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Abstract

Background: Metabolomics is a promising molecular tool to identify novel etiologic pathways leading to cancer.

Using a targeted approach, we prospectively investigated the associations between metabolite concentrations in

plasma and breast cancer risk.

Methods: A nested case-control study was established within the European Prospective Investigation into

Cancer cohort, which included 1624 first primary incident invasive breast cancer cases (with known

estrogen and progesterone receptor and HER2 status) and 1624 matched controls. Metabolites (n = 127,

acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, sphingolipids) were measured by

mass spectrometry in pre-diagnostic plasma samples and tested for associations with breast cancer

incidence using multivariable conditional logistic regression.

Results: Among women not using hormones at baseline (n= 2248), and after control for multiple tests, concentrations of

arginine (odds ratio [OR] per SD = 0.79, 95% confidence interval [CI] = 0.70–0.90), asparagine (OR = 0.83 (0.74–0.92)), and

phosphatidylcholines (PCs) ae C36:3 (OR = 0.83 (0.76–0.90)), aa C36:3 (OR = 0.84 (0.77–0.93)), ae C34:2 (OR = 0.85 (0.78–0.94)),

ae C36:2 (OR = 0.85 (0.78–0.88)), and ae C38:2 (OR = 0.84 (0.76–0.93)) were inversely associated with breast cancer risk, while

the acylcarnitine C2 (OR = 1.23 (1.11–1.35)) was positively associated with disease risk. In the overall population, C2 (OR =

1.15 (1.06–1.24)) and PC ae C36:3 (OR = 0.88 (0.82–0.95)) were associated with risk of breast cancer, and these relationships

did not differ by breast cancer subtype, age at diagnosis, fasting status, menopausal status, or adiposity.

Conclusions: These findings point to potentially novel pathways and biomarkers of breast cancer development. Results

warrant replication in other epidemiological studies.
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Background
Breast cancer is the most common cancer among

women worldwide [1]. Known modifiable hormonal and

lifestyle risk factors, however, are estimated to be re-

sponsible for only around 30% of breast cancers in high-

income countries [2–8], so a better understanding of the

etiology of the disease and of the biological mechanisms

is needed.

The metabolome reflects endogenous processes and en-

vironmental and lifestyle factors [9–13]. Metabolomics can

detect subtle differences in metabolism; therefore, it is a

promising tool to identify new etiological pathways. Previ-

ous prospective studies of breast cancer which have

employed metabolomics have used both targeted (analyses

of a pre-defined panel of metabolites) [14] or untargeted

(where as many metabolites as possible are measured and

then characterized [15]) approaches [16–18]. In previous

studies, lysophosphatidylcholine a C18:0 [14], various lipids,

acetone, and glycerol-derived compounds [16], 16a-

hydroxy-DHEA-3-sulfate, 3-methylglutarylcarnitine [17],

and caprate (10:0), were associated with breast cancer de-

velopment [18]. The number of cases included in these

studies was, however, limited (from 200 to 621) and hetero-

geneity by subtype was investigated in only one study [18].

In the current study, we employed a targeted metabo-

lomics approach to prospectively investigate the associa-

tions between 127 metabolites measured by mass

spectrometry in pre-diagnostic plasma samples and risk

of breast cancer, overall, and by breast cancer subtype,

accounting for established breast cancer risk factors.

Methods

Study population, blood collection, and follow-up

EPIC is an ongoing multi-center cohort study including

approximately 520,000 participants recruited between

1992 and 2000 from ten European countries [19].

Female participants (n = 367,903) were aged 35–75 years

old at inclusion. At recruitment, detailed information

was collected on dietary, lifestyle, reproductive, medical,

and anthropometric data [19]. Around 246,000 women

from all countries provided a baseline blood sample.

Blood was collected according to a standardized protocol

in France, Germany, Greece, Italy, the Netherlands,

Norway, Spain, and the UK [19]. Serum (except in

Norway), plasma, erythrocytes, and buffy coat aliquots

were stored in liquid nitrogen (− 196 °C) in a centralized

biobank at IARC. In Denmark, blood fractions were

stored locally in the vapor phase of liquid nitrogen con-

tainers (− 150 °C), and in Sweden, they were stored lo-

cally at − 80 °C in standard freezers.

Incident cancer cases were identified through record

linkage with cancer registries in most countries and

through health insurance records, cancer and pathology

registries, and active follow-up of study subjects in

France, Germany, and Greece. For each EPIC center,

closure dates of the study period were defined as the

latest dates of complete follow-up for both cancer inci-

dence and vital status (dates varied between centers,

from June 2008 to December 2012).

All participants provided written informed consent to

participate in the EPIC study. This study was approved

by the ethics committee of the International Agency for

Research on Cancer (IARC) and all centers.

Selection of cases and controls

Subjects were selected among participants who were

cancer-free (other than non-melanoma skin cancer) and

had donated blood at recruitment into the cohort. Cancers

were coded according to the Third Edition of the Inter-

national Classification of Diseases for Oncology (code

C50). Women diagnosed with first primary invasive breast

cancer at least 2 years after blood collection and before

December 2012, for whom estrogen receptor (ER), proges-

terone receptor (PR), and human epidermal growth factor

receptor 2 (HER2) statuses of the tumors were available,

were selected as cases for the current study.

For each breast cancer case, one control was chosen at

random among appropriate risk sets comprising all fe-

male cohort members who were alive and without can-

cer diagnosis (except non-melanoma skin cancer) at the

time of diagnosis of the index case. Using incidence

density sampling, controls were matched to cases on

center of recruitment, age (± 6 months), menopausal sta-

tus (premenopausal, perimenopausal, postmenopausal,

surgically postmenopausal [20]), phase of the menstrual

cycle [20], use of exogenous hormone at blood collec-

tion, time of the day (± 1 h), and fasting status at blood

collection (non-fasting (< 3 h since last meal), in between

(3–6 h), fasting (> 6 h), unknown).

Initially, 1626 cases and 1626 controls were eligible for

the study, but after the exclusion of pregnant women at

blood collection, a final population of 1624 cases and

1624 controls were included in the analysis.

Laboratory measurements

All plasma samples were assayed in the Biomarkers la-

boratory at IARC, using the AbsoluteIDQ p180 platform

(Biocrates Life Sciences AG, Innsbruck, Austria) and

following the procedure recommended by the vendor. A

QTRAP5500 mass spectrometer (AB Sciex, Framingham,

MA, USA) was used to measure 147 metabolites (19

acylcarnitines, 21 amino acids, 13 biogenic amines, 79

glycerophospholipids, 14 sphingolipids and hexoses).

Samples from matched case-control sets were assayed in

the same analytical batch. Laboratory personnel were

blinded to case-control status of the samples.
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Selection of metabolites

Metabolites were analyzed in samples from 3247 distinct

subjects (one subject included in 2 pairs). Completeness

of measures and coefficients of variation (median = 5.3%,

interquartile range = 1.4%) are shown in Additional file 1:

Table S1. Values lower than the lower limit of quantifi-

cation (LLOQ), or higher than the upper limit of quanti-

fication (ULOQ), as well as lower than batch-specific

limit of detection (LOD) (for compounds measured with

a semi-quantitative method: acylcarnitines, glyceropho-

spholipids, sphingolipids), were considered out of the

measurable range. Metabolites were excluded from the

statistical analyses if more than 20% of observations

were outside the measurable range (n = 20). A total of

127 metabolites (8 acylcarnitines, 20 amino acids, 6 bio-

genic amines, 78 glycerophospholipids, 14 sphingolipids

and hexoses) were finally retained for statistical analyses.

Of these 127 metabolites, 113 had all values included in

the measurable range. For the remaining 14 metabolites,

values outside the quantifiable range (all lower than

LLOQ or LOD) were imputed with half the LLOQ or

half the batch-specific LOD, respectively.

Statistical analysis

Characteristics of cases and controls were described

using mean and standard deviation (SD) or frequency.

Geometric means were used to describe non log-

transformed metabolite concentrations among cases

and controls. Log-transformed metabolite concentra-

tions were used in all other analyses. Partial Pearson’s

correlations between metabolites, adjusted for age at

blood collection, were estimated among controls.

We used conditional logistic regression to estimate the

risk of breast cancer per standard deviation (SD) in-

crease in metabolite concentration. The analysis was

conditioned on the matching variables. Likelihood ratio

tests were performed to compare linear models with

cubic polynomial models in order to assess departure

from linearity. Multiple testing was addressed by con-

trolling for family-wise error rate at α = 0.05 by

permutation-based stepdown minP adjustment of P

values, as this method better accounts for the depend-

ence of the tests [21, 22]. For comparison with previous

studies, we also adjusted the raw P values using Bonfer-

roni correction (P < 0.05/127) and controlling for the

false discovery rate (FDR) at α = 0.05 [23]. All statistical

tests were two-sided.

Metabolites showing a statistically significant associ-

ation with risk of breast cancer after correcting for

multiple testing were categorized into quintiles based

on the distribution of the concentrations among con-

trols, and odds ratios (OR) for risk of breast cancer

were estimated in each category. For tests of linear

trend, participants were assigned the median value in

each quintile and we modeled the corresponding

variable as a continuous term. To identify potential

confounders, models of the metabolites of interest

(continuous and quintiles) were adjusted separately

for each potential confounder and estimates obtained

were compared with estimates from models with

matching variables only. Only variables that changed

parameter estimates by more than 10% were retained

in the multivariable model. Variables tested were as

follows: age at first menstrual period (continuous),

number of full-term pregnancies (0/1/2/≥ 3), age at

first full-term pregnancy (never pregnant/quartiles),

breastfeeding (ever/never/never pregnant/missing; dur-

ation in quintiles), ever use of oral contraceptive (yes/

no), ever use of MHT (yes/no/missing), smoking

status (never/former/current), level of physical activity

(Cambridge index [24]: inactive/moderately inactive/

moderately active/active), alcohol consumption (non-

drinkers/> 0–3/3–12/12–24 g/day), education level (no

schooling or primary/technical, professional or sec-

ondary/longer education), energy intake (continuous,

quintiles), height (continuous, quintiles), sitting height

(missing/quartiles), weight (continuous, quintiles),

body mass index (continuous, quintiles), waist circum-

ference (continuous, quintiles), hip circumference

(continuous, quintiles), and hypertension (yes/no). For

these variables, missing values were assigned the me-

dian (continuous variables) or mode (categorical vari-

ables) if they represented less than 5% of the

population, or were otherwise classified in a “missing”

category (breastfeeding, ever use of MHT, sitting

height). Only waist circumference (continuous), hip

circumference (continuous), and weight (continuous)

were included in the final models. Given the correla-

tions between these variables (> 0.77), these variables

were included separately in three different models.

For those metabolites showing a significant association

with breast cancer risk after controlling for multiple test-

ing, heterogeneity was investigated by menopausal status

at blood collection, use of exogenous hormones at blood

collection, fasting status at blood collection, age at diag-

nosis (age 50 or older/younger than age 50), breast can-

cer subtype (ER+PR+/−HER2+, ER+PR+/−HER2−, ER

−PR−HER2+, ER−PR−HER2−), time between blood col-

lection diagnosis (2–8.6 years/more than 8.6 years), and

at recruitment waist circumference (WC) (< 80 cm/≥80

cm), BMI (< 25 kg/m2/≥25 kg/m2), and country, by intro-

ducing interaction terms in the models. Subgroup ana-

lyses were conducted on the raw models. For WC,

unconditional logistic regression adjusted for each

matching factor was used. P values were not corrected

for multiple tests since heterogeneity was investigated

only for metabolites showing statistically significant

His et al. BMC Medicine          (2019) 17:178 Page 3 of 13



Table 1 Main characteristics of the study population

Variables N Controls Cases

N = 1624 N = 1624

Mean (SD) or N (%) Mean (SD) or N (%)

Age at blood collection (years) 3248 52.5 (7.9) 52.5 (8.0)

Length of follow-up from blood collection (years) 3248 – 8.3 (2.8)

Age at diagnosis (years) 1624 – 60.8 (8.3)

ER status 1624

Negative – 313 (19.3)

Positive – 1311 (80.7)

PR status 1624

Negative – 516 (31.8)

Positive – 1108 (68.2)

HER2 status 1624

Negative – 1270 (78.2)

Positive – 354 (21.8)

Age at first menstrual period (years) 3248 13.1 (1.6) 13.0 (1.5)

Number of full-term pregnancies 3248

0 215 (13.2) 244 (15.0)

1 253 (15.6) 310 (19.1)

2 729 (44.9) 686 (42.2)

≥ 3 427 (26.3) 384 (23.6)

Age at first full-term pregnancy (years) 2789 24.9 (4.3) 25.3 (4.4)

Ever breastfed 3248

No 194 (11.9) 206 (12.7)

Yes 1116 (68.7) 1080 (66.5)

Never pregnant 215 (13.2) 244 (15.0)

Missing 99 (6.1) 94 (5.8)

Use of exogenous hormones at blood collection 3248

No 1124 (69.2) 1130 (69.6)

Yes 492 (30.3) 494 (30.4)

Missing 8 (0.5) 0 (0.0)

Menopausal status at blood collection 3248

Premenopausal 434 (26.7) 434 (26.7)

Postmenopausal 869 (53.5) 872 (53.7)

Perimenopausal 321 (19.8) 318 (19.6)

Fasting status at blood collection (time since last meal) 3248

< 3 h 737 (45.4) 731 (45.0)

3–6 h 284 (17.5) 285 (17.5)

> 6 h 580 (35.7) 580 (35.7)

Unknown 23 (1.4) 28 (1.7)

Alcohol consumption at recruitment (g/day) 3248 8.9 (12.2) 10.2 (13.5)

Education level 3248

Primary/no schooling 610 (37.6) 597 (36.8)

Technical/professional/secondary 687 (42.3) 688 (42.4)

Longer education 327 (20.1) 339 (20.9)
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associations with risk overall, after correction for mul-

tiple testing.

A sensitivity analysis of all 127 metabolites was per-

formed on hormone non-users (1124 cases and 1124

controls) and by cancer subtype.

Analyses were conducted using SAS software for Win-

dows (version 9.4, Copyright© 2017, SAS Institute Inc.)

and R software (packages Epi and NPC) [25, 26].

Results
Cases were diagnosed on average 8.3 years after blood

collection, at a mean age of 60.8 years. The majority of

tumors were ER-positive (80.7%), PR-positive (68.2%),

and HER2-negative (78.2%) (Table 1). Mean concentra-

tions of metabolites by case/control status are shown in

Additional file 1: Table S2.

Overall, positive, moderate correlations were observed

among some of the amino acids, phosphatidylcholines

(PCs), lysoPCs, and sphingomyelins (see Additional file 1:

Figure S1); the average absolute correlations within each

class was 0.36, 0.39, 0.45, and 0.55, respectively (data not

tabulated).

Associations of metabolites with breast cancer risk

Prior to correction for multiple testing, 29 metabolites

were significantly associated with the risk of breast can-

cer with a raw P value lower than 0.05 (Fig. 1a and

Table 2), mainly amino acids, PCs (inversely associated),

and acylcarnitines (directly associated). However, after

adjusting for multiple testing (Fig. 1b), only C2 (OR for

1 SD increment = 1.15, 95% CI = 1.06–1.24, corrected P

value = 0.031) and phosphatidylcholine PC ae C36:3 (OR

for 1 SD increment = 0.88, 95% CI = 0.82–0.95, corrected

P value = 0.044) remained significantly associated with

risk of breast cancer (Table 2). Adjustment for multiple

testing using FDR procedure identified similar significant

metabolites, while with Bonferroni correction, only C2

remained associated with risk of breast cancer with a

borderline significant P value (Bonferroni P value =

0.051) (Table 2). Departure from linearity was suggested

for glutamate, C0, kynurerine, and SDMA. However,

when non-linear models were examined, and after con-

trolling for multiple tests, no non-linear association

remained significant (results not shown).

When C2 and PC ae C36:3 were further analyzed as

categorical variables, results similar to those of the linear

analysis were obtained; logistic regression conditioned

on the matching variables showed a linear trend across

quintiles of C2 (OR quintile 5 versus quintile 1 = 1.54,

95% CI = 1.21–1.95, P trend = 0.0002) and of PC ae C36:

3 (OR quintile 5 versus quintile 1 = 0.73, 95% CI = 0.58–

0.91, P trend = 0.0003) (Table 3). Adjusting for an-

thropometric variables in separate models had little ef-

fect on the risk estimates (Table 3).

Stratification by hormone therapy

Statistically significant heterogeneity was observed by

use of hormones at blood collection for the associations

of C2 (P homogeneity = 0.035) and PC ae C36:3 (P

homogeneity = 0.017) with breast cancer, with statisti-

cally significant associations restricted to hormone non-

users (C2: OR per SD = 1.23, 95% CI = 1.11–1.35; PC ae

C36:3: OR per SD = 0.83, 95% CI = 0.76–0.90) and no as-

sociations observed in users (C2: OR per SD = 1.03, 95%

Table 1 Main characteristics of the study population (Continued)

Variables N Controls Cases

N = 1624 N = 1624

Mean (SD) or N (%) Mean (SD) or N (%)

Height (cm) 3248 161.4 (6.6) 162.0 (6.6)

Weight (kg)

Age at diagnosis < 50 years old 382 63.8 (11.3) 63.0 (10.9)

Age at diagnosis ≥ 50 years old 2866 66.7 (10.8) 68.4 (12.2)

Body mass index (kg/m2)

Age at diagnosis < 50 years old 382 24.2 (4.1) 23.9 (4.2)

Age at diagnosis ≥ 50 years old 2866 25.7 (4.1) 26.1 (4.6)

Waist circumference (cm)

Age at diagnosis < 50 years old 382 76.8 (9.8) 76.4 (10.3)

Age at diagnosis ≥ 50 years old 2866 81.0 (10.4) 82.5 (11.3)

Hip circumference (cm)

Age at diagnosis < 50 years old 382 99.0 (8.6) 98.3 (8.4)

Age at diagnosis ≥ 50 years old 2866 101.4 (8.0) 102.7 (9.1)

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, PR progesterone receptor
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CI = 0.91–1.17; PC ae C36:3: OR per SD = 1.00, 95% CI =

0.88–1.13; Fig. 2).

In an analysis of the 127 metabolites restricted to hor-

mone non-users (n = 2248) (Fig. 3), we identified additional

metabolites showing statistically significant inverse associa-

tions with risk of breast cancer after adjustment of P values

for multiple testing, for which heterogeneity was also inves-

tigated. These metabolites were as follows: arginine (OR

per SD = 0.79, 95% CI = 0.70–0.90; P homogeneity = 0.002),

asparagine (OR per SD = 0.83, 95% CI = 0.74–0.92; P

homogeneity = 0.12), PC aa C36:3 (OR per SD = 0.84, 95%

CI = 0.77–0.93; P homogeneity = 0.12), PC ae C34:2 (OR

per SD = 0.85, 95% CI = 0.78–0.94; P homogeneity = 0.04),

PC ae C36:2 (OR per SD = 0.85, 95% CI = 0.78–0.88; P

homogeneity = 0.04), and PC ae C38:2 (OR per SD = 0.84,

95% CI = 0.0.76–0.93; P homogeneity = 0.10).

No significant heterogeneity was observed for the asso-

ciation of C2 and PC ae C36:3 with breast cancer by

Fig. 1 Odds ratios (ORs) for the associations between metabolites and breast cancer. a Raw P values. b Adjusted P values. PC:

phosphatidylcholine; SM: sphingomyelin. ORs are estimated per standard deviation (SD) increase in log-transformed metabolite concentrations,

from logistic regression conditioned on matching variables. a Statistical significance based on raw P values (significant metabolites above dotted

line). b Statistical significance based on P values adjusted by permutation-based stepdown minP (see “Methods” section for details); adjusted P

values above 0.05 (dotted line) were considered statistically significant after correction for multiple tests
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menopausal status, fasting status at blood collection,

breast cancer subtype, age at diagnosis, WC (P homo-

geneity all > 0.12, Fig. 2), country (P homogeneity of 0.50

for C2 and 0.12 for PC ae C36:3) or by time between

blood collection and diagnosis (2–8.6/≥8.6 years (me-

dian); P homogeneity of 0.17 for C2 and 0.98 for PC ae

C36:3) (data not shown).

Stratification by breast cancer subtypes for all metabo-

lites (see Additional file 1: Figure S2) showed that no

metabolite reached statistical significance after correc-

tion for multiple testing in each subtype, although for

ER+PR+/−HER2− cases (n = 1084 cases), PC ae C36:3

and PC aa C36:3 had adjusted P values close to statistical

significance (0.066 and 0.074, respectively).

Table 2 Associations between metabolites (continuous) and risk of breast cancer, for metabolites with raw P values < 0.05

Class Metabolite Odds ratio and 95% CI (for
1 SD)a

Raw P

value
Permutation-based minP P

valueb
Bonferroni P
valuec

False discovery rate P

valued

Amino acids Arginine 0.89 (0.80–0.99) 0.035 0.753 1.000 0.166

Asparagine 0.87 (0.80–0.95) 0.002 0.109 0.240 0.062

Glutamine 0.91 (0.84–0.99) 0.031 0.731 1.000 0.166

Glycine 0.90 (0.83–0.97) 0.005 0.229 0.629 0.090

Histidine 0.91 (0.84–0.99) 0.020 0.588 1.000 0.131

Lysine 0.90 (0.83–0.98) 0.010 0.389 1.000 0.102

Threonine 0.92 (0.85–0.99) 0.034 0.752 1.000 0.166

Acylcarnitines C14:1 1.09 (1.01–1.18) 0.028 0.704 1.000 0.166

C18:1 1.11 (1.00–1.22) 0.040 0.793 1.000 0.183

C2 1.15 (1.06–1.24) 0.0004 0.031 0.051 0.036

Glycerophospholipids PC aa C32:3 0.90 (0.82–0.99) 0.026 0.674 1.000 0.166

PC aa C36:2 0.89 (0.82–0.97) 0.009 0.339 1.000 0.099

PC aa C36:3 0.89 (0.82–0.96) 0.002 0.117 0.272 0.062

PC aa C38:3 0.92 (0.85–0.99) 0.035 0.753 1.000 0.166

PC ae C34:2 0.90 (0.84–0.97) 0.008 0.317 0.966 0.099

PC ae C36:2 0.90 (0.84–0.98) 0.009 0.339 1.000 0.099

PC ae C36:3 0.88 (0.82–0.95) 0.001 0.044 0.073 0.036

PC ae C38:2 0.88 (0.81–0.96) 0.002 0.128 0.310 0.062

PC ae C38:3 0.90 (0.83–0.98) 0.012 0.425 1.000 0.107

PC ae C38:5 0.93 (0.86–1.00) 0.047 0.836 1.000 0.205

PC ae C40:1 0.92 (0.84–0.99) 0.030 0.730 1.000 0.166

PC ae C40:4 0.91 (0.84–0.98) 0.018 0.553 1.000 0.129

PC ae C42:1 0.90 (0.83–0.98) 0.010 0.393 1.000 0.102

lysoPC a
C18:0

0.88 (0.80–0.98) 0.014 0.473 1.000 0.115

lysoPC a
C18:2

0.89 (0.81–0.96) 0.004 0.209 0.559 0.090

lysoPC a
C20:3

0.90 (0.83–0.98) 0.013 0.434 1.000 0.107

Sphingolipids SM C20:2 0.90 (0.82–0.98) 0.018 0.546 1.000 0.129

SM (OH)
C22:1

0.90 (0.83–0.97) 0.008 0.322 1.000 0.099

Sugars Hexose 1.12 (1.01–1.24) 0.035 0.752 1.000 0.166

SD standard deviation, CI confidence interval

Italicized text indicates a statistically significant association with breast cancer risk after adjustment of P values by permutation-based minP
aOdds ratios were estimated by logistic regression conditioned on center of recruitment, age, menopausal status at the time of blood collection, phase of the

menstrual cycle at blood collection (for premenopausal women only), use of exogenous hormone at blood collection, time of the day at blood collection, and

fasting status at blood collection
bMultiple testing controlled for family-wise error rate at α = 0.05 by permutation-based stepdown minP adjustment of P values
cMultiple testing controlled for family-wise error rate at α = 0.05 by Bonferroni adjustment of P values
dMultiple testing controlled for false discovery rate at α = 0.05
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Discussion

In this prospective analysis that investigated the asso-

ciation of 127 circulating metabolites with breast can-

cer incidence, among women not using hormones at

baseline, and after control for multiple tests, acylcar-

nitine C2 was positively associated with risk of breast

cancer, while levels of a set of phosphatidylcholines

(ae C36:3, aa C36:3, ae C34:2, ae C36:2 and ae C38:2)

and the amino acids arginine and asparagine were in-

versely associated with disease risk. In the overall

population (hormone users and non-users), only C2

and PC ae C36:3 were associated with risk of breast

cancer independently from breast cancer subtype, age

at diagnosis, fasting and menopausal status at collec-

tion, or adiposity.

Acylcarnitine C2 plays a key role in the transport of fatty

acids into the mitochondria for β-oxidation [27, 28]. In

human intervention studies, plasma concentration levels

have been seen to vary according to the activity of the fatty

oxidation pathway [28, 29]. High C2 levels are associated

to other known mechanisms involved in breast cancer de-

velopment, such as hyperinsulinemia and insulin resist-

ance [30], consistent with some studies showing increased

plasma concentrations of acetylcarnitine in pre-diabetic or

diabetic women [31–33]. An explanation for the associa-

tions observed only in women not using hormones, for C2

and for other metabolites, could be that due to their in-

creased exposure to estrogens, MHT users are already at a

higher risk of breast cancer than non-users [34], similarly

to what is observed for BMI and postmenopausal breast

cancer risk [35].

Phospholipids are a major component of cell mem-

branes and play a major role in cell signaling and cell

cycle regulation. Previous studies of phospholipids

showed that PC ae C36:3 concentrations were decreased

in type 2 diabetes [36, 37] and that lower serum levels

were predictive of future diabetes [38]. Lower concentra-

tions of PCs ae C38:2 and ae C34:2 were also observed

in diabetic men compared to non-diabetics [37]. A bio-

logical basis for such inverse associations could rely on

observed antioxidant effect of PCs [39].

In line with the inverse association observed between

arginine and risk of breast cancer in hormone non-users,

decreased plasma concentrations of arginine has been

observed in breast cancer patients [40] compared with

controls. Both human [41] and animal [42] studies have

Table 3 Associations between C2 and PC ae C 36:3 and risk of breast cancer

Cases/
controls

Model 1c Model 2—adjusted for WC Model 3—adjusted for weight Model 4—adjusted for HC

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

C2

Per SD increment 1624/1624 1.15 (1.06–1.24) 1.14 (1.06–1.23) 1.15 (1.06–1.24) 1.14 (1.06–1.24)

C2 (quintiles)a

1 287/322 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

2 291/326 1.02 (0.81–1.28) 1.00 (0.79–1.26) 1.00 (0.80–1.27) 1.00 (0.80–1.26)

3 322/324 1.15 (0.91–1.44) 1.12 (0.89–1.41) 1.13 (0.90–1.42) 1.13 (0.89–1.42)

4 311/326 1.12 (0.89–1.41) 1.09 (0.87–1.37) 1.09 (0.87–1.37) 1.10 (0.87–1.38)

5 413/326 1.54 (1.21–1.95) 1.51 (1.19–1.91) 1.53 (1.20–1.93) 1.52 (1.20–1.93)

P trendb 0.0002 0.0005 0.0004 0.0004

PC ae C36:3

Per SD increment 1624/1624 0.88 (0.82–0.95) 0.90 (0.83–0.97) 0.90 (0.83–0.96) 0.89 (0.83–0.96)

PC ae C36:3 (quintiles)a

1 367/325 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

2 363/323 0.99 (0.80–1.23) 1.01 (0.82–1.25) 1.02 (0.82–1.26) 1.02 (0.82–1.26)

3 357/326 0.96 (0.77–1.19) 0.98 (0.79–1.22) 0.98 (0.79–1.22) 0.97 (0.78–1.21)

4 264/326 0.70 (0.56–0.88) 0.73 (0.58–0.91) 0.73 (0.58–0.91) 0.72 (0.58–0.91)

5 273/324 0.73 (0.58–0.91) 0.77 (0.61–0.96) 0.76 (0.61–0.96) 0.75 (0.60–0.95)

P trendb 0.0003 0.0020 0.0016 0.0010

CI confidence interval, HC hip circumference, OR odds ratio, SD standard deviation, WC waist circumference
aQuintile cut-points were determined on control participants

For log-transformed C2, cut-points were as follows, in log(μmol/L): < 1.18/1.18–1.37/1.37–1.55/1.55–1.77/≥ 1.77. For log-transformed PC ae C36:3, cut-points were

as follows, in log(μmol/L): < 1.81/1.81–1.94/1.94–2.04/2.04–2.16/≥ 2.16
bFor test of linear trends across quintiles, participants were assigned the median value in each category and the corresponding variable was modeled as a

continuous term
cConditional logistic regression conditioned on matching factors
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A

B

Fig. 2 Associations between C2 (a) and PC ae C36:3 (b) and breast cancer, by selected variables. CI: confidence interval; ER: estrogen receptor;

HER2: human epidermal growth factor receptor 2; PC: phosphatidylcholine; PR: progesterone receptor; SM: sphingomyelin. Odds ratios (ORs) are

estimated per standard deviation (SD) increase in log-transformed metabolite concentrations, from logistic regression conditioned on matching

variables. Homogeneity was tested by adding an interaction term in the conditional logistic regression model for menopausal status, use of

hormones at blood collection, fasting status, breast cancer subtype, and age at diagnosis (all matching factors or case characteristics). For waist

circumference (non-matching factor), logistic regression adjusted for each matching factor was used
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observed a reduction in anti-tumor immune responses

in the context of arginine depletion in breast cancer,

suggesting a link between arginine and immunity. In

addition, higher plasma concentrations of arginine were

correlated with lower estradiol and insulin-like growth

factor 1 concentrations in premenopausal women [43],

linking arginine to known mechanisms leading to breast

cancer development. Regarding asparagine, a recent ani-

mal and in vitro study suggested that reduced asparagine

bioavailability resulted in slower disease progression

[44]. However, the role of asparagine in cancer develop-

ment is not clear.

Prospective data on metabolomics and risk of breast

cancer are limited [14, 16–18], and differences in ap-

proaches (targeted or untargeted metabolomics), analytical

methods (NMR or MS), and samples (serum or plasma)

make comparisons of the results difficult. Only one previ-

ous analysis used a similar targeted metabolomics ap-

proach with measurement of the same metabolites [14]

and showed that lysophosphatidylcholine a C18:0 was in-

versely associated with risk of breast cancer after Bonfer-

roni correction of P values, and that an inverse association

close to statistical significance was observed for PC ae

C38:1. However, none of the metabolites identified in the

present work were associated with risk of breast cancer in

this previous study, which did not investigate heterogen-

eity by use of hormones.

In a previous study applying NMR-based metabolomics

analyses in the SU.VI.MAX cohort [16], several amino

acids, lipoproteins, lipids, and glycerol-derived compounds

were identified as significantly associated to breast cancer

risk, suggesting that modifications in amino acid metabol-

ism and energetic homeostasis in the context of setting up

of insulin resistance could play a role in the disease. Re-

sults from the Prostate, Lung, Colorectal, and Ovarian

Cancer Screening (PLCO) study, based on an MS-based

metabolomics approach in serum samples, indicated that

some metabolites correlated with alcohol intake (androgen

pathway metabolites, vitamin E, and animal fats) [18], and

with BMI (metabolites involved in steroid hormones me-

tabolism and branched-chain amino acids) [17], were also

associated with breast cancer risk.

Heterogeneity by subtype was investigated only in the

PLCO study, showing that some metabolites (allo-isoleu-

cine, 2-methylbutyrylcarnitine [17], etiocholanolone glu-

curonide, 2-hydroxy-3-mthylvalerate, pyroglutamine, 5α-

androstan-3β, 17β-diol disulfate [18]) were associated

with risk of ER+ breast cancer, but not with breast can-

cer overall, indicating that the etiology of breast cancer

differs by subtype. In our work, however, we did not ob-

serve any heterogeneity of results according to receptor

status of the cancers.

This study is the largest prospective investigation of

metabolomics and risk of breast cancer to date. Strengths

of this work include its large sample size, which allowed

us to examine associations by breast cancer subtype. In

addition, the exclusion of cases diagnosed less than 2 years

after blood collection reduces the risk of reverse causation

Fig. 3 Adjusted P values for associations between metabolites and breast cancer, hormone non-users (1124 cases, 1124 controls). PC:

phosphatidylcholine; SM: sphingomyelin. Odds ratios (ORs) are estimated per standard deviation (SD) increase in log-transformed metabolite

concentrations, from logistic regression conditioned on matching variables. Raw P values were adjusted by permutation-based stepdown minP

(see “Methods” section for details); adjusted P values above 0.05 (dotted line) were considered statistically significant after correction for

multiple tests
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in our findings. Finally, the assessment of numerous life-

style factors and anthropometric measures allowed us to

examine and control for potential confounding.

A potential limitation to our work is that blood was

collected from participants at one time point only.

Nevertheless, the reliability of plasma metabolites ana-

lyzed here has been shown to be relatively stable over 4

months to 2 years, leading to the conclusion that a single

measurement might be sufficient [45, 46, 47]. In

addition, although fasting samples might be preferable

over non-fasting samples, in our study, cases and con-

trols were matched on fasting status and the results did

not differ by fasting state. Another limitation is that the

technologies that were used for some of the metabolites

(such as PCs and lysoPCs) do not allow for a precise

identification of the compounds measured, since the sig-

nal observed is not specific and may correspond to sev-

eral compounds. Lastly, it is important to note that the

aim of the present work was to screen metabolites asso-

ciated with risk, but that further work is needed to iden-

tify the factors that influence biological levels of the

metabolites associated with risk and to understand their

biological connection with breast cancer development.

Future studies should also integrate other molecular

markers known to be linked to breast cancer to gain

insight into biological mechanisms.

Conclusions
We observed a positive association between acetylcarnitine

(C2) and risk of breast cancer, and an inverse association

between PC ae C36:3 and risk of breast cancer. These asso-

ciations were limited to women not using hormones, as

were inverse associations with arginine, asparagine, PCs aa

C36:3, ae C34:2, ae C36:2, and ae C38:2. These metabolites

might be biomarkers of future breast cancer development.

These results need to be replicated in other epidemiological

studies, and more research is needed to identify determi-

nants of these metabolites.
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