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Glioblastoma (GBM) is the most common malignant brain tumor. The poor

clinical outcome and overall ineffectiveness of current standard treatments,

including surgery, chemotherapy, and radiation, highlight the urgent need for

alternative tumor-specific therapies for GBM. Chimeric antigen receptor (CAR)

T cell therapy is a revolutionary therapeutic strategy for hematological

malignancies, but the optimal potency of CAR T cell therapy for solid tumors,

especially GBM, has not been achieved. Although CAR T cell therapeutic

strategies for GBM have been assessed in clinical trials, the current antitumor

activity of CAR T cells remains insufficient. In this review, we present our

perspective on genetically modifying CAR constructs, overcoming T cell

dysfunctions, and developing additional treatments that can improve CAR T

cell effectiveness, such as functionality, persistence, and infiltration into tumor

sites. Effectively improved CAR T cells may offer patients with GBM new

treatment opportunities, and this review is intended to provide a

comprehensive overview for researchers to develop potent CAR T cells using

genetic engineering or combinatorial preparations.
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Introduction

Chimeric antigen receptor (CAR) T cell therapy has emerged due to the development

of genetically engineered T cell receptors (TCRs) to achieve specific target cancer-

associated antigens (Figure 1). Adoptive transfer of autologous CAR T cells prolongs

patient survival times and promotes remission, even in some patients who do not

respond to standard treatment (1). Since the first CD19-CAR T cell therapy for patients

with acute lymphoblastic leukemia (ALL) was approved by the FDA in 2017,

investigators have concentrated on extending the therapeutic effects of CAR T cells

not only for B cell malignancies but also for several other cancers, including solid tumors.
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Glioblastoma (GBM), the most common and highly

aggressive malignant brain tumor, has a poor prognosis with a

median overall survival time of <16 months (2, 3). Currently, the

approved GBM treatments typically include surgery followed by

radiotherapy or chemotherapy, with a 5-year survival rate below

10%. Several immunotherapeutic approaches have been

examined in clinical trials for patients with GBM. However,

the impact of CAR T cells on early clinical outcomes was limited

as the cells did not generate sufficient antitumor activity, and

there is still no FDA-approved CAR T therapy for GBM despite

safe and promising results (4–7). The development and research

of CAR T cell therapy against GBM remains challenging to date

due to complications, including antigen heterogeneity, loss of

cel ls rendering CAR obsolete (T cel l exhaustion) ,

immunosuppressive molecules and cells in the tumor

microenvironment (TME), and insufficient CAR T cells

penetration and trafficking to tumor sites (Figure 2) (8–11).

Here, we review current and emerging strategies in the field

of CAR T cell therapy with a focus on the following three aspects

(1): modification of the CAR construct, (2) overcoming T cell

dysfunctions, and (3) the addition of chemical and external

treatments (Figure 3). We discuss the individual strength of

these technologies and their applications for GBM therapy.

Although potential barriers to CAR T cell therapy still exist,

effectively improved CAR T cell therapy could offer patients with

GBM new treatment opportunities. This review provides a

comprehensive summary of individual strengths for those

aiming to develop more advanced CAR T cells using

genetically modified constructs or combinatorial preparations.
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Modification of CAR constructs

CAR T cell structure comprises three major domains: an

extracellular domain, a transmembrane domain, and an

intracellular signaling domain (Figure 1). Each domain has a

unique function and requires an optimal design for CAR efficacy.

Additionally, CAR designs have been adjusted to improve clinical

effectiveness, and new design approaches are emerging. Indeed,

the CAR T cells currently under development have been designed

by genetically modifying the CAR construct to compensate for the

weakness of existing CAR T cells, such as poor activity against

GBM or severe toxicity caused by CAR T cell overactivation.
Enhancing the specificity of CARs for
GBM tumors

One of the reasons for the poor activity of GBM CAR T cells

is the low target specificity of CARs. Although IL-13Ra2,
EGFRvIII, and HER2 are the most frequently targeted antigens

in preclinical and clinical studies on CAR T therapy for GBM,

these antigens have important limitations (4–7). Therefore,

several approaches have been investigated to overcome the

antigen heterogeneity and immune escape leading to loss of

antigenicity and/or immunogenicity when a single antigen is

targeted in GBM, and some of these approaches reflect the

strategies used for hematological malignancies.

Researchers have designed CAR T cells to have two CARs, each

targeted to a different type of tumor-related antigens (DualCARs) or
FIGURE 1

Structure of CAR T cell. CAR T cells have a structural design with three major domains: an extracellular domain including a hinge (space), a
transmembrane domain, and an intracellular signaling domain. First-generation CARs include a single-chain variable fragment (scFv) targeting
tumor-associated antigen (TAA) linked to a space in an extracellular domain, a transmembrane domain, and the CD3z chain of the T cell
receptor (TCR) as an intracellular signaling domain. Second-generation CARs are enhanced CAR T cell activity by adding a costimulatory
domain, such as CD28 or 4-1BB to support the expansion and persistence of engineered T cells. Third-generation CARs contain several
costimulatory domains.
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assembled two or more scFvs linearly (tandem CARs; TanCARs),

similar to the bispecific antibody platform with dual affinity

retargeting (12). However, currently, CD19/CD22- (13) and

CD19/CD20-targeting approaches such as these CARs have

limited the clinical experience for leukemia therapy (7, 14).

Another approach is to design CARs that split from CAR

molecules to the targeting domain, which is capable of binding

multiple undefined antigens (universal CAR; uniCAR), and as a

typical example, the T1E peptide binding to EGFR family receptors

is the most relevant example for solid tumors (15). Moreover,

bispecific T cell engagers (BiTEs) platforms have recently been

developed capable to target multiple antigens with flexibility for

combinatorial and sequential approaches and redirecting T cells
Frontiers in Immunology 03
activity toward tumor cells. Furthermore, other strategies are to

design T cells capable of recognizing tumor cells by inducing

bystander T cell activation, including the transgenic expression of

cytokines (e. g., IL-18 or IL-36g) or ligands (e.g., CD40L) (16).

Similarly, one study revealed that engineered T cells to secrete the

dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand

(Flt3L) induces host T cell activation (17). In addition, in mouse

GBM models, anti-Fn14×CD3 BiTE given intratumorally showed

antitumor effects whereas xenografts treated with Fn14 CAR T cells

recurred (18). Furthermore, to address antigenic heterogeneity in

GBM, investigators have developed gene modifying EGFRvIII CAR

T cells to deliver bispecific EGFR antibodies (EGFRvIII CAR T

BiTEs) (19).
FIGURE 2

Challenges for CAR T therapy for glioblastoma (GBM). Current major limitations of CAR cell therapy include (1) trafficking and infiltration, (2)
immunosuppression, (3) tumor heterogeneity and antigen escape, and (4) CAR T cell-related toxicity.
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Switch-controlled CARs for reducing
on-target/off-tumor toxicity

Most antigens targeted by CAR T cells are tumor-associated

rather than tumor-specific, which means highly expressed on the

tumor and have low abundance in normal tissues, capable of

leading to providing on-target/off-tumor toxicities. Much

research has been conducted on switch-controlled CARs,

which can solve these problems by controlling activation to

kill tumors while providing inhibitory mechanisms such as a

CAR T cell suicide activation and methods to regulate the

costimulatory pathway.
Frontiers in Immunology 04
One of the best switch-controlled CAR T cells is using an

antigen-specific synthetic notch (synNotch) system, conferring

the expression of a second CAR upon activation (20). Numerous

investigators have reported SynNotch gated CAR-T cells, such as

SynNotch-GD2-B7H3, which recognize GD2 as the gate and

B7H3 as the target (21), and SynNotch-HER2 (22), which

controls the killing effects. The low-affinity synNotch receptor

performs as a filter, limiting transcriptional induction until T

cells encounter high antigen-expressing target cells. Once passed

through this initial filter, the induced high-affinity CAR can

perform potent T cell proliferation and killing activities. This

synNotch CAR low-high circuit design allows CAR-T cells to
FIGURE 3

Improving the efficacy of CAR T cell therapy can be classified into distinct subgroups, including (1) modification of CAR constructs,
(2) overcoming T cell dysfunctions, and (3) additional chemical and external treatments.
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express CAR molecules only in the presence of tumor cells with

high antigen density, thereby killing tumor cells but not healthy

cells with low antigen density.

In addition, two synNotch CAR researchers recently used a

different approach in which stable levels of activity were

maintained throughout the anticancer process, eliminating the

problem of T cell depletion that has hampered traditional CAR T

therapy (23, 24). They pursued two such multiantigen targeting

strategies for GBM, EGFRvIII-SynNotch CAR and EphA2 or

IL13Ra2 CARs (23), and approaches for mesothelioma and

ovarian cancer involving alkaline phosphatase placental-like 2

(ALPPL2)-synNotch CAR and MCAM, MSLN or HER2 CAR

(24). Traditional CAR T cells are designed to consistently

express a kill switch; however, in these two SynNotch CAR T

cells can save energy by going into standby mode when not in

direct contact with the tumor.
Improving CAR T cell trafficking

CAR T cells for hematological malignancies and their

corresponding target malignancies share a hematopoietic

origin and therefore tend to migrate to similar areas, such as

the bone marrow or lymph nodes. In comparison, most solid

tumors, including GBM, do not readily attract T cells and are

known as cold tumors due to their poor immunogenic status.

Therefore, CAR T cells for GBM should be engineered to

increase CAR T cell trafficking, allowing them to penetrate the

extremely dense stroma and be attracted to tumors.

Stromal cells, such as cancer-associated fibroblasts (CAFs),

express high levels of fibroblast activation protein (FAP) (25)

and SLAMF7 (26) and induce remodeling of the aberrant

extracellular matrix (ECM), which limits T cell motility and

trafficking. Some groups have reported that combination

treatment with FAP-targeting CAR T cells and tumor-

targeting CAR T cells or cancer vaccines showed enhanced

antitumor immunity, but there are conflicting results

regarding FAP-targeting CAR T cells, which had on-target,

off-tumor toxicity against bone marrow stromal cells (8).

Thus, targeting stromal cells expressing FAP requires further

investigation of the efficacy and toxicity profile of FAP-targeted

CAR T cells (10). Meanwhile, dual-targeting CAR T cells for

both malignant plasma cells and CAFs showed a potential ability

to reverse TME-induced CAR T cell suppression (26).

Moreover, chemokine receptor-overexpressing CAR T cells

can potentially be attracted to tumors that highly express

chemokine receptors, such as CCR6, leading to effective tumor

clearance (27, 28). Additionally, in parallel, technologies to

enable in vivo real-time imaging of CAR T cells are being

generated and assessed in preclinical and early phase clinical

trials (29, 30). Such a strategy would enable the noninvasive and

rapid examination to improve CAR T cell trafficking to tumor

cells and antitumor function.
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Furthermore, another approach is to efficiently degrade

dense ECM components to promote CAR T cell infiltration to

the tumor and its antitumor activity. Researchers have attempted

to engineer CAR T cells with enzymes that degrade dense ECM

with developed stiffness and crosslinking, such as heparinase

(which degrades heparan sulfate proteoglycan) and matrix

metalloproteinases (MMPs; which proteolysis all ECM

components in a Zn-dependent manner) (8, 31).

In addition, CAR persistence is also important for CAR T

cell trafficking. For example, CAR ubiquitination is triggered

during CAR encounters with tumor antigens. Thereby,

ubiquitination-blocked recyclable CAR, mutating the

intracellular ubiquitination site (CARKR), could elevate

endosomal CAR signaling and be recyclable back to the cell

surface, leading to redirecting CAR trafficking (32).
Overcoming T cell dysfunctions

Most patients, except for B lymphoblastic leukemia patients,

do not show a sustained response to CAR T cells and develop

resistance mainly causing T cell dysfunction (33, 34). Substantial

efforts have been made to identify genes and pathways

contributing to T cell dysfunction. In this section, we explain

the modulation of CAR T cell function by structural engineering,

leading to premature CAR T cell differentiation and the

prevention of exhaustion.
Engineering CAR T cells with
gene editing

The utility of CRISPR-Cas9 genome engineering, in other

words, loss-of-function screening, has developed it possible to

easily knock-out any gene in the genome with extension and

customization. Deleting or inhibiting some genes enhances CAR

T cell activity (35, 36). Several investigators have identified a

gene signature that defines CAR and TCR dysregulation and

transcription factors as key regulators of CAR T cell exhaustion

using CRISPR-Cas9 screens. In CD19 CARs in CD4+ or CD8+ T

cells with deletion of suppressor of cytokine signaling 1 (SOCS1),

a major nonredundant checkpoint that inhibits CD4+ T cell

proliferation by blocking multiple downstream signaling

molecules, both IL-2 and IFN-g, results in a markedly

improved antitumor effect (37). Additionally, loss of genes in

the IFN-gR signaling pathway (IFNGR1, JAK1, or JAK2) reduces

overall CAR T cell binding duration and avidity in GBM, with

other solid tumors being more resistant to CAR T cell-mediated

death (38). The deletion of the de novoDNAmethyltransferase 3

alpha (DNMT3A) in first- or second-generation CAR T cells

universally preserved the cell proliferation and antitumor

response during prolonged tumor exposure (39). The

exhaustion-resistant DNMT3A knock-out CAR T cells have
frontiersin.org
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been coupled with the upregulation of IL-10, and genome-wide

DNA methylation profiling revealed an atlas of genes targeted

for epigenetic silencing (39). Moreover, the deletion of ID3 or

SOX4 may attenuate cytotoxicity, relative to a CD8+ T to-NK-

like T cell transition (NK-like CAR T cells), suggesting a

potential strategy to enhance the efficacy of CAR T cell

therapy against solid tumors (33). Furthermore, knocking out

transforming growth factor-b receptor II (TGF-bRII) in CAR via

CRISPR promotes the long-term efficacy of CAR T cells against

solid tumors (40). Recently, the results of the phase I trials have

revealed that prostate-specific membrane antigen (PSMA) CAR

T optimally engineered with TGF-bRII to block TGF-b signaling
to demonstrate improved T cell expansion in blood, tumor

trafficking, and enhanced antitumor immunity in metastatic

castration-resistant prostate cancer (41). These atlases enhance

CAR T cell efficacy and provide a molecular definition of CAR T

cell exhaustion.

Advances in CRISPR technology have also allowed for the

investigation of T cell function beyond loss-of-function screens,

improving our understanding of the regulators of T cell

activation as a result of gain-of-function gene perturbations

and providing further insight into disease pathways. One

research group utilized a widely adaptable technology for

barcoding and tracking targeted integrations of large-scale

nonviral DNA templates for pooled knock-in screens in

primary human T cells and pooled knock-in sequencing

(PoKI-seq), combining single-cell transcriptome analysis in

vitro and in vivo (42). Through this platform, they engineered

transforming growth factor-b (TGF-b) R2-41BB chimeric

receptor to promote solid tumor clearance (42). Another

group reported using genome-wide CRISPR activation

(CRISPRa) and interference (CRISPRi) screens to construct

gene networks regulating IL-2 and IFN-g production in

primary human T cells (43). Alterations in the cytokine

response were confirmed through key hits by arrayed

CRISPRa and multiplexed secretome characterization.

Combining CRISPRa screening with single-cell RNA

sequencing for deep molecular characterization of screened

hits is possible, demonstrating how perturbations modulate T

cell activation and promote cellular states characterized by

notable cytokine expression profiles. The genes involved in

reprogramming critical immune cell functions identified

through these screens might be applied in the design

of immunotherapies.

Although CRISPR screens offer complexity and diversity,

lentiviral screens have readily been applied for the T cell

phenotype and are well established, suggesting opportunities

for clinical translation. For instance, one research group

achieved a genome-wide gain-of-function screen in primary

human CD8+ and CD4+ T cells by applying barcoded human

open reading frames (ORFs) and identified the top-ranked genes

and key cytokines (44). From these results, the lymphotoxin-b
receptor (LTBR), which is the high-ranked ORF, causes
Frontiers in Immunology 06
profound transcriptional and epigenomic remodeling,

activating the NF-kB pathway in overexpressed T cells,

thereby increasing T cell effector functions in the chronic

stimulatory environment and inducing depletion, i.e., the

antigen-specific responses of CAR T cells were improved.
Application of T cell immunotherapy

Several approaches to T cell immunity have been published

recently. After chemotherapy with cisplatin, producing CCL20

and IL-1b at the tumor site induces to recruiting and activating

innate lymphoid cells (ILC3s) in tumors. Then, activated ILC3s

generate CXCL10, which attracts CD4+ and CD8+ T cells to

tumors, enhancing antitumor immunity (45). Moreover, the

approved pharmacologic inhibitors of cyclin-dependent

kinases 4 and 6 (CDK4/6) promote the phenotypic and

functional acquisition of immunologic T cell memory (46).

This applies to the design of clinical trial protocols to prevent

CAR T cell exhaustion during therapy. Indeed, one research

group identified protein tyrosine phosphatase 1B (PTP1B) as an

intracellular checkpoint that is upregulated in T cells in tumors;

additionally, they revealed that deletion or inhibition of PTP1B

improves the efficacy of adoptively transferred CAR T cells

against solid tumors (47). Their hypothesis rationalized the

relationship between cytokine-induced JAK/STAT signaling,

which is well established to be fundamentally important in all

aspects of immunity, particularly in T cell activation and

homeostasis, and PTP1B, which can attenuate this signaling.

Such successful immunotherapy cases, theories, and evidence

can be actively implemented for the development of CAR T

cell treatments.

Overall, transient suspension of CAR signaling molecules

and receptor redesign have been proposed to improve antitumor

activity. Alternatively, signaling levels might be reduced,

allowing for more controlled and dynamic regulation of CARs,

similar to the natural T cell receptor.
Additional chemical and
external treatments

Chemical compounds for CAR
T cell therapy

Chemical compounds can increase target antigen expression

or T cell activities and have a synergetic effect on CAR T cells.

The enhancer of zeste 2 polycomb repressive complex 2 (Ezh2)

subunit inhibitor has upregulated GD2 expression and enhanced

GD2 CAR T efficacy in Ewing sarcoma (48). Sunitinib, a multi-

tyrosine kinase inhibitor, has upregulated carbonic anhydrase IX

(CAIX) expression and improved the efficacy of anti-CAIX CAR

T cells in renal cancer (49). Bryostatin1, a protein kinase C
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modulator, and its analogs were shown to upregulate CD22 to

enhance CD22-CAR T cel l e fficacy (50, 51) . The

pharmacologically selective inhibition of PTP1B using MSI-

1436 induced the T cell-mediated tumor suppression and

enhanced PD-1 blockade response (47). Moreover, a

combination of anti-PD-1-based immunotherapy with IFN-a
resulted in encouraging anticancer activity in unresectable HCC

patients (52). In infiltrating CD8+ T cells, IFN-a downregulates

the ability to consume glucose and consequentially establishes a

high glucose microenvironment promoting the transcription of

CD27, which is the T cell costimulatory molecule.

By reversibly binding to CAR T cells, small compounds also

play a safety switch role to address the toxicity of CAR T cell

therapy by reversibly binding to CAR T cells. In lymphoma, the

clinically approved drug dasatinib, which inhibits the

phosphorylation of CD3, LCK, and ZAP70, results in

restricted induction of NFAT and induces CD8+ and CD4+

CAR T cells to be a function-off state (53). Lenalidomide

intercedes the proteasomal degradation of several target

molecules through modulation of CRL4CRBN E3 ubiquitin

ligase and a C2H2 zinc finger degron motif (54) that functions

as a switch molecule, has been shown to be a safe induction agent

for genetic vehicles designed for therapeutic uses. Duong’s

research group developed dual-switch CAR T cells in which

one is a potent activation switch based on rimiducid-inducible

MyD88 and CD40 (iMC)-signaling elements to improve CAR T

cell efficacy, and the other is an orthogonally regulated,

rapamycin-induced, caspase-9-based safety switch (iRC9) to

neutralize potential toxicity by this reinforced CAR (55).

Similarly, Yang’s research group constructed two types of CAR

T cells with the stilbenoid natural product resveratrol (3,4’,5-

trihy-droxystilbene) as a switch molecule, containing gene

circuits that can control the activation (on) and inactivation

(off) of CAR T cells (56). These tunable dual-switch systems

provide a safety switch to reduce toxicity, thus supporting

greater CAR T cell expansion and long-term persistence in a

drug-dependent manner.

Small molecule compounds such as those mentioned above are

likely sufficiently safe; preferably, such compounds have low

immunogenicity and clear pharmacodynamic and pharmacokinetic

properties. Small molecule compounds should also be selectively

reached to target tumor tissues via drug-directed delivery techniques,

further mitigating off-target toxicity. Meanwhile, several compounds

with CAR T cells have already been demonstrated to exhibit

synergistic effects in clinical trials. For example, B-cell lymphoma

patients achieved complete remission following a combination of

anti-CD19 CAR T cells and decitabine (57). A case study revealed

that CD19-CAR T cell therapy with dasatinib induced complete

remission in lymphoid blast phase chronic myeloid leukemia

harboring the T315I mutation in the BCR-ABL fusion gene (58).

Moreover, combination CAR T cell therapy following ibrutinib in

patients with relapsed or refractory CLL demonstrated the

probability of one-year progression-free survival and lower CRS-
Frontiers in Immunology 07
associated cytokines in serum (59). Recently, the high-performance

drug-regulatable system termed signal neutralization by an

inhibitable protease (SNIP) using an FDA-approved small

molecule with favorable pharmacokinetics in humans has been

reported to validate no side effects and to outperform constitutive

CARs in multiple solid tumor models (60). These SNIP CAR T cells

serve as a predictable safety switch that can stop when lethal toxicity

begins during drug administration, achieving more functional, less

exhausted, and reliable levels of CAR T cells. As well as the reduced

drug administration controls SNIP CAR T cells to be within the

therapeutic range, eliminating tumor cells with high antigen

expression, while preserving healthy tissue with lower antigen

expression in an on-target off-tumor toxicity mouse model (60).

Moreover, especially in GBM patients, the CRS cytotoxic

response is even more critical, as further elevated intracranial

pressure in patients associated with swollen mass due to the effect

of tumor can be lethal. Dexamethasone is routinely used to treat

cerebral edema in patients with CNS tumors. Some clinical studies

suggest that corticosteroids have an immunosuppressive effect on

the desired antitumor effects of CAR T cells, but clinical evidence

remains scarce (61). Dexamethasone upregulates cytotoxic T

lymphocyte-associated antigen 4 (CTLA4), an immune

checkpoint receptor expressed on T cells, and blocks the CD28

costimulatory pathway, which reduces T cell proliferation and

differentiation (62). Conversely, low-dose dexamethasone did not

reduce CAR T cell antitumor effects in orthotopic xenograft GBM

models (63). By introducing a mathematical model, it was

suggested that a critical threshold of CAR T cell death

concerning the proliferation rate could guide the dose and

timing of CAR T cell delivery in patients administered

dexamethasone (64). Future clinical studies are required to

determine the effects of dexamethasone on CAR T therapy.
External therapy

Recently, several unique approaches to interrogate CAR-

mediated antitumor immunity have been reported. Newly

designed controllable CAR T cells, including ultrasound (FUS)

control of induced heat-shock-protein promoter (Hsp) in CD19

CAR T cells (65) and photothermal modulating an IL-15

superagonist or a natural killer group 2D ligand (NKG2DL)

BiTE (66), have also been reported. These switch-CAR T cells

also reduced tumor burden, did not affect the surrounding tissue,

improved survival, and mitigated antigen escape. As another

example, the light-switchable CAR (LiCAR) T cells exhibit

allowing spatial, temporal control, and T cell-mediated

antitumor therapeutic effects through real-time photo-

dependent activation (67).

Furthermore, engineered oncolytic viruses (OVs) exhibit

tumor selectivity, targeted transgene delivery to tumors, and

desirable immunogenic properties making a promising

treatment approach for solid tumors. An engineered OV
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expressing a non-signaling truncated CD19 (CD19t) protein for

selectively delivery to tumor enables targeting by CD19-CAR T

cells. Infected tumor cells with an oncolytic vaccinia virus coding

for CD19t (OV19t) produces de novo CD19 at the cell surface and

subsequent virus-mediated tumor cytolysis (68). Recently, another

OV study revealed that induction of the native TCR with viral or

virally encoded epitopes enhances CAR T cell proliferation,

activity, and efficacy in mice with intracranial GBM tumors (69).
Conclusion

As a breakthrough treatment for GBM, CAR T therapy is

crucial, through better optimization of CAR T cells is needed.

Lessons learned from T cell immunotherapies have set the new

stage for the application of CAR T therapy, and it is critical to

identify more selective approaches, leveraging our understanding

of CAR T cell resistance and toxicity. As genetic engineering

rapidly advances, we have an exciting and unique opportunity to

improve outcomes for GBM patients. Further basic scientific

studies of CAR T cell development involving comparisons with

CAR T cells for hematological malignancies are necessary to

promote the translation of immunotherapy and establish it as

efficient anticancer treatment.
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