of the emitted thermal radiation, ω0(α)

of the Schwarzschild black hole given by Eqs. (55), (57), (58) and (60)
respectively, with mass M = 10M�

α � 1 α = 2

S 10118 1079

T 10−48 K 10−9 K

Ṁ 10−206 kg/s 10−47 kg/s

ω0 10−74 Hz 104 Hz

Note that for α = 2 we will recover equations of the previous
section. Moreover, using (49), we find the fractional entropy
of the BH to be

S = S
2+α
2α

B–H + α(4 − α)(2 + α)4
α+2
2α π

3α+2
2α Γ

( 2
α

)
(2 − α)Γ

( 1
α

)2

1

S
2−α
2α

B–H

, α �= 2.

(60)

To further contrast a BH with FQM features with a stan-
dard Schwarzschild BH, let us examine Eqs. (55), (57), (58)
and (60) and for a stellar BH with mass approximately 10M�.
For the limiting α = 2 and α → 1 values of the Lévy index,
the values of S(α), T (α), ω0(α) and Ṁ(α) are given in Table
1.

Its first row, together with Fig. 2, shows that the entropy
of fractional BH can be much larger than in the standard
Schwarzschild case. The second row shows that a stellar BH
temperature (with mass 10M�) in fractional formalism is
always less than 10−9K . On the other hand, in the extreme
case α → 1, the temperature of a fractional BH is approx-
imately zero: T (α → 1) � 10−48 K. Moreover, the man-
ner the mass decay Ṁ(α) proceeds is indicated by by the
third row, in agreement with the temperature range: it is quite
negligible for the extreme case, α → 1. Since the average
temperature of the Universe at the present epoch is about
2.7 K, all stellar BHs with M = 10M� and 1 < α ≤ 2 are
absorbing more matter and radiation than they emit Hawking
radiation and will not begin to evaporate until the Universe
has expanded and cooled below their corresponding tem-
perature. Therefore, in our setting, the BHs with fractional
features could be almost eternal within α → 1.

Let us now remark the following. Tsallis and Cirto [2]
investigated the entropy of a Schwarzschild BH, using appro-
priate non-additive generalizations for d-dimensional sys-
tems and suggested a generalized entropy. In their study [2],
a non-additive entropy is defined by

Sδ =
N∑
i

pi

(
ln

(
1

pi

))δ

, (61)

for a set of N discrete states, where δ > 0 denotes the
non-additivity parameter and pi is a probability distribution

[108]. For δ = 1 we recover the standard Boltzmann–Gibbs
entropy. Then, as Tsallis and Cirto demonstrated [2], the gen-
eralized BH entropy can be written as

STsallis ∝ Sδ
B–H. (62)

If we identify the non-additivity parameter of Tsallis and
Cirto as δ = 2+α

2α
, the entropy (60) retrieved from fractional

quantum mechanical methods can be rewritten as

S = Sδ
B–H + κ

Sδ−1
B–H

, 1 < δ <
3

2
, (63)

where

κ = δ(2δ − 3)4δ+1πδ+ 2
2δ−1 Γ (2δ − 1)

(δ − 1)(2δ − 1)2Γ
(
δ − 1

2

)2 . (64)

This shows that the leading term of the FQM computed BH
entropy can be expressed in terms of the Tsallis and Cirto
result for a BH. Noteworthy, for 1 < α ≤ 2 the fractional
entropy of a BH varies in the corresponding interval as

S
3
2
B–H + 36π

5
2

S
1
2
B–H

< S ≤ SB–H − 2π ln (SB–H). (65)

A natural question that arises is the meaning of the entropy
relation, ranging from Eqs. (60) to (65). To assist in address-
ing this question, let us first remind the fractal nature of the
Lévy path [42] in FQM. As we know, in the Feynman path
integral representation of quantum mechanics, the measure
is generated by the process of the Brownian motion, and the
fractal dimension of the Feynman’s path is d(Feynman)

fractal = 2.
In addition,, FQM is based on the fractional path integral
[41,42]. The Lévy path integral corresponding to the SE (51)
is

KL(z f , t f |zi , ti ) =
∫ z f

zi
Dze−i

∫ z f
zi V (z(t))dt , (66)

where V (z(t)) is the potential as a functional of the Lévy
path and zi (z f ) denotes the initial (final) point. In this case,
the fractional path integral measure is

Dz(t) = lim
N→∞ dz1...dzN−1

×(i Dαε)−
N
α

N∏
j=1

Lα

{(
1

i Dαε

) 1
α |z j − z j−1|

}
,

(67)

where Dα = M1−α
P , ε = (t f − ti )/N , z0 = zi , zN = z f and

the Lévy distribution function, Lα , is indicated in terms of
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Fox’s H function

(Dαt)
− 1

α Lα

{(
1

Dαt

) 1
α |z|

}

= 1

α|z|H
1,1
2,2

[(
1

Dαt

) 1
α |z|

∣∣∣(1, 1
α
),(1, 1

2 )

(1,1),(1, 1
2 )

]
. (68)

The measure (67) indicates that a length increment, Δz =
z j − z j−1, and a time increment, Δt , satisfy the fractional
scaling relation

Δz ∝ D
1
α
α (Δt)

1
α . (69)

The above scaling relation implies that the fractal dimension
of the Lévy path is d(Lévy)

fractal = α. Thus, fractional features
within FQM could be interpreted as being generated by a
Lévy stochastic process [42] and suggesting a fractal struc-
ture.2 Hence, it may be possible to theorize within the FQM
framework herewith proposed, that the horizon of the BH
may unveil a fractal structure whose relevance will be α-
dependent. In this context, let us rewrite the first term on the
right-hand side of (60) as follows

S
2+α
2α

B–H =
(

A

4G

) 2+α
2α = Afractal

4G
, (70)

by means of which we hence define Afractal. Being more con-
crete, the entropy is proportional to a surface area, but one
explicitly given by

Afractal = 4L2
p

(
A

4G

) 2+α
2α

. (71)

Furthermore, the above expression additionally suggests a
fractal dimension [109,110] of the BHs surface, namely

Dfractal = 2 + α

α
, 2 ≤ Dfractal < 3. (72)

Moreover, Eq. (60) will take the following form

S = Afractal

4G
+ κ

(
Afractal

4G

)1− 1
2 Dfractal

, 2 < Dfractal < 3.

(73)

Let us add further to the question set a few paragraphs
above, namely on the meaning of entropy within Eqs. (60)–
(65). By means of a very interesting paper, Barrow recently
conjectured that BHs might exist with such extremely wrin-
kled surfaces (referred to as a rough horizon), so that the event
horizon would be a fractal surface [3]. He proposed that the

2 According to Mandelbrot “A fractal is by definition a set for which
the Hausdorff–Besicovitch dimension strictly exceeds the topological
dimension” [109,110]. For example, the Hausdorff dimension of a reg-
ular Brownian surface is 2.79 and a triangular von Koch fractal Surface
is 1 + log2(3) = 2.5849 .

fractal area of the BH, Afractal is related to the ordinary area,
A = 16πG2M2, via

Afractal ∝ A1+ �
2 , 0 ≤ � ≤ 1, (74)

where � = 0 is corresponding to the ordinary non-fractal
horizon, and � = 1 to the most complex structure. Inserting
the above area definition into entropy (60) we find

SB–H =
(

A

4G

)1+ �
2 + κ

( A
4G

)�
2

, 0 < � < 1, (75)

where we defined � = 2/α−1. Note that the extreme case of
Barrow � = 1, (α �= 1), does not exist in our model. There-
fore, the above equation clarifies that the Barrow entropy can
be obtained from within FQM.

We can elaborate more on the physical consequences of
the above entropy (or equivalently from (60)) formula. If we
assume that the number of degrees of freedom, N , in the
horizon is [111]

N = 4S, (76)

then, combining Eqs. (58), (75) and (76) plus some algebra,
we retrieve a modified equipartition theorem

M = 1

2

(
1 + �

2

)
NT

{
1 − κ�

(
TP
NT

)2(�+1) }
, (77)

where

κ� = π(� + 1
2 )Γ (� + 1)

22(�+3)
(

1 + �
2

)2(�+1)

Γ (
�+1

2 )2
, (78)

and TP is the Planck temperature. The heat capacity, C of a
fractional BH can be computed from the expression

C = − (S′)2

S′′ , (79)

where a prime means a derivative relative to the BH mass,
M . Substituting (75) into the above definition gives

C = −� + 2

� + 1

(
M

MP

)�+2
[

1 − 3κ�
� + 2

(
MP

M

)2�+2
]

,

(80)

which shows that for any value of 0 < � < 1, the heat
capacity in our semiclassical model, M � MP , is negative
and consequently the BH is unstable.

Thus, from the geometrical BH surface, we may admit
that there is more to unveil. In particular, we may speculate
that a behavior, suggesting a broader dimensional dynam-
ics at the horizon, can be explored in the limit when Lévy’s
parameter approaches α → 1, supporting the conjecture pro-
posed in [3]. We may, therefore, be allowed to speculate about
the possibility that at some scale, a broader surface area of
a BH can be considered, encompassing the standard value
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16πG2M2, because of the fractal structure of the horizon. In
this context, let us recall Eq. (73) regarding how the entropy
varies and how the Bekenstein–Hawking expressions fits in.
It brings an interesting perspective such that the entropy of a
BH (according to FQM) could be proportional to a power of
its fractal surface, depending on the choice of α.

5 Discussion and outlook

The purpose in this paper was to employ FQM to discuss spe-
cific BH features. It is now well demonstrated that BHs can
form [12] and a set of properties has been widely described.
Moreover, BHs encompass scenarios where strong gravity
and quantum mechanics can meet. New insights need there-
fore to be proposed. Thus, this paper was set up to explore
whether thermodynamic observables might be altered if an
additional ingredient is present (say, imported from a quan-
tum mechanical framework) and if it could reveal itself in
special BH situations.

Hence, we started by briefly summarizing how concrete
thermodynamic properties can be retrieved from a simple
quantum mechanical BH (Schwarschild). This was done in
Sects. 2 and 3. We then proceeded to an analysis employ-
ing a space-fractional derivative in a corresponding WDW
equation. A broader perspective about BH thermodynamics
within FQM was therefore presented in Sect. 4, specifically
in terms explicitly dependent on the fractional parameter,
1 < α ≤ 2. We retrieved altered expressions for physical
quantities that were then contrasted with those of the stan-
dard case (α = 2) and summarized in Sects. 2 and 3.

Then in Sect. 4 we started by elaborating on the mass spec-
trum of a BH and how it varies according to α. Whereas the
frequency of gravitational waves generated by a standard BH
is proportional to the inverse mass, in a fractional scenario the

frequency would instead allow a dependence as 1/M
4
α
−1. As

pointed out in [106], the horizon behaves as a filter of grav-
itational waves with a set of absorption lines. Admitting the
possibility of the fractal structure of the horizon, the horizon
radius is different from the Schwarzschild radius [3], and the
effective radius is wider, r = 2MG(1 + ε), in which ε � 1
depends on how the surface is correspondingly altered. Any
subsequent gravitational waves may bear a delay due to the
time it takes the signal to transit from the horizon (with such
possible fractal structure) to the photon sphere. This delay
time scales logarithmically with ε [106] or, as we suggested
herein, the fractality of the horizon.

In addition, we have shown how the entropy, the temper-
ature, and the mass loss of the BH are highly sensitive to
the value of α. The Bekenstein–Hawking entropy of super-
massive black holes [112] is of the order of 10104 and the
corresponding fractional entropy of the supermassive BHs

with α ∼ 1 will be 10156. If we extend a FQM perspective
to the cosmic event horizon (CEH), then we can compute

that SCEH ∝ (GH2)
−(α+1)

2α � 10183. This assumption has
been interestingly employed to discuss the late-time acceler-
ation of the Universe [121–126]. Furthermore, we retrieved
a formula for the Schwarzschild BH in which the entropy
is a polynomial function of its area. We then explained that
the surface area of such BH can exceed the standard value
16πG2M2 of a BH, as suggested by a possible fractal struc-
ture. In this context, Tsallis and Cirto’s formalism [2] must be
mentioned, constituting an extension of Boltzmann–Gibbs
statistical theory, representing a non-extensive, i.e., a non-
additive entropy.3 We have indicated herewith that from a
FQM perspective we can alternatively, obtain Tsallis and
Cirto’s results without committing to the extended entropy
features. In addition, we proposed that the inherent frac-
tal nature of Lévy paths leads to the extension of Barrow
entropy formula [3]. Barrow’s modified entropy formally
coincides with Tsallis and Cirto’s definition; notwithstand-
ing, the involved foundations and interpretation of physical
results are different. This is not a surprising result because,
over the last several years, it has been shown that a fractal
structure in properties of physical systems could be a possible
origin for non-additive statistics [127–130].

Having summarized and discussed our results, it is also
pertinent to suggest an outlook of subsequent directions to
prospect. A particular line in our sight is to explore BH
entropy and information loss within FQM. We plan to extend
the context of paper [131] with the assistance of space-
fractional derivative operators in the corresponding equa-
tions therein. The results in [131] indicated that for the final
stage of a BH evaporation, which included back reaction from
Hawking radiation, we get a strong entangled state (between
a mimicked BH and the radiation). So, given how the entropy
may vary with α, what would FQM add within a suitable set
up about information and BHs?

It would also be of interest to investigate BHs within FQM
and in a Brans–Dicke or even a scalar–tensor theory, where
more parameters are allowed to juggle with. Or employ other
dynamical configurations instead, beyond the Schwarzschild
case. It is possible using other fractional derivatives as well,
besides space-fractional. Most likely, the use of numerical
methods would be mandatory.
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